Enhancement of hepatocyte differentiation from human embryonic stem cells by Chinese medicine Fuzhenghuayu

Jiamei Chen¹⁻⁴ Wei Gao^{2,3,5} Ping Zhou^{2,3} Xiaocui Ma^{2,3} Benjamin Tschudy-Seney^{2,3} Chenghai Liu¹, Mark A Zern^{2,3} Ping Liu¹, Yuyou Duan²⁻⁴

¹Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China

²Department of Internal Medicine, ³Institute for Regenerative Cures, ⁴Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA ⁵Institute of Biophysics, the Chinese Academy of Science, Beijing, China

Suppl. Figure 1. The chromatographic profile of FZHY extracts. In a previous study, ten compounds have been identified in FZHY according to the optimized mobile phase employing the chromatography technology, and the chromatographic profiling of FZHY was shown as above. (Stationary phase: CNW Athena C_{18} – WP (4.6mm × 150mm, 3µm), flow rate: 1 mL/min). (Each compound indicated by peak number: 1. danshensu; 2. protocatechuic aldehyde; 3. rosmarinic acid 4. salvianolic acid B; 5. schizandrol A; 6. schizandrol B; 7. schizandrin A; 8. uridine 9. guanosine; 10. adenosine;) [Supplementary Reference 1] Suppl. Reference 1

1. Yang T, Shen DP, Wang QL et al. Investigation of the absorbed and metabolized components of Danshen from Fuzheng Huayu recipe and study on the anti-hepatic fibrosis effects of these components. J Ethnopharmacol 2013;148:691-700.

Suppl. Figure 2. Optimization of the treatment with FZHY during hepatocyte differentiation. hESC line, H9 was used in our standard differentiate protocol, and FZHY was added to the culture medium at day 2, 8, 14, 20 of differentiation respectively at different concentrations 25, 50, 100 μ g/ml, and the cells were collected every 6 days. The relative expression levels of albumin (ALB) was measured by qPCR, and compared to the control groups. Data represent mean \pm SEM.

Layout	01	02	03	04	05	06	07	08	09	10	11	12
A	AADAC	ADH1A	ADH1B	ADH1C	ADH4	ADH5	ADH6	ADH7	ALDH1A1	ALDH1A2	ALDH1A3	ALDH1B1
100 ug/ml FZHY	2.04	1.40	-1.27	-1.16	-1.11	1.21	1.56	1.56	1.22	2.74	-1.27	-1.26
B	ALDH2	ALDH3A1	ALDH3A2	ALDH3B1	ALDH3B2	ALDH4A1	ALDH5A1	ALDH6A1	ALDH7A1	ALDH8A1	ALDH9A1	CEL
100 ug/ml FZHY	1.20	1.61	1.29	1.78	-1.55	1.37	1.31	1.37	1.09	1.50	-1.04	1.38
C	CYP11A1	CYP11B1	CYP11B2	CYP17A1	CYP19A1	CYP1A1	CYP1A2	CYP1B1	CYP21A2	CYP24A1	CYP26A1	CYP26B1
100 ug/ml FZHY	-2.52	1.56	1.56	-1.33	1.46	2.97	2.77	1.10	-1.30	-3.74	-1.16	1.34
D	CYP26C1	CYP27A1	CYP27B1	CYP2A13	CYP2B6	CYP2C18	CYP2C19	CYP2C8	CYP2C9	CYP2D6	CYP2E1	CYP2F1
100 ug/ml FZHY	1.11	1.26	1.21	-2.16	-1.24	-1.08	2.65	1.72	1.95	1.25	-1.44	2.49
E	CYP2R1	CYP2S1	CYP2W1	CYP3A4	CYP3A43	CYP3A5	CYP3A7	CYP4A11	CYP4A22	CYP4B1	CYP4F11	CYP4F12
100 ug/ml FZHY	1.10	1.16	3.11	1.31	1.66	2.31	2.31	1.29	4.38	1.33	3.55	1.94
F	CYP4F2	CYP4F3	CYP4F8	CYP7A1	CYP7B1	CYP8B1	DHRS2	DPYD	ESD	FMO1	FMO2	FMO3
100 ug/ml FZHY	-1.90	1.60	1.56	1.85	1.67	1.13	-1.13	1.77	1.38	1.09	1.85	2.26
G	FMO4	FMO5	GZMA	GZMB	HSD17B10	MAOA	MAOB	PTGS1	PTGS2	UCHL1	UCHL3	XDH
100 ug/ml FZHY	1.34	1.79	6.27	2.37	1.30	1.19	1.58	2.78	1.29	-1.18	1.38	1.26

Suppl. Figure 3. PCR Array Analysis of Human Drug Metabolism. The 84 genes used in Human Drug Metabolism PCR Array present Phase I Enzymes, and their expression fold change compared to the control group.

The expression changes of 84 genes involved in phase I drug metabolism reactions including oxidation, reduction, hydrolysis, cyclization, and decyclization by PCR Array (PAHS-068Z, Sabiosciences) analysis at day 14 of differentiation of hESCs treated with or without FZHY. The name of each gene and its expression fold change compared to the control group is shown in the same grid. The genes and their representative Drug Metabolism Phase I Enzymes can be found at Sabiosciences website (http://www.sabiosciences.com/rt_pcr_product/HTML/PAHS-068Z.html).

Layout	01	02	03	04	05	06	07	08	09	10	11	12
A	ACSL3	ACSL4	ACSL5	ADM	ARNT	ATF4	AXIN2	BAX	BBC3	BCL2	BCL2A1	BCL2L1
100 ug/ml FZHY	1.26	1.46	1.45	1.20	1.08	1.26	-1.11	2.94	1.43	-1.01	1.47	1.26
B	BIRC3	BMP2	BMP4	BTG2	CA9	CCL5	CCND1	CCND2	CDKN1A	CDKN1B	CEBPD	CPT2
100 ug/ml FZHY	1.13	1.17	1.02	-1.18	-1.48	-1.38	1.13	-1.21	-2.02	1.34	1.67	-1.03
C	CSF1	DAB2	EGFR	EMP1	EPO	FABP1	FAS	FCER2	FOSL1	FTH1	GADD45A	GADD45B
100 ug/ml FZHY	1.25	1.06	1.50	-2.90	1.64	1.39	-1.12	1.65	-1.29	1.14	- 1.29	1.32
D	GATA3	GCLC	GCLM	GSR	HERPUD1	HES1	HES5	HEY1	HEY2	HEYL	HMOX1	ICAM1
100 ug/ml FZHY	-1.14	-1.71	1.39	-1.39	2.07	-4.94	1.77	1.18	1.71	1.01	1.35	-1.03
E	ID1	IFNG	IFRD1	IRF1	JAG1	LDHA	LFNG	LRG1	MCL1	MMP7	MYC	NOTCH1
100 ug/ml FZHY	1.02	-1.25	1.14	2.14	-1.04	1.17	2.21	1.51	1.45	-1.15	1.63	-1.15
F	NQO1	OLR1	PCNA	PPARD	PTCH1	RB1	SERPINE1	SLC27A4	SLC2A1	SOCS3	SORB S1	SQSTM1
100 ug/ml FZHY	1.54	1.62	1.02	1.81	1.22	1.27	1.06	1.31	1.12	-1.40	1.09	1.11
G	STAT1	TNF	TNFSF10	TXN	TXNRD1	VEGFA	WISP1	WNT1	WNT2B	WNT3A	WNT5A	WNT6
100 ug/ml FZHY	1.80	-1.33	2.21	1.28	1.51	1.22	6.68	1.19	-1.15	1.11	1.31	-2.47

Supple. Figure 4. PCR Array Analysis of Signaling Pathways. The 84 genes used in Signal Transduction PathwayFinder PCR Array present different pathways, and their expression fold change compared to the control group.

The expression changes of 84 genes representing 10 signaling pathways by PCR Array (PAHS-014Z, Sabiosciences) analysis at day 14 of differentiation of hESCs treated with or without FZHY at the concentration of 100 μ g/ml. The name of each gene and its expression fold change compared to those without FZHY is shown in the same grid. The genes and their representative pathways can be found at Sabiosciences website

(http://www.sabiosciences.com/rt_pcr_product/HTML/PAHS-014Z.html).

Chinese	Diant courses	Medicinal	Amount in	
name	r fait sources	parts	preparation (g)	
Danshen	Salvia Miltiorrhizae Bge. (Labiatae)	radix	8	
Chongcao	artifical fermentation cordyceps	mycelia	4	
Taoren	Prunus persica (L.) Batsch(Rosaceae)	fruit	2	
Jiaogulan	<i>Gynostemma pentaphyllum</i> (Thunb.) Makino (Cucurbitaceae)	whole herb	6	
Songhuafen	Pinus massoniana Lamb.(Pinaceae)	pollen	2	
Wuweizi	Schisandrae Chinensis (Turcz.) Baill.(Magnoliaceae)	fruit	2	

Suppl. Table 1. The formula of Fuzhenghuayu per dose

Genes	Information or sequences of primers	Application
Albumin	Hs00609411_m1 (Applied Biosystems)	TaqMan
E-cadherin	Hs01013958_m1 (Applied Biosystems)	TaqMan
CK7	Hs00559840_m1 (Applied Biosystems)	TaqMan
N-cadherin	Hs00169953_m1 (Applied Biosystems)	TaqMan
ASGPR	Hs00155881_m1 (Applied Biosystems)	TaqMan
Desmin	Hs00157258_m1 (Applied Biosystems)	TaqMan
α-SMA	Hs00426835_m1 (Applied Biosystems)	TaqMan
Vimentin	Hs00185584_m1 (Applied Biosystems)	TaqMan
Ki67	Hs01032443_m1 (Applied Biosystems)	Taqman
Snail 1	Hs00195591_m1 (Applied Biosystems)	TaqMan
Twist	Hs01675818_s1 (Applied Biosystems)	TaqMan
CYP1A2	Hs00167927_m1 (Applied Biosystems)	TaqMan
CYP2C9	Hs00426397_m1 (Applied Biosystems)	TaqMan
CYP2C19	Hs00426380_m1 (Applied Biosystems)	TaqMan
UTG1A1	Hs02511055_s1 (Applied Biosystems)	TaqMan
UTG1A3	Hs04194492_g1 (Applied Biosystems)	TaqMan
UTG1A6	Hs01592477_m1 (Applied Biosystems)	TaqMan
UTG1A8	Hs01592482_m1 (Applied Biosystems)	TaqMan
UTG1A10	Hs02516990_s1 (Applied Biosystems)	TaqMan
UTG2B7	Hs00426592_m1 (Applied Biosystems)	TaqMan
Glut2	Hs01096908_m1 (Applied Biosystems)	TaqMan
TAT	Hs00356930_m1 (Applied Biosystems)	TaqMan
GAPDH	Hs99999905_m1 (Applied Biosystems)	TaqMan
TT 7 . 1	F:5'- CTGCAGCGACAACATTGACTT-3'	SYBR
Wntl	R:5'- GTTGTTGTGAAGGTTCATGAGG-3'	
1. 51	F: 5'-GGTCTGCGAGGAACAGAAGTG-3'	SYBR
cyclin DI	R: 5'-TGCAGGCGGCTCTTTTTC-3'	
c-Myc	F:5'-AGCTCATTTCTGAAGAGGACTTGT-3'	SYBR
	R:5'-TTGAGGCAGTTTACATTATGGCTA-3'	
	F: 5'-CCCTACTTTTTATCCCTTGTCTCC-3'	SYBR
ICFI	R: 5'-CTGAGGTGTTACAATAGCTGGATG-3'	

	F: 5'-GAAGATGGTGATGGGATTTC-3'	SYBR
GAPDH	R: 5'-GAAGGTGAAGGTCGGAGTC-3'	
Notab 1	F: GGCCAGAACTGTGAGGAAAATATC	SYBR
Notenii	R: ACAGTACTGACCTGTCCACTCTGG	
Notab 4	F: CTGTAGTGAGGAGATGACAGCTTG	SYBR
Notch4	R: GACACAGTAGTCAGTGCTGGTT	
	F: GTACTGTGACGAGTGTATCCGCTA	SYBR
DLLI	R: GGCTTATGGTGTGTGTGCAGTAGTTC	
	F: ACTCAACAACCTAAGGACGCAG	SYBR
DLL3	R: GCGTAGATGGAAGGAGCAGATA	
Loggad 2	F: ACGAGAACTACTACAGCGCCACTT	SYBR
Jagged 2	R: TACACACAGCTTCCTTGCACTC	
Has1	F: CTGAGCACAGAAAGTCATCAAAGC	SYBR
nesi	R: GAGCTATCTTTCTTCAGAGCATCC	
Hog5	F: TCAGCTACCTGAAGCACAGCAAAG	SYBR
11085	R: TGGAAGTGGTACAGCAGCTTCATC	
Wnt?	F: ATCTCTGGAGGAAGTACAATGGGG	SYBR
W IIIZ	R: TCTCGGTCCCTGATACAGTAGTCT	
Wnt20	F: GACTTCCTCAAGGACAAGTACGAC	SYBR
wiit.3a	R: TGGGCACCTTGAAGTAGGTGTA	
Wpt7a	F: AGATCCTGGAGGAGAACATGAAGC	SYBR
w IIt7a	R: CGTTGTACTTGTCCTTGAGCACGT	
Wnt7h	F: CACCTGCTGAAGGAGAAGTACAAC	SYBR
wiit70	R: CTCAATGTACACCAGGTCTGTCTC	
Wnt10b	F: GGGCCATCTTCATTGATACCCACA	SYBR
vv iit 100	R: GGAGACTTCTCAAAGTAGACCAGC	

Suppl. Table 2. Information of primers and probes used

Abbreviations: ASGPR: asialoglycoprotein receptor; α-SMA, alpha smooth muscle actin; CYP, cytochrome P450; UGT, UDP-glucuronosyl-S-transferase; Glut2, glucose transporter protein 2; TAT, tyrosine aminotransferase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; TCF1, T-cell factor 1; DLL1, Delta-like 1; DLL3, Delta-like 3; Hes1, hairy and enhancer of split-1; Hes5, hairy and enhancer of split 5.

Antigen	Туре	Provider	Application
Albumin	Goat polyclonal	Bethyl	IHC
Ki67	Rabbit polyclonal	Abcam	IHC
ERK	Rabbit polyclonal	Cell Signaling Technology	WB
p-ERK	Rabbit polyclonal	Cell Signaling Technology	WB
cyclin D1	mouse monoclonal	Cell Signaling Technology	WB
TCF1	Rabbit polyclonal	Cell Signaling Technology	WB
Wnt1	Rabbit polyclonal	GeneTex	WB
Histone H3K27 Trimethylation	Rabbit polyclonal	Epigentek	WB
β-catenin	Rabbit monoclonal	Cell Signaling Technology	WB
Numb	Rabbit monoclonal	Cell Signaling Technology	WB
Hes1	Rabbit monoclonal	Genetex	WB
Jagged2	Rabbit monoclonal	Cell Signaling Technology	WB
N-cadherin	Rabbit monoclonal	Cell Signaling Technology	WB
Vimentin	Rabbit monoclonal	Cell Signaling Technology	WB
c-Myc	Rabbit monoclonal	Santa cruz	WB
GAPDH	mouse monoclonal	Abcam	WB

Suppl. Table 3. List of antibodies used Abbreviations: ERK, extracellular signal-regulated kinase; p-ERK, phosphorylated ERK; TCF1, T-cell factor 1; Hes1, hairy and enhancer of split-1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.