Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification

Ajit Ghosh^{1,3}, Hemant R Kushwaha¹, Mohammad R Hasan¹, Ashwani Pareek², Sudhir K Sopory¹, Sneh L Singla-Pareek^{1,*}

¹Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India, ²Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India, and ³Present address: Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh.

*To whom correspondence should be addressed:

Sneh L Singla-Pareek, Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India.
Phone: +91-11-26741358, Ext. 363 (O);
Fax: +91-11-26742316;
E-mail: sneh@icgeb.res.in

Sl. no	Parameter	WT	C119A	Deviation from WT (%)
1	$K_{\rm m}$ (μ M)	744	602	19
2	$V_{\rm max}$ (µmol min ⁻¹ mg ⁻¹)	58	22	62
3	$k_{\text{cat}} (\min^{-1})$	2500	945	62
4	$k_{\rm cat}/K_{\rm m} ({\rm mM}^{-1}{\rm min}^{-1})$	3359	1569	53

Table S1 | Comparison of enzyme kinetic parameters of WT OsDJ-1C protein and its muteinC119A

Sl. No.	Name of Species	Classification	Swiss-prot Ids
1	Oryza sativa subsp. japonica	Monocot	A3BCD1, B9G8C7
2	Hordeum vulgare var. distichum	Monocot	F2D1P7, F2EG99, M0V2D0, M0WAD7, M0XZ96, M0YG87
3	Triticum urartu	Monocot	M7Y5X3
4	Triticum aestivum	Monocot	W5CKN3, W5CV43, W5DFB7, W5H8W7
5	Zea mays	Monocot	K7VDN4, K7VH97
6	Sorghum bicolor	Monocot	C5YMA2
7	Arabidopsis thaliana	Dicot	B3H6C6, Q56ZE0, Q56ZU8
8	Medicago truncatula	Dicot	B7FLB0
9	Ricinus communis	Dicot	B9TFX6
10	Vitis vinifera	Dicot	F6I594
11	Glycine max	Dicot	K7K833
12	Brassica rapa subsp. pekinensis	Dicot	Q8H6J5
13	Phaseolus vulgaris	Dicot	V7CEB9
14	Populus trichocarpa	Dicot	U7DVP5
15	Genlisea aurea	Angiosperms (Eudicots)	S8CKY5

Table S2 | List of single domain containing DJ-1 proteins in plants used in this study

Table S3 | List of *DJ-1* genes in *Arabidopsis*, along with their chromosomal locations, alternative spliced forms, CDS, polypeptide length, molecular weight, and localization (bp base pair, aa amino acid, Da daltons)

Swiss-	Gene	Protein	Chrom	Locus	CDS	Polypeptide	Mol.	pI	Localization
prot ID			osome		(bp)	length (aa)	Mass		
			no.				(Da)		
Q9MAH3	AtDJ-1b	AtDJ-1b	1	AT1G53280	1317	438	46990.1	7.95	Chloroplast
Q9ZV19	AtDJ-1e	AtDJ-1e.1	2	AT2G38860.1	1170	389	41668.1	5.01	Cytoplasm
		AtDJ-1e.2		AT2G38860.2	1197	398	42729.2	4.84	
		AtDJ-1e.3		AT2G38860.3	840	279	30133.6	4.37	
Q9M8R4	AtDJ-1d	AtDJ-1d	3	AT3G02720	1167	388	41645.3	5.08	Cytoplasm
Q9FPF0	AtDJ-1a	AtDJ-1a.1	3	AT3G14990.1	1179	392	41856.9	5.08	Vacuole, Plasma
		AtDJ-1a.2		AT3G14990.2	1110	369	39478.1	5.07	membrane,Chloroplast,
		AtDJ-1a.3		AT3G14990.3	1110	369	39478.1	5.07	Plasmodesmata, Cytosol
Q9MIG8	AtDJ-1f	AtDJ-1f	3	AT3G54600	1200	399	43141.7	5.65	Cytosol
Q56ZU8	AtDJ-1c	AtDJ-1c.1	4	AT4G34020.1	1419	472	50986.1	8.99	Chloroplast
		AtDJ-1c.2		AT4G34020.2	1314	437	47336.0	9.07	

Table S4 | Comparison of enzyme kinetics of conventional GLY I/II enzymes with the novelGLY III enzymes from various species

Species	Protein	K _m	$k_{\rm cat}$	$k_{\rm cat}/K_{\rm m}$	Reference
		(µM)	(s^{-1})	$(M^{-1}s^{-1})$	
Oryza sativa	OsGLYI-11.2	100	70.96	$7.1 \text{X} 10^5$	1
	OsGLYII-2	254	508	$2.0X10^{6}$	2
	OsDJ-1C	744	41.66	$5.6X10^4$	Present study
E. coli	EcGLYI	27	338	$1.2X10^{7}$	3
	EcGLYII	184	53	4.7×10^{5}	4
	EcGLY III	1430	2.62	$0.1 X 10^4$	5
Homo sapiens	HsGLYI	66	500	$2.3X10^{7}$	6
	HsGLYII	187	780	$4.2X10^{6}$	7
	HsDJ-1	600	1.21	$0.2X10^{4}$	8

Sl. no	Gene name	Primer name	Sequence (5'-3')	Product size
1	OsDJ-1A	DJ-1A_for1	ATGCAGATGTGTGATCTGTGA	147
		DJ-1A_rev1	TCCATCAATCAATCCATCAGCTA	
2	OsDJ-1B	DJ-1B_for2	GCCTGTCACCTGTGAGTGAT	177
		DJ-1B_rev2	AGACAGCGTAAACTCACCGA	
3	OsDJ-1C	DJ-1C_for1	CACAGCTTTGGGCTTTCGTC	147
		DJ-1C_rev1	CAGCTCCTTCTGCTCGTACA	
4	OsDJ-1D	DJ-1D_for1	GCGGTTGAGAGACAGTGTGA	108
		DJ-1D_rev1	CACGGCATGAGAACAACAGC	
5	OsDJ-1E	DJ-1E_for1	TGAGGCATCCTTTTGCTCGT	147
		DJ-1E_rev1	ACCCAAAGGTGCAATATCCATC	
6	OsDJ-1F	DJ-1F_for1	CTCGCCGAGTTCATCGCTC	99
		DJ-1F_rev2	TGACAGAGAGAACAGAGAAGCA	
7	eEF-1α	eEF_for	TTTCACTCTTGGTGTGAAGCAGAT	100
		eEF_rev	GACTTCCTTCACGATTTCATCGTAA	

 Table S5 | List of primer pairs and their sequence used for qRT-PCR analysis and site

 directed mutagenesis

References:

- 1. Mustafiz, A. *et al.* A unique Ni -dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. *Plant J.* **78**, 951-963 (2014).
- Ghosh, A., Pareek, A., Sopory, S. K. & Singla-Pareek, S. L. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. *Plant J.* 80, 93-105 (2014).
- Clugston, S. L. *et al.* Overproduction and characterization of a dimeric non-zinc glyoxalase I from *Escherichia coli*: evidence for optimal activation by nickel ions. *Biochemistry* 37, 8754-8763 (1998).
- 4. O'Young, J., Sukdeo, N. & Honek, J. *Escherichia coli* glyoxalase II is a binuclear zinc-dependent metalloenzyme. *Arch. Biochem. Biophys.* **459**, 20-26 (2007).
- Subedi, K. P., Choi, D., Kim, I., Min, B. & Park, C. Hsp31 of *Escherichia coli* K-12 is glyoxalase III. *Mol. Microbiol.* 81, 926-936 (2011).

- 6. Ridderstrom, M., Cameron, A. D., Jones, T. A. & Mannervik, B. Mutagenesis of residue 157 in the active site of human glyoxalase I. *Biochem. J.* **328**, 231-235 (1997).
- 7. Ridderstrom, M. *et al.* Molecular cloning, heterologous expression, and characterization of human glyoxalase II. *J. Biol. Chem.* **271**, 319-323 (1996).
- 8. Lee, J. Y. *et al.* Human DJ-1 and its homologs are novel glyoxalases. *Hum. Mol. Genet.* **21**, 3215-3225 (2012).

Figure S1 Gene structures of all the *DJ-1* family members of rice including alternative spliced forms. All the exons are shown in filled black boxes and the introns are indicated by black lines. The 5'-UTR regions are shown using empty boxes and the 3'-UTR regions are shown in empty arrows that indicates the direction of the gene.

Figure S3 | Expression profiling of *OsDJ-1* genes using MPSS data in different tissues of rice. Heatmap has been generated using TIGR MeV software package and represent hierarchical clustering of average log_2 signal values. The color bar below represents relative expression values; thereby, red color represents highest expression levels, white represents medium expression levels, and blue signifies lowest expression levels.

Figure S4 | Chromosomal distribution of glyoxalase genes (GLYI, GLYII and DJ-1) in *Arabidopsis*. Chromosomes carrying glyoxalase genes are shown with their respective numbers at the top of the bar. Novel glyoxalase III (DJ-1) genes have been marked along with GLY I and GLY II genes. GLY I, GLY II and DJ-1 genes are marked with green, purple, and red colour boxes respectively.

Figure S5 | In silico prediction of proteins interacting with OsDJ-1 proteins in rice.