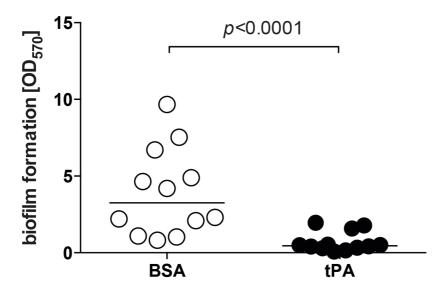

Supplementary information

Tissue plasminogen activator coating on surface of implants reduces


Staphylococcus aureus biofilm formation

Jakub Kwiecinski¹, Manli Na¹, Anders Jarneborn¹, Gunnar Jacobsson³, Marijke Peetermans², Peter Verhamme², Tao Jin¹

- Department of Rheumatology and Inflammation Research, Institution of Medicine,
 Sahlgrenska Academy at University of Gothenburg, S-41346 Göteborg, Sweden
- 2. Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
- 3. Department of Infectious Diseases, Skaraborg Hospital, 54185 Skövde, Sweden

Figure S1. Coating of urokinase plasminogen activator (uPA) reduces *S. aureus* **biofilm formation on polystyrene surfaces.** Biofilm formation on uPA-coated or buffer-treated polystyrene surfaces by *S. aureus* LS-1 after overnight culture in TSB with 50% heparinised human plasma. The microplate colorimetric assay was used. Data are presented as scatter dot plot with mean.

Figure S2. Anti-biofilm activity of tPA was not due to unspecific effects of protein surface coating. Biofilm formation on tPA-coated or bovine serum albumin (BSA)-treated polystyrene surfaces by *S. aureus* LS-1 after overnight culture in TSB with 50% heparinised human plasma. The microplate colorimetric assay was used. Data are presented as scatter dot plot with mean.