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I. METHOD DESCRIPTION

In this paper, we consider 22 link prediction methods. The Common Neighbor (CN), Jac-

card and Resource Allocation (RA) methods are described in the paper. Here we describe

the rest of methods. They are LocalPath (LP) [1], Katz [2],Salton [3], Sorenson [4],Hub

Depressed Index(HDI) [5], Hub Promoted Index (HPI)[6], Leicht-Holme-Newman similarity

(LHN)[7], Adamic-Adar(AA)[8], Preferential Attachment(PA)[9], Local Naive Bayes form

of CN(LNBCN)[10], Local Naive Bayes form of RA(LNBRA)[10], Leicht-Holme-Newman

Index(LHNII)[7], Average Commute Time(ACT) [11],Cosine based on L+(CosPlus)[12],

Random Walk with Restart(RWR)[13], Local Random Walk(LRW)[14], Superposed Ran-

dom Walk(SRW)[14], Matrix Forest Index(MFI)[15], CN based on transferring similarity

(TSCN)[16].

(1)Local Path Index (LP). To provide a good tradeoff of accuracy and computational com-

plexity, we here introduce an index that takes consideration of local paths, with wider horizon

than CN. It is defined as

SLP = A2 + ǫA3, (1)

where ǫ is a free parameter.

(2)Katz Index. This index is based on the ensemble of all paths, which directly sums over

the collection of paths and is exponentially damped by length to give the shorter paths more

weights. The mathematical expression reads as

SKatz
xy =

∞
∑

l=1

βl · |paths<l>
xy |, (2)

where paths<l>
xy | is the set of all paths with length l connecting x and y, and β is a free

parameter (i.e., the damping factor) controlling the path weights.

(3)Salton Index. It is defined as

SSalton
xy =

|Γ (x) ∩ Γ (y)|
√

kx × ky
, (3)
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where kx is the degree of node x. The Salton index is also called the cosine similarity in the

literature.

(4)Søensen Index. This index is used mainly for ecological community data, and is defined

as

SSørenson
xy =

2|Γ (x) ∩ Γ (y)|

kx × ky
, (4)

(5)Hub Depressed Index (HDI). Analogously to the above index, we also consider a mea-

surement with the opposite effect on hubs, defined as

SHDI
xy =

|Γ (x) ∩ Γ (y)|

max{kx, ky}
, (5)

(6)Hub Promoted Index (HPI). This index is proposed for quantifying the topological overlap

of pairs of substrates in metabolic networks, and is defined as

SHPI
xy =

|Γ (x) ∩ Γ (y)|

min{kx, ky}
, (6)

Under this measurement, the links adjacent to hubs are likely to be assigned high scores since

the denominator is determined by the lower degree only. (7)Leicht-Holme-Newman Index

(LHN1). This index assigns high similarity to node pairs that have many common neighbors

compared not to the possible maximum, but to the expected number of such neighbors. It

is defined as

SLHN1
xy =

|Γ (x) ∩ Γ (y)|

kx × ky
, (7)

(8)Adamic-Adar Index (AA). This index refines the simple counting of common neighbors

by assigning the less-connected neighbors more weight, and is defined as

SAA
xy =

∑

z∈Γ (x)∩Γ (y)

1

log kz
, (8)

(9)Preferential Attachment Index (PA).The mechanism of preferential attachment can be

used to generate evolving scale-free networks, where the probability that a new link is

connected to the node x is proportional to kx. The probability that this new link will
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connect x and y is proportional to kx ky. Motivated by this mechanism, the corresponding

similarity index can be defined as

SPA
xy = kx × ky, (9)

(10)Local Naive Bayes form of CN(LNBCN).

SLNBRA
xy =

∑

w∈Γ (x)∩Γ (y)

1

kw
(logRw + log s), (10)

where s = P (A0)
P (A1)

,A0 and A1 is the class variables of connection and disconnection respective-

ly,and Rw is the role function of node w.

(11)Local Naive Bayes form of RA(LNBRA).

SLNBRA
xy = |Γ (x) ∩ Γ (y)| log s+

∑

w∈Γ (x)∩Γ (y)

logRw, (11)

where s = P (A0)
P (A1)

,A0 and A1 is the class variables of connection and disconnection respective-

ly,and Rw is the role function of node w.

(12)Leicht-Holme-Newman Index (LHN2). This index is a variant of the Katz index. Based

on the concept that two nodes are similar if their immediate neighbors are themselves similar,

one obtains a self-consistent matrix formulation as

SLHNII
xy = 2mλ1D

−1(I −
φA

λ1
)−1D−1, (12)

where D is the degree matrix with Dxy=λxykx and φ (0<φ<1) is a free parameter. (13)Av-

erage Commute Time (ACT).Denote by m(x, y) the average number of steps required by a

random walker starting from node x to reach node y, the average commute time between x

and y is

SACT
xy =

1

l+xx + l+yy + l+zz
, (13)

(14)Cosine based on L+. This index is an inner-product-based measure.And the cosine

similarity is defined as the cosine of the node vectors, namely

SCos+

xy =
vTx v

T
y

|vx| · |vy|
, (14)
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(15)Random Walk with Restart (RWR). This index is a direct application of the PageRank

algorithm, and it is defined as

SRWR
xy = qxyqyx, (15)

where qxy is the probability this random walker locates at node y from node x in the steady

state.

(16)Local RandomWalk (LRW). To measure the similarity between nodes x and y, a random

walker is initially put on node x and thus the initial density vector ~π(0)=~ex.The LRW index

at time step t is thus defined as

SLRW
xy (t) = qxπxy(t) + qyπyx(t), (16)

where q is the initial configuration function.

(17)Superposed Random Walk (SRW). Similar to the RWR index, Liu and Lü proposed the

SRW index, where the random walker is continuously released at the starting point, resulting

in a higher similarity between the target node and the nodes nearby. The mathematical

expression reads

SSRW
xy (t) =

t
∑

ι=1

[qxπxy(ι) + qyπyx(ι)], (17)

where t denotes the time steps.

(18)Matrix Forest Index (MFI). This index is defined as

SMFI
xy = (I + L)−1, (18)

where the similarity between x and y can be understood as the ratio of the number of s-

panning rooted forests such that nodes x and y belong to the same tree rooted at x to all

spanning rooted forests of the network.

(19)CN based on transferring similarity(TSCN).This method is CN Index with the trans-

ferring similarity,and the similarity is defined as

STr
xy = ǫ

∑

v

SCN
xv STr

vy + SCN
xy , (19)

where STr
xy is the transferring similarity.

We report the link prediction algorithms’ robustness versus their AUC in Fig. S1-S4.

We can see that the LRW, SRW, RA and LNBRA have the highest AUC. However, their
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R− varies significantly. RA and LNBRA, though have high AUC, their R− is very low,

indicating they are very sensitive to the noisy links in the network. On the other hand,

LRW and SRW have almost as high robustness as the PA method which only uses node

degree for link prediction and thus is very little affected by noise. However, when R+ and

Re are considered, the methods with high AUC tend to have low R+ and Re. This indicate

that in these cases, one has to sacrifice the some AUC in order to improve the robustness of

the prediction results. The detailed values for AUC, R+, R−, Re are reported in the Table

S2 and S3.
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II. SUPPLEMENTARY FIGURES
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Figure S1. The dependence of the robustness of the algorithms (RAUPR) on the fraction of

missing and noisy links in four real-world networks..
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Figure S2. The dependence of the robustness of the algorithms (RAUPR) on the fraction of

rewired links in four real-world networks.
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Figure S3. The dependence of the robustness of the algorithms R on the fraction of missing and

noisy links in four real-world networks. The training set ratio in this figure is 80%.
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Figure S4. The dependence of the robustness of the algorithms R on the fraction of missing and

noisy links in four real-world networks. The training set ratio in this figure is 50%.
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Figure S5. the dependence of the robustness of the algorithms R on the fraction of missing and

noisy links in four real-world networks. The results are obtained with the 10-fold cross validation.
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Figure S6. The link prediction algorithms’ robustness versus their AUC when applied to the

Jazz network.
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Figure S7. The link prediction algorithms’ robustness versus their AUC when applied to the

USAir network.
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Figure S8. The link prediction algorithms’ robustness versus their AUC when applied to the C.

elegans network.
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Figure S9. The link prediction algorithms’ robustness versus their AUC when applied to the

PB network.
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III. SUPPLEMENTARY TABLES

Table S1. The robustness of link prediction algorithms in ten real networks. R−, R+ and Re are

respectively the robustness of the algorithms with missing links, noisy links and swapped links.

The fraction of changed links here is 40%. The highest value for each network is highlighted in

bold.

AUC R− R+ Re

Network CN Jaccard RA CN Jaccard RA CN Jaccard RA CN Jaccard RA

Dolphins 0.794 0.793 0.797 0.8903 0.8878 0.8897 0.9953 0.9935 0.9931 0.9123 0.9083 0.9135

Word 0.680 0.623 0.678 0.9384 0.9661 0.9415 1.0096 0.9993 1.0028 0.9968 0.9905 0.9981

Jazz 0.956 0.962 0.972 0.969 0.9652 0.9669 0.9942 0.9975 0.9915 0.9334 0.9404 0.9331

E.coli 0.880 0.865 0.881 0.9321 0.9361 0.9316 1.003 1.001 1.0006 0.9989 0.9955 0.998

C.elegans 0.849 0.791 0.87 0.9238 0.9343 0.9224 0.994 1.0004 0.9882 0.9253 0.9053 0.924

USAir 0.954 0.915 0.972 0.972 0.9702 0.9684 0.9997 1.0055 0.9949 0.9608 0.9433 0.9531

Netsci 0.978 0.976 0.982 0.9227 0.9237 0.9224 0.9992 0.9993 0.9987 0.9071 0.9069 0.9078

Email 0.855 0.853 0.856 0.9153 0.9164 0.9152 0.9983 0.9979 0.9973 0.9361 0.9339 0.9360

PB 0.923 0.877 0.928 0.9747 0.9772 0.9731 1.002 1.0071 0.9968 0.9796 0.9768 0.9769

TAP 0.955 0.955 0.956 0.9582 0.958 0.958 0.9994 0.9998 0.9994 0.9575 0.9588 0.9582
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Table S2. The AUC of link prediction algorithms on four real networks. The three highest

values in each column are marked in bold.

Jazz USAir C.elegans PB

CN 0.9561 0.9537 0.8264 0.9231

Jaccard 0.9618 0.9148 0.7730 0.8768

RA 0.9723 0.9721 0.8477 0.9278

LocalPath 0.9527 0.9525 0.8668 0.9363

Katz 0.9440 0.9503 0.8644 0.9332

Salton 0.9656 0.9247 0.7983 0.8782

Sorenson 0.9618 0.9137 0.7920 0.8757

HDI 0.9520 0.9074 0.7823 0.8721

HPI 0.9480 0.8816 0.8047 0.8556

LHN 0.9018 0.7771 0.7247 0.7631

AA 0.9626 0.9650 0.8660 0.9268

PA 0.7697 0.9106 0.7556 0.9090

LNBCN 0.9603 0.9600 0.8638 0.9262

LNBRA 0.9720 0.9725 0.8694 0.9279

LHNII 0.8996 0.7694 0.7333 0.7608

ACT 0.7976 0.9011 0.7452 0.8920

CosPlus 0.9289 0.9585 0.8605 0.9274

RWR 0.9488 0.9675 0.9036 0.9422

LRW 0.9513 0.9724 0.9057 0.9404

SRW 0.9630 0.9740 0.9046 0.9385

MFI 0.9220 0.9409 0.8728 0.9059

TSCN 0.5119 0.6033 0.5109 0.4953
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Table S3. The robustness index of link prediction algorithms on four real networks. R−, R+ and

Re represent the algorithm robustness for the link removing, link adding and link reshuffling

scenarios, respectively. The proportion of changed links is set as 40% for all three scenarios. The

three highest values in each column are marked in bold.

Jazz USAir C.elegans PB

Method R− R+ Re R− R+ Re R− R+ Re R− R+ Re

CN 0.9690 0.9942 0.9334 0.9720 0.9997 0.9608 0.9238 0.9940 0.9253 0.9747 1.0020 0.9796

Jaccard 0.9652 0.9975 0.9404 0.9702 1.0055 0.9433 0.9343 1.0004 0.9053 0.9772 1.0071 0.9768

RA 0.9669 0.9915 0.9331 0.9684 0.9949 0.9531 0.9224 0.9882 0.9240 0.9731 0.9968 0.9769

LocalPath 0.9705 0.9939 0.9312 0.9842 0.9983 0.9663 0.9583 0.9906 0.9324 0.9914 0.9989 0.9808

Katz 0.9764 0.9911 0.9303 0.9849 0.9986 0.9676 0.9581 0.9909 0.9323 0.9946 0.9986 0.9814

Salton 0.9629 0.9976 0.9399 0.9594 1.0109 0.9413 0.9320 1.0052 0.9115 0.9723 1.0145 0.9777

Sorenson 0.9649 0.9976 0.9392 0.9712 1.0068 0.9451 0.9342 0.9995 0.9082 0.9787 1.0083 0.9789

HDI 0.9678 0.9969 0.9346 0.9759 1.0025 0.9451 0.9419 0.9926 0.9068 0.9811 1.0040 0.9774

HPI 0.9625 1.0048 0.9219 0.9696 1.0471 0.9302 0.9348 1.0040 0.9197 0.9801 1.0316 0.9669

LHN 0.9691 1.0013 0.8996 1.0242 1.0029 0.8867 0.9767 0.9855 0.9001 1.0241 0.9988 0.9523

AA 0.9700 0.9934 0.9342 0.9720 0.9982 0.9585 0.9250 0.9903 0.9281 0.9740 1.0010 0.9801

PA 0.9858 0.9991 1.0000 0.9925 0.9971 1.0009 0.9877 0.9976 1.0004 0.9963 0.9994 1.0007

LNBCN 0.9698 0.9896 0.9295 0.9726 0.9962 0.9597 0.9252 0.9885 0.9264 0.9744 1.0001 0.9796

LNBRA 0.9670 0.9879 0.9299 0.9680 0.9942 0.9528 0.9221 0.9848 0.9222 0.9733 0.9965 0.9772

LHNII 0.9746 1.0054 0.9040 1.0195 1.0132 0.8662 0.9928 0.9856 0.8833 1.0296 1.0149 0.9385

ACT 0.9816 0.9837 0.9722 0.9911 0.9954 0.9946 0.9841 0.9971 0.9920 0.9963 1.0012 0.9995

CosPlus 0.9770 1.0053 0.9702 0.9874 0.9811 0.9387 0.9675 0.9778 0.9069 0.9896 0.9798 0.9753

RWR 0.9764 0.9928 0.9255 0.9893 0.9922 0.9567 0.9713 0.9795 0.9290 0.9933 0.9922 0.9709

LRW 0.9778 0.9999 0.9419 0.9864 0.9902 0.9542 0.9662 0.9854 0.9321 0.9919 0.9967 0.9764

SRW 0.9729 0.9995 0.9461 0.9832 0.9891 0.9522 0.9623 0.9826 0.9273 0.9891 0.9937 0.9730

MFI 0.9806 1.0172 0.9774 0.9866 0.9914 0.9556 0.9702 0.9887 0.9282 0.9937 1.0025 0.9841

TSCN 0.9428 1.0104 0.9891 0.8321 1.0035 0.8921 1.0365 0.9569 1.0557 0.9970 0.9980 0.9978
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