Supporting Information

Figure S1. SACE_6965 encodes the putative phosphate utilization regulator PhoP in *S. erythraea.* (a) Genetic organization of *phoPR of S. coelicolor* and its homologous genes of *S. erythraea.* (b) Alignment of amino acid sequences of HTH domains of PhoP proteins in some actinomycetes species. (c) Phylogenetic analysis of some PhoP proteins.

Figure S2. Verification of *phoP*-overexpressed mutant (*phoP*₀) by PCR and real time quantitative PCR (RT-qPCR). (a) PCR of the integrated fragment spanning inserted *phoP* gene region and its downstream plasmid region; (b) Transcription analysis of *phoP* in WT and *phoP*₀ by RT-qPCR.

Figure S3. The plasmid-alone negative control for transcription analysis and phenotype analysis between WT and *phoP*₀. (a) Transcription analysis of *glnR* and *phoP* in WT and NULL mutant as the plasmid-alone negative control; (b) Ery A production in WT and NULL mutant.

Figure S4. Comparison of the binding activity between His-PhoP and His-PhoP^{DBD}.

Figure S5. Cell growth (a) and erythromycin product (b) of *S. erythraea* wild type (WT), *glnR*-deleted mutant ($\Delta glnR$), *glnR* complementary strain (*glnR*_c), *phoP*-overexpressed strain (*phoP*₀), and *phoP*-overexpressed $\Delta glnR$ strain ($\Delta glnR$: *phoP*₀). The growth was determined with OD₆₀₀. The erythromycin A was determined by HPLC.

Figure S1. SACE_6965 encodes the putative phosphate utilization regulator PhoP in *S. erythraea.* (a) Genetic organization of *phoPR of S. coelicolor* and its homologous genes of *S. erythraea.* (b) Alignment of amino acid sequences of HTH domains of PhoP proteins in some actinomycetes species. (c) Phylogenetic analysis of some PhoP proteins.

Figure S2. Verification of *phoP*-overexpressed mutant (*phoP*₀) by PCR and real time quantitative PCR (RT-qPCR). (a) PCR of the integrated fragment spanning inserted *phoP* gene region and its downstream plasmid region; (b) Transcription analysis of *phoP* in WT and *phoP*₀ by RT-qPCR.

Figure S3. The plasmid-alone negative control for transcription analysis and phenotype analysis between WT and *phoP*₀. (a) Transcription analysis of *glnR* and *phoP* in WT and NULL mutant as the plasmid-alone negative control; (b) Ery A production in WT and NULL mutant.

Figure S4. Comparison of the binding activity between His-PhoP and His-PhoP^{DBD}.

Figure S5. Cell growth (a) and erythromycin product (b) of *S. erythraea* wild type (WT), *glnR*-deleted mutant ($\Delta glnR$), *glnR* complementary strain (*glnR*_c), *phoP*-overexpressed strain (*phoP*₀), and *phoP*-overexpressed $\Delta glnR$ strain ($\Delta glnR$: *phoP*₀). The growth was determined with OD₆₀₀. The erythromycin A was determined by HPLC.