## 1 Supplementary Materials

- 2
- 3 This supplementary file contains: 1) Supplementary Methods, 2) three Supplementary Tables, and 3)
- 4 two Supplementary Figures.

# 6 Supplementary Methods

| 7  | Whole-genome sequencing and closure of reference genomes. Five strains (one from each emm82,               |
|----|------------------------------------------------------------------------------------------------------------|
| 8  | emm83, emm87, emm101, and emm114; strains NGAS596, NGAS327, NGAS743, NGAS638, and                          |
| 9  | NGAS322, respectively) were randomly chosen and their genomes sequenced to closure using SMRT              |
| 10 | sequencing (Pacific Biosciences, Menlo Park, CA, USA). Briefly, two SMRT cells of sequence were            |
| 11 | generated for each isolate, generating >220 Mb of data in reads exceeding 3kb in length (Table S3). We     |
| 12 | next used HGAP v2 (1) to correct the long reads and Celera Assembler 7.0 (2) to assemble the corrected     |
| 13 | reads, followed by two rounds of polishing with Quiver                                                     |
| 14 | (https://github.com/PacificBiosciences/GenomicConsensus). The coverage of the final SMRT assemblies        |
| 15 | in reads >3 kb is presented in Table S3. We did not find evidence of any associated plasmids in any        |
| 16 | isolate. To assess base-calling accuracy in the Pacific Biosciences assembly, Illumina short-reads for the |
| 17 | five strains were generated. Briefly, genomic libraries were prepared using Nextera XT kits (Illumina, San |
| 18 | Diego CA) and sequenced as paired-end reads (101 bp +101 bp) in an Illumina HiSeq 2500 instrument          |
| 19 | (Illumina). Parsing of the multiplexed sequencing reads and removal of barcode information was done        |
| 20 | using onboard software. Illumina reads from the five isolates were next aligned to their respective        |
| 21 | assemblies using BLAT (3). All 5 genome assemblies were completely concordant with full length             |
| 22 | perfectly aligning Illumina short-reads. SMRT assemblies were confirmed using OpGen technology             |
| 23 | (Figure S3). Briefly, optical maps were prepared according to methods described previously (4, 5) at       |
| 24 | OpGen Technologies, Inc. (Madison, WI, USA) after digesting genomic DNA of the strains with KpnI and       |
| 25 | were assembled using OpGen's proprietary MapSolver software. All genome assemblies were then               |
| 26 | formatted to begin at the first nucleotide of the intergenic region immediately preceding the              |
| 27 | chromosomal replication initiation protein (DnaA, Genbank accession number AAL96837). Prophages            |
| 28 | were identified in the closed genomes using the programs Phage Finder, PHAST, and Prophage Finder (6-      |

29 8), and by manual inspection. Finalized genomes were then annotated using the Prokka pipeline (9). 30 Genome sequences have been deposited in GenBank under accession numbers CP007561 (emm82 strain NGAS596), CP007562 (emm83 strain NGAS327), CP007560 (emm87 strain NGA743), CP010450 31 32 (emm101 strain NGAS638), and CP010449 (emm114 strain NGAS322). Phylogenetic relationships among 33 newly sequenced GAS genomes and circularized genomes available in GenBank were established as 34 follows: For each strain, single-nucleotide polymorphisms (SNPs) relative to the genome of emm59 35 strain MGAS15252, selected the arbitrary reference, were identified using Nucmer (10). A matrix file 36 containing the genotype of all strains at each polymorphic locus was then created from the Nucmer 37 polymorphism output data using a custom script. Then, for each individual strain, SNPs were 38 concatenated in order of occurrence relative to the reference strain and converted to a multiFASTA 39 sequence using custom scripts. A neighbor joining phylogenetic tree was then created using SplitsTree4 40 (11). The GenBank accession numbers for the genome sequences not generated in this study were as 41 follows: AE009949.1, AE014074.1, AM295007.1, CP000003.1, CP000017.2, CP000056.1, CP000260.1, 42 CP000261.1, CP000262.1, CP000829.1, CP003068.1, CP003116.1, CP006366.1, CP007240.1, and 43 HG316453.2. Full genomes were aligned using progressive Mauve (12). The genomes of the remaining 44 96 GAS strains used in this study were sequenced as paired-end reads with either Illumina HiSeq (101 bp 45 +101 bp) or MiSeq (150 bp +150 bp) instruments. Genomic libraries for Illumina sequencing were 46 prepared as described above. The average number of 101 bp and 151 bp reads per strain was 4,584,045 47 and 2,749,103, respectively (maximum 8,372,724 and 4,163,997; minimum 1,570,382 and 1,270,823, 48 respectively) and the coverage considering an average GAS genome size of 1.8 Mbp was 162 X, on 49 average (maximum 302 X, minimum 57 X). Table S1 lists the National Center for Biotechnology Short-50 Sequence Archive accession numbers for each sequenced genome.

Bioinformatics analysis. Multilocus sequence-typing (MLST) was determined for all strains directly from
 the short-read Illumina data using the SRST2 software (13). SRST2 and its resistance gene database,

53 which contains sequences for 1913 genes associated with resistance to antibiotics was used to detect 54 presence or absence of genes encoding antibiotic resistance in iGAS strains (13). Illumina short-reads of 55 each strain were aligned against reference genomes generated in this study (emm82 strain NGAS596, 56 emm83 strain NGAS327, emm87 strain NGA743, emm101 strain NGAS638 and emm114 strain 57 NGAS322), or available in GenBank (emm59 strain MGAS15252) using Mosaik 58 (https://code.google.com/p/mosaik-aligner/). Coverage relative to the reference genomes was 59 calculated using the same software. Polymorphisms such as single-nucleotide polymorphisms (SNPs) and 60 short insertion/deletions (indels) were identified against the corresponding reference genomes 61 generated in this study or available at GenBank using VAAL (14). A matrix file containing the genotype of 62 all strains at each polymorphic locus was then created from the VAAL polymorphism output data using a 63 custom script. Then, for each individual strain, SNPs were concatenated in order of occurrence relative 64 to the genome of the corresponding reference strain and converted to a multiFASTA sequence. 65 Neighbor-joining phylogenetic trees (1,000 bootstrap replications) were then generated with SplitsTree4 66 (11). The A5 pipeline was used for *de novo* assembly of Illumina sequenced GAS strains (15). Contigs 67 were annotated with Prokka (9). Presence of recombination was evaluated using BRATNextGen (16).

#### 69 References.

68

#### 1. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A,

Genome visualizations were created using BRIG (17) and edited using Adobe Illustrator.

Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome
 assemblies from long-read SMRT sequencing data. Nat Methods 10:563-569.

#### 73 2. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM,

74 Reinert KH, Remington KA, Anson EL, Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S,

75 Beasley EM, Brandon RC, Chen L, Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan M, Zhang Q, Zheng

| 76 |     | X, Rubin GM, Adams MD, Venter JC. 2000. A whole-genome assembly of Drosophila. Science             |
|----|-----|----------------------------------------------------------------------------------------------------|
| 77 |     | <b>287</b> :2196-2204.                                                                             |
| 78 | 3.  | Kent WJ. 2002. BLATthe BLAST-like alignment tool. Genome Res 12:656-664.                           |
| 79 | 4.  | Reslewic S, Zhou S, Place M, Zhang Y, Briska A, Goldstein S, Churas C, Runnheim R, Forrest D,      |
| 80 |     | Lim A, Lapidus A, Han CS, Roberts GP, Schwartz DC. 2005. Whole-genome shotgun optical              |
| 81 |     | mapping of <i>Rhodospirillum rubrum</i> . Appl Env Microbiol <b>71:</b> 5511-5522.                 |
| 82 | 5.  | Riley MC, Kirkup BC, Jr., Johnson JD, Lesho EP, Ockenhouse CF. 2011. Rapid whole genome            |
| 83 |     | optical mapping of <i>Plasmodium falciparum</i> . Malaria journal <b>10:</b> 252.                  |
| 84 | 6.  | Fouts DE. 2006. Phage_Finder: automated identification and classification of prophage regions      |
| 85 |     | in complete bacterial genome sequences. Nucleic Acids Res <b>34:</b> 5839-5851.                    |
| 86 | 7.  | Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic   |
| 87 |     | Acids Res <b>39:</b> W347-352.                                                                     |
| 88 | 8.  | Bose M, Barber RD. 2006. Prophage Finder: a prophage loci prediction tool for prokaryotic          |
| 89 |     | genome sequences. In silico biology <b>6:</b> 223-227.                                             |
| 90 | 9.  | Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics <b>30:</b> 2068-2069. |
| 91 | 10. | Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004.              |
| 92 |     | Versatile and open software for comparing large genomes. Genome Biol <b>5</b> :R12.                |
| 93 | 11. | Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Mol        |
| 94 |     | Biol Evol <b>23:</b> 254-267.                                                                      |

- Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene
  gain, loss and rearrangement. PLoS One 5:e11147.
- Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ, Tomita T, Zobel J, Holt KE. 2014. SRST2:
  Rapid genomic surveillance for public health and hospital microbiology labs. Genome medicine
- 99 **6:**90.
- 100 14. Nusbaum C, Ohsumi TK, Gomez J, Aquadro J, Victor TC, Warren RM, Hung DT, Birren BW,
- 101 **Lander ES, Jaffe DB.** 2009. Sensitive, specific polymorphism discovery in bacteria using massively
- 102 parallel sequencing. Nat Methods **6:**67-69.
- 103 15. Tritt A, Eisen JA, Facciotti MT, Darling AE. 2012. An integrated pipeline for *de novo* assembly of
  104 microbial genomes. PLoS One 7:e42304.
- 105 16. Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR, Bentley SD, Corander J. 2012.
- Detection of recombination events in bacterial genomes from large population samples. Nucleic
  Acids Res **40:**e6.
- 108 17. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG):
- simple prokaryote genome comparisons. BMC Genomics **12:**402.

| Chuoin nome | Maan | Isolation source G | Geographical area <sup>a</sup> em |                 |      |     |     | М    | LST <sup>b</sup> |      |     |      |     |     | CDA <sup>C</sup> accession number |
|-------------|------|--------------------|-----------------------------------|-----------------|------|-----|-----|------|------------------|------|-----|------|-----|-----|-----------------------------------|
| Strain name | Year | isolation source   | Geographical area                 | <i>emm</i> type | ST   | gki | gtr | murl | mutS             | recP | xpt | yqiL | mrp | sof | SKA accession number              |
| NGAS298     | 2011 | Blood              | С                                 | emm87           | 62   | 13  | 3   | 10   | 12               | 20   | 2   | 3    | +   | +   | SRX424640                         |
| NGAS299     | 2011 | Blood              | н                                 | emm87           | 62   | 13  | 3   | 10   | 12               | 20   | 2   | 3    | +   | +   | SRX424641                         |
| NGAS300     | 2011 | Synovial Fluid     | С                                 | emm83           | 5    | 2   | 2   | 2    | 3                | 2    | 3   | 2    | +   | -   | SRX424642                         |
| NGAS302     | 2011 | Blood              | Н                                 | emm28           | 52   | 11  | 6   | 14   | 5                | 9    | 17  | 19   | +   | +   | SRX424643                         |
| NGAS303     | 2011 | Blood              | D                                 | emm101          | 182  | 2   | 2   | 37   | 2                | 2    | 13  | 1    | +   | -   | SRX765545                         |
| NGAS304     | 2011 | Blood              | D                                 | emm28           | 52   | 11  | 6   | 14   | 5                | 9    | 17  | 19   | +   | +   | SRX424644                         |
| NGAS305     | 2011 | Synovial Fluid     | G                                 | emm1            | 28   | 4   | 3   | 4    | 4                | 4    | 2   | 4    | -   | -   | SRX424645                         |
| NGAS306     | 2011 | Synovial Fluid     | В                                 | emm83           | 103* | 2   | 2   | 2    | 3*               | 37   | 3   | 2    | +   | -   | SRX424646                         |
| NGAS308     | 2011 | Blood              | Н                                 | emm18           | NF   | 6   | 5   | 7    | 1                | 5    | 0   | 3    | -   | -   | SRX424647                         |
| NGAS310     | 2011 | Blood              | NA                                | emm114          | 188  | 2   | 31  | 8    | 25               | 52   | 2   | 27   | +   | +   | SRX765546                         |
| NGAS311     | 2011 | Blood              | D                                 | emm118          | 167  | 29  | 32  | 2    | 5                | 48   | 5   | 21   | +   | +   | SRX424648                         |
| NGAS313     | 2011 | Soft Tissue        | С                                 | emm83           | 103* | 2   | 2   | 2    | 3*               | 37   | 3   | 2    | +   | -   | SRX765547                         |
| NGAS314     | 2011 | Soft Tissue        | E                                 | emm114          | 188  | 2   | 31  | 8    | 25               | 52   | 2   | 27   | +   | +   | SRX765548                         |
| NGAS315     | 2011 | Soft Tissue        | А                                 | emm83           | 5    | 2   | 2   | 2    | 3                | 2    | 3   | 2    | +   | -   | SRX765549                         |
| NGAS320     | 2011 | Synovial Fluid     | С                                 | emm83           | 103* | 2   | 2   | 2    | 3*               | 37   | 3   | 2    | _*  | -   | SRX424653                         |
| NGAS321     | 2011 | Synovial Fluid     | NA                                | emm59           | 172  | 56  | 24  | 39   | 7                | 30   | 2   | 33   | +   | +   | SRX424654                         |
| NGAS322     | 2011 | Blood              | Н                                 | emm114          | 188  | 2   | 31  | 8    | 25               | 52   | 2   | 27   | +   | +   | SRX424655                         |
| NGAS323     | 2011 | Soft Tissue        | В                                 | emm82           | 334  | 84  | 2   | 21   | 16               | 17   | 3   | 1    | +   | +   | SRX424656                         |
| NGAS324     | 2011 | Soft Tissue        | В                                 | emm83           | 103* | 2   | 2   | 2    | 3*               | 37   | 3   | 2    | +   | -   | SRX765550                         |
| NGAS325     | 2011 | Blood              | D                                 | emm22           | 46*  | 9*  | 8   | 1    | 1                | 1    | 3   | 4    | +   | +   | SRX424657                         |
| NGAS327     | 2011 | Blood              | С                                 | emm83           | 5    | 2   | 2   | 2    | 3                | 2    | 3   | 2    | +   | -   | SRX765551                         |
| NGAS328     | 2011 | Soft Tissue        | NA                                | emm82           | 334  | 84  | 2   | 21   | 16               | 17   | 3   | 1    | +   | +   | SRX424658                         |
| NGAS329     | 2011 | Soft Tissue        | В                                 | emm83           | 103* | 2   | 2   | 2    | 3*               | 37   | 3   | 2    | +   | -   | SRX765552                         |
| NGAS330     | 2011 | Blood              | D                                 | emm41           | 579  | 2   | 2   | 32   | 2                | 2    | 2   | 2    | +   | -   | SRX424659                         |
| NGAS332     | 2011 | Soft Tissue        | С                                 | emm82           | 334  | 84  | 2   | 21   | 16               | 17   | 3   | 1    | +   | +   | SRX424660                         |
| NGAS335     | 2011 | Blood              | В                                 | emm87           | 62   | 13  | 3   | 10   | 12               | 20   | 2   | 3    | +   | +   | SRX424662                         |
| NGAS336     | 2011 | Blood              | E                                 | emm1            | 28   | 4   | 3   | 4    | 4                | 4    | 2   | 4    | -   | -   | SRX424663                         |
| NGAS337     | 2011 | Blood              | E                                 | emm82           | 334  | 84  | 2   | 21   | 16               | 17   | 3   | 1    | +   | +   | SRX424664                         |
| NGAS338     | 2011 | Blood              | NA                                | emm82           | 334  | 84  | 2   | 21   | 16               | 17   | 3   | 1    | +   | +   | SRX424665                         |

## 111 Table S1. Group A *Streptococcus* strains used in this study.

| NGAS339 | 2011 | Soft Tissue        | D  | emm59  | 172  | 56 | 24 | 39 | 7  | 30 | 2  | 33 | + | + | SRX424666 |
|---------|------|--------------------|----|--------|------|----|----|----|----|----|----|----|---|---|-----------|
| NGAS340 | 2011 | Soft Tissue        | В  | emm118 | 167  | 29 | 32 | 2  | 5  | 48 | 5  | 21 | + | + | SRX424667 |
| NGAS341 | 2011 | Blood              | Н  | emm87  | 62   | 13 | 3  | 10 | 12 | 20 | 2  | 3  | + | + | SRX424668 |
| NGAS344 | 2011 | Blood              | В  | emm75  | 49   | 11 | 2  | 1  | 3  | 12 | 3  | 7  | + | + | SRX424669 |
| NGAS345 | 2011 | Soft Tissue        | NA | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424670 |
| NGAS346 | 2011 | Soft Tissue        | E  | emm41  | 579  | 2  | 2  | 32 | 2  | 2  | 2  | 2  | + | - | SRX424671 |
| NGAS347 | 2011 | Soft Tissue        | н  | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424672 |
| NGAS592 | 2012 | Soft Tissue        | NA | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424709 |
| NGAS594 | 2012 | Soft Tissue        | NA | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424710 |
| NGAS595 | 2012 | Soft Tissue        | С  | emm89  | 101  | 16 | 2  | 8  | 3  | 1  | 13 | 3  | + | + | SRX424711 |
| NGAS596 | 2012 | Blood              | С  | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424712 |
| NGAS597 | 2012 | Blood              | А  | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424713 |
| NGAS599 | 2012 | Soft Tissue        | С  | emm114 | 188  | 2  | 31 | 8  | 25 | 52 | 2  | 27 | + | + | SRX424714 |
| NGAS600 | 2012 | Soft Tissue        | NA | emm101 | 182  | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX765554 |
| NGAS602 | 2012 | Soft Tissue        | С  | emm114 | 188  | 2  | 31 | 8  | 25 | 52 | 2  | 27 | + | + | SRX765555 |
| NGAS603 | 2012 | Blood              | С  | emm6   | 382  | 5  | 52 | 5  | 5  | 5  | 4  | 3  | - | - | SRX424716 |
| NGAS604 | 2012 | Blood              | В  | emm75  | 49   | 11 | 2  | 1  | 3  | 12 | 3  | 7  | + | + | SRX424717 |
| NGAS605 | 2012 | Soft Tissue        | А  | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424718 |
| NGAS606 | 2012 | Blood              | D  | emm80  | 538  | 11 | 2  | 69 | 3  | 84 | 13 | 83 | + | - | SRX424719 |
| NGAS608 | 2012 | Soft Tissue        | F  | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424720 |
| NGAS609 | 2012 | Blood              | I  | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424721 |
| NGAS610 | 2012 | Synovial Fluid     | Н  | emm87  | 62   | 13 | 3  | 10 | 12 | 20 | 2  | 3  | + | + | SRX424722 |
| NGAS612 | 2012 | Soft Tissue        | Н  | emm87  | 62   | 13 | 3  | 10 | 12 | 20 | 2  | 3  | + | + | SRX424723 |
| NGAS613 | 2012 | Blood              | D  | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424724 |
| NGAS615 | 2012 | Soft Tissue        | D  | emm82  | 334  | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424725 |
| NGAS616 | 2012 | Soft Tissue        | D  | emm22  | 46*  | 9* | 8  | 1  | 1  | 1  | 3  | 4  | + | + | SRX424726 |
| NGAS618 | 2012 | Blood              | Н  | emm6   | 382  | 5  | 52 | 5  | 5  | 5  | 4  | 3  | - | - | SRX424727 |
| NGAS621 | 2012 | Soft Tissue        | С  | emm83  | 103* | 2  | 2  | 2  | 3* | 37 | 3  | 2  | + | - | SRX765556 |
| NGAS624 | 2012 | Other <sup>d</sup> | С  | emm101 | 182  | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX765557 |
| NGAS625 | 2012 | Soft Tissue        | В  | emm114 | 188  | 2  | 31 | 8  | 25 | 52 | 2  | 27 | + | + | SRX424730 |
| NGAS626 | 2012 | Soft Tissue        | D  | emm101 | 182  | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX765558 |
| NGAS628 | 2012 | Blood              | В  | emm87  | 62   | 13 | 3  | 10 | 12 | 20 | 2  | 3  | + | + | SRX424731 |
|         |      |                    |    |        |      |    |    |    |    |    |    |    |   |   |           |

| NGAS630 | 2012 | Soft Tissue    | NA | emm87  | 62  | 13 | 3  | 10 | 12 | 20 | 2  | 3  | + | + | SRX424733 |
|---------|------|----------------|----|--------|-----|----|----|----|----|----|----|----|---|---|-----------|
| NGAS631 | 2012 | Blood          | В  | emm101 | 182 | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX765559 |
| NGAS632 | 2012 | Blood          | D  | emm101 | 182 | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX765560 |
| NGAS634 | 2012 | Blood          | А  | emm87  | 62  | 13 | 3  | 10 | 12 | 20 | 2  | 3  | + | + | SRX424735 |
| NGAS638 | 2012 | Blood          | D  | emm101 | 182 | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX424736 |
| NGAS639 | 2012 | Other          | С  | emm59  | 172 | 56 | 24 | 39 | 7  | 30 | 2  | 33 | + | + | SRX424737 |
| NGAS641 | 2012 | Soft Tissue    | А  | emm114 | 188 | 2  | 31 | 8  | 25 | 52 | 2  | 27 | + | + | SRX424739 |
| NGAS739 | 2013 | Blood          | В  | emm87  | 62  | 13 | 3  | 10 | 12 | 20 | 2  | 3  | + | + | SRX424764 |
| NGAS742 | 2013 | Soft Tissue    | А  | emm80  | 538 | 11 | 2  | 69 | 3  | 84 | 13 | 83 | + | - | SRX765561 |
| NGAS743 | 2013 | Soft Tissue    | А  | emm87  | 62  | 13 | 3  | 10 | 12 | 20 | 2  | 3  | + | + | SRX424765 |
| NGAS746 | 2013 | Synovial Fluid | D  | emm4   | 39  | 5  | 11 | 8  | 5  | 15 | 2  | 1  | + | + | SRX424766 |
| NGAS747 | 2013 | Blood          | В  | emm87  | 62  | 13 | 3  | 10 | 12 | 20 | 2  | 3  | + | + | SRX424767 |
| NGAS748 | 2013 | Blood          | С  | emm1   | 28  | 4  | 3  | 4  | 4  | 4  | 2  | 4  | - | - | SRX765562 |
| NGAS749 | 2013 | Blood          | Н  | emm12  | 36  | 5  | 2  | 2  | 6  | 6  | 2  | 2  | - | + | SRX424768 |
| NGAS750 | 2013 | Other          | Н  | emm1   | 28  | 4  | 3  | 4  | 4  | 4  | 2  | 4  | - | - | SRX424769 |
| NGAS755 | 2013 | Soft Tissue    | С  | emm101 | 182 | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX424771 |
| NGAS756 | 2013 | Blood          | D  | emm4   | 39  | 5  | 11 | 8  | 5  | 15 | 2  | 1  | + | + | SRX765563 |
| NGAS757 | 2013 | Soft Tissue    | С  | emm82  | 334 | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX424772 |
| NGAS758 | 2013 | Soft Tissue    | D  | emm4   | 39  | 5  | 11 | 8  | 5  | 15 | 2  | 1  | + | + | SRX424773 |
| NGAS768 | 2013 | Synovial Fluid | D  | emm4   | 39  | 5  | 11 | 8  | 5  | 15 | 2  | 1  | + | + | SRX765568 |
| NGAS769 | 2013 | Other          | D  | emm4   | 39  | 5  | 11 | 8  | 5  | 15 | 2  | 1  | + | + | SRX765569 |
| NGAS772 | 2013 | Synovial Fluid | I  | emm101 | 182 | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX765572 |
| NGAS774 | 2013 | Soft Tissue    | D  | emm101 | 182 | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX765574 |
| NGAS776 | 2013 | Blood          | А  | emm82  | 334 | 84 | 2  | 21 | 16 | 17 | 3  | 1  | + | + | SRX765576 |
| NGAS778 | 2013 | Soft Tissue    | С  | emm4   | 39  | 5  | 11 | 8  | 5  | 15 | 2  | 1  | + | + | SRX765578 |
| NGAS779 | 2013 | Soft Tissue    | D  | emm101 | 182 | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX765579 |
| NGAS781 | 2013 | Soft Tissue    | D  | emm101 | 182 | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX765581 |
| NGAS785 | 2013 | Soft Tissue    | А  | emm68  | 247 | 11 | 9  | 1  | 7  | 2  | 8  | 3  | + | + | SRX765585 |
| NGAS786 | 2013 | Other          | I  | emm1   | 28  | 4  | 3  | 4  | 4  | 4  | 2  | 4  | - | - | SRX765586 |
| NGAS787 | 2013 | Blood          | А  | emm12  | 36  | 5  | 2  | 2  | 6  | 6  | 2  | 2  | - | + | SRX765587 |
| NGAS788 | 2013 | Soft Tissue    | В  | emm53  | 347 | 4  | 31 | 2  | 11 | 34 | 3  | 2  | + | + | SRX765588 |
| NGAS789 | 2013 | Blood          | С  | emm80  | 538 | 11 | 2  | 69 | 3  | 84 | 13 | 83 | + | - | SRX765589 |
|         |      |                |    |        |     |    |    |    |    |    |    |    |   |   |           |

| NGAS791 | 2013 | Blood       | D | emm11   | NF  | 3  | 4  | 6  | 7  | 1  | 5  | 0  | + | + | SRX765591 |
|---------|------|-------------|---|---------|-----|----|----|----|----|----|----|----|---|---|-----------|
| NGAS793 | 2013 | Soft Tissue | Н | emm80   | 538 | 11 | 2  | 69 | 3  | 84 | 13 | 83 | + | - | SRX765593 |
| NGAS794 | 2013 | Soft Tissue | Н | emm9    | 75  | 15 | 14 | 7  | 18 | 19 | 3  | 1  | + | + | SRX765594 |
| NGAS795 | 2013 | Soft Tissue | D | emm11   | NF  | 3  | 4  | 6  | 7  | 1  | 5  | 0  | + | + | SRX765595 |
| NGAS796 | 2013 | Blood       | С | emm80   | 538 | 11 | 2  | 69 | 3  | 84 | 13 | 83 | + | - | SRX765596 |
| NGAS797 | 2013 | Soft Tissue | В | emm68   | 86  | 21 | 31 | 1  | 3  | 28 | 3  | 4  | + | + | SRX765597 |
| NGAS798 | 2013 | Blood       | А | emm114  | 188 | 2  | 31 | 8  | 25 | 52 | 2  | 27 | + | + | SRX765598 |
| NGAS799 | 2013 | Blood       | I | Untyped | 182 | 2  | 2  | 37 | 2  | 2  | 13 | 1  | + | - | SRX765599 |
| NGAS800 | 2013 | Soft Tissue | D | emm4    | 39  | 5  | 11 | 8  | 5  | 15 | 2  | 1  | + | + | SRX765600 |

<sup>a</sup> Geographical areas are Thunder Bay District regions with same three first digits of Canadian Postal Code.

<sup>b</sup> As determined by deriving information from short-read whole-genome sequencing (see methods). NF: Not found in MLST database. \*:

114 mismatches relative to the listed allele were found.

<sup>c</sup> National Center for Biotechnology information Sequence Read Archive.

<sup>d</sup> Other: undefined normally sterile anatomical site.

| Strain  | emm Gene associated with antimicrobial resistance |           |             |      |      |        |        |        |        |        |        |        |
|---------|---------------------------------------------------|-----------|-------------|------|------|--------|--------|--------|--------|--------|--------|--------|
| name    | type                                              | IVILST ST | aph(3')-III | dfrG | dfrK | erm(A) | erm(B) | lsa(A) | mef(A) | msr(D) | tet(M) | tet(S) |
| NGAS298 | 87                                                | 62        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS299 | 87                                                | 62        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS300 | 83                                                | 5         | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS302 | 28                                                | 52        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS303 | 101                                               | 182       | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS304 | 28                                                | 52        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS305 | 1                                                 | 28        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS306 | 83                                                | 103       | +           | -    | -    | +      | -      | -      | -      | -      | +      | -      |
| NGAS308 | 18                                                | NF        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS310 | 114                                               | 188       | +           | -    | -    | +      | -      | -      | -      | -      | +      | +      |
| NGAS311 | 118                                               | 167       | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS313 | 83                                                | 103       | +           | -    | -    | +      | -      | -      | -      | -      | +      | +      |
| NGAS314 | 114                                               | 188       | +           | -    | -    | +      | -      | -      | -      | -      | +      | +      |
| NGAS315 | 83                                                | 5         | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS320 | 83                                                | 103       | +           | -    | -    | +      | -      | -      | -      | -      | +      | -      |
| NGAS321 | 59                                                | 172       | -           | -    | -    | -      | -      | +      | -      | -      | -      | -      |
| NGAS322 | 114                                               | 188       | +           | -    | -    | +      | -      | -      | -      | -      | +      | +      |
| NGAS323 | 82                                                | 334       | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS324 | 83                                                | 103       | +           | -    | -    | +      | -      | -      | -      | -      | +      | +      |
| NGAS325 | 22                                                | 46        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS327 | 83                                                | 5         | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS328 | 82                                                | 334       | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS329 | 83                                                | 103       | +           | -    | -    | +      | -      | -      | -      | -      | +      | +      |
| NGAS330 | 41                                                | 579       | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS332 | 82                                                | 334       | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS335 | 87                                                | 62        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS336 | 1                                                 | 28        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS337 | 82                                                | 334       | -           | -    | -    | -      | -      | +      | -      | -      | -      | -      |
| NGAS338 | 82                                                | 334       | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS339 | 59                                                | 172       | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS340 | 118                                               | 167       | -           | -    | -    | -      | -      | -      | +      | +      | -      | -      |
| NGAS341 | 87                                                | 62        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |
| NGAS344 | 75                                                | 49        | -           | -    | -    | -      | -      | -      | -      | -      | -      | -      |

118 Table S2. Presence of genes putatively conferring antibiotic resistance among invasive Group A *Streptococcus* strains.

| NGAS345 | 82  | 334 | - | - | - | - | - | - | - | - | - | - |
|---------|-----|-----|---|---|---|---|---|---|---|---|---|---|
| NGAS346 | 41  | 579 | - | - | - | - | - | - | - | - | - | - |
| NGAS347 | 82  | 334 | - | - | - | - | - | + | - | - | - | - |
| NGAS592 | 82  | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS594 | 82  | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS595 | 89  | 101 | - | - | - | - | - | - | - | - | - | - |
| NGAS596 | 82  | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS597 | 82  | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS599 | 114 | 188 | + | - | - | + | - | - | - | - | + | + |
| NGAS600 | 101 | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS602 | 114 | 188 | + | - | - | + | - | - | - | - | + | + |
| NGAS603 | 6   | 382 | - | - | - | - | - | - | - | - | - | - |
| NGAS604 | 75  | 49  | - | - | - | - | - | - | - | - | - | - |
| NGAS605 | 82  | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS606 | 80  | 538 | - | - | - | - | - | - | - | - | - | - |
| NGAS608 | 82  | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS609 | 82  | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS610 | 87  | 62  | - | - | - | - | - | - | - | - | - | - |
| NGAS612 | 87  | 62  | - | - | - | - | - | - | - | - | - | - |
| NGAS613 | 82  | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS615 | 82  | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS616 | 22  | 46  | - | - | - | - | - | - | - | - | - | - |
| NGAS618 | 6   | 382 | - | - | - | - | - | - | - | - | - | - |
| NGAS621 | 83  | 103 | + | - | - | + | - | - | - | - | + | + |
| NGAS624 | 101 | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS625 | 114 | 188 | + | - | - | + | - | - | - | - | + | - |
| NGAS626 | 101 | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS628 | 87  | 62  | - | - | - | - | - | - | - | - | - | - |
| NGAS630 | 87  | 62  | - | - | - | - | - | - | - | - | - | - |
| NGAS631 | 101 | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS632 | 101 | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS634 | 87  | 62  | - | - | - | - | - | - | - | - | - | - |
| NGAS638 | 101 | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS639 | 59  | 172 | - | - | - | - | - | - | - | - | - | - |
| NGAS641 | 114 | 188 | + | - | - | + | - | - | - | - | + | - |
| NGAS739 | 87  | 62  | - | - | - | - | - | - | - | - | - | - |

| NGAS742 | 80      | 538 | - | - | - | - | - | - | - | - | - | - |
|---------|---------|-----|---|---|---|---|---|---|---|---|---|---|
| NGAS743 | 87      | 62  | - | - | - | - | - | - | - | - | - | - |
| NGAS746 | 4       | 39  | - | - | - | - | - | - | - | - | - | - |
| NGAS747 | 87      | 62  | - | - | - | - | - | - | - | - | - | - |
| NGAS748 | 1       | 28  | - | - | - | - | - | - | - | - | - | - |
| NGAS749 | 12      | 36  | - | - | - | - | - | - | + | + | - | - |
| NGAS750 | 1       | 28  | - | - | - | - | - | - | - | - | - | - |
| NGAS755 | 101     | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS756 | 4       | 39  | - | - | - | - | - | - | - | - | - | - |
| NGAS757 | 82      | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS758 | 4       | 39  | - | - | - | - | - | - | - | - | - | - |
| NGAS768 | 4       | 39  | - | - | - | - | - | - | - | - | - | - |
| NGAS769 | 4       | 39  | - | - | - | - | - | - | - | - | - | - |
| NGAS772 | 101     | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS774 | 101     | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS776 | 82      | 334 | - | - | - | - | - | - | - | - | - | - |
| NGAS778 | 4       | 39  | - | - | - | - | - | - | - | - | - | - |
| NGAS779 | 101     | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS781 | 101     | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS785 | 68      | 247 | - | - | - | - | - | - | - | - | + | - |
| NGAS786 | 1       | 28  | - | - | - | - | - | - | - | - | - | - |
| NGAS787 | 12      | 36  | - | - | - | - | - | - | - | - | - | - |
| NGAS788 | 53      | 347 | - | + | + | - | - | - | - | - | + | - |
| NGAS789 | 80      | 538 | - | - | - | - | - | - | - | - | - | - |
| NGAS791 | 11      | NF  | - | - | - | + | - | - | - | - | - | - |
| NGAS793 | 80      | 538 | - | - | - | - | - | - | - | - | - | - |
| NGAS794 | 9       | 75  | - | - | - | - | + | - | - | - | + | - |
| NGAS795 | 11      | NF  | - | - | - | + | - | - | - | - | - | - |
| NGAS796 | 80      | 538 | - | - | - | - | - | - | - | - | - | - |
| NGAS797 | 68      | 86  | - | - | - | - | - | - | - | - | - | - |
| NGAS798 | 114     | 188 | + | - | - | + | - | - | - | - | + | - |
| NGAS799 | Untyped | 182 | - | - | - | - | - | - | - | - | - | - |
| NGAS800 | 4       | 39  | - | - | - | - | - | - | - | - | - | - |

### 120 Table S3. Whole-genome sequencing statistics.

|                |                   |                    |                          | SMRT sequenci                    | ing                    |          |                    |                        | _                      |          |                       |
|----------------|-------------------|--------------------|--------------------------|----------------------------------|------------------------|----------|--------------------|------------------------|------------------------|----------|-----------------------|
| Strain<br>name | NCBI<br>Accession | <i>emm</i><br>type | Number of ><br>3kb reads | Average length<br>of reads >3 kB | Total<br>bases<br>(Mb) | Coverage | Number of<br>reads | Read<br>length<br>(nt) | Total<br>bases<br>(Mb) | Coverage | Genome size<br>(Mbps) |
| NGAS596        | CP007561          | 82                 | 67,797                   | 5,823                            | 394.8                  | 220      | 4943624            | 101                    | 499.3                  | 279      | 1,791,306             |
| NGAS327        | CP007562          | 83                 | 55,567                   | 5,984                            | 332.5                  | 195      | 3858344            | 101                    | 389.7                  | 229      | 1,702,054             |
| NGAS743        | CP007560          | 87                 | 62,014                   | 6,070                            | 376.4                  | 196      | 5915890            | 101                    | 597.5                  | 312      | 1,915,554             |
| NGAS638        | CP010450          | 101                | 90,846                   | 6,072                            | 551.6                  | 308      | 4498930            | 101                    | 454.4                  | 254      | 1,791,401             |
| NGAS322        | CP010449          | 114                | 44,361                   | 4,991                            | 221.4                  | 114      | 4920574            | 101                    | 497.0                  | 255      | 1,950,469             |

| NGAS596 | NGAS327 | NGAS743 | NGAS638 | NGAS322       |       |
|---------|---------|---------|---------|---------------|-------|
| emm82   | emm83   | emm87   | emm101  | emm114        | _     |
|         |         | Φ743.1  |         |               | ssa   |
|         | Ф327.1  |         | Ф638.1  |               | sla   |
|         | Ф327.1  |         | Ф638.1  |               | speK  |
|         |         | Φ743.3  |         |               | sdn   |
|         |         | Φ743.4  |         | Ф322.3        | speC  |
|         |         | Φ743.4  |         | Ф322.3        | spd1  |
|         |         |         |         | Ф322.1/Ф322.2 | speL  |
|         |         |         |         | Ф322.1/Ф322.2 | speM  |
|         |         | Ф743.2  |         |               | spd3  |
| Ф596.1  |         |         |         |               | spel  |
| Ф596.1  |         |         |         |               | speH  |
|         |         |         | Ф638.2  |               | sdaD2 |

Figure S1. Prophage content of newly sequenced genomes of emm82, emm83, emm87, emm101 and emm114 iGAS strains. All of the sequenced iGAS strains had one or multiple prophages, all of which encoded one or two proven or putative secreted virulence factors, such as secreted pyrogenic-toxin-superantigens: speC, speH, speI, speK, speL, speM, and ssa; secreted DNAses: sdaD2, sdn, spd1, spd3; secreted phospholipase sla.



**Figure S2. Genomic rearrangements in newly closed GAS genomes.** Genomes were aligned using progressive Mauve as described in the Supplementary Methods. Locally collinear blocks (LCB), or conserved genome segments that appear to be internally free from rearrangements are represented in like colors (arbitrarily labelled A-G). LCBs above the center line are in the forward orientation relative to the first depicted genome while regions below the center line are in the reverse orientation. White spaces and gaps represent regions that are unique to a particular genome, prophages, and other mobile genetic elements. A few landmark genes are depicted to provide reference.