Supporting Information

Discovery, Synthesis and Molecular Pharmacology of Selective Positive Allosteric Modulators of the $\delta\text{-Opioid}$ Receptor

Neil T. Burford¹, Kathryn E. Livingston², Meritxell Canals³, Molly Ryan⁴, Lauren Budenholzer⁴, Ying Han¹, Yi Shang⁵, John J. Herbst¹, Jonathan O'Connell⁶, Martyn Banks¹, Litao Zhang¹, Marta Filizola⁵, Daniel Bassoni⁷, Tom S. Wehrman⁸, Arthur Christopoulos³, John R. Traynor², Samuel W. Gerritz¹, Andrew Alt¹.

Contents:

Table S1, S2, S3 and S4

Figures S1, S2 and S3

Physicochemical Property	Description (taken from the QikProp 4.2 user manual)					
X.stars	Number of property or descriptor values that fall outside the					
	95% range of similar values for known drugs.					
X.rotor	Number of non-trivial (not CX3), non-hindered (not					
	alkene, amide, small ring) rotatable bonds.					
CNS	Predicted central nervous system activity on a -2 (inactive) to					
	+2 (active) scale.					
mol.MW	Molecular weight of the molecule.					
dipole	Computed dipole moment of the molecule.					
SASA	Total solvent accessible surface area (SASA) in square					
	angstroms using a probe with a 1.4 Å radius.					
FOSA	Hydrophobic component of the SASA (saturated carbon and					
	attached hydrogen).					
FISA	Hydrophilic component of the SASA (SASA on N, O, H on					
	heteroatoms, carbonyl C).					
PISA	π (carbon and attached hydrogen) component of the SASA.					
WPSA	Weakly polar component of the SASA (halogens, P, and S).					
volume	Total solvent-accessible volume in cubic angstroms using a					
	probe with a 1.4 Å radius.					
donorHB	Estimated number of hydrogen bonds that would be donated by					
	the solute to water molecules in an aqueous solution. Values					
	are averages taken over a number of configurations, so					
	they can be non-integer.					
accptHB	Estimated number of hydrogen bonds that would be accepted					
	by the solute from water molecules in an aqueous solution.					
	Values are averages taken over a number of configurations, so					
	they can be non-integer.					
dip.2.V	Square of the dipole moment divided by the molecular volume.					
	This is the key term in the Kirkwood-Onsager equation					
	for the free energy of solvation of a dipole with volume V.					
ACxDN5.SA	Index of cohesive interaction in solids. This term represents					
	the relationship $((accptHB(\sqrt{donorHB}))/(SA))$.					
glob	Globularity descriptor, $(4\pi r^2)/(SASA)$, where r is the radius					
	of a sphere with a volume equal to the molecular volume.					
	Globularity is 1.0 for a spherical molecule.					
QPpolrz	Predicted polarizability in cubic angstroms.					
QPlogPC16	Predicted hexadecane/gas partition coefficient.					
QPlogPoct	Predicted octanol/gas partition coefficient.					
QPlogPw	Predicted water/gas partition coefficient.					
QPlogPo.w	Predicted octanol/water partition coefficient.					
QPlogS	Predicted aqueous solubility, log S. S in mol dm ⁻³ is the					
	concentration of the solute in a saturated solution that is in					
	equilibrium with the crystalline solid.					
CIQPlogS	Contormation-independent predicted aqueous solubility,					

Table S1. Physicochemical properties displaying non-zero variance across the 15 ligands of Table 1

$\log S$. S in mol dm ⁻³ is the concentration of the solute in a
saturated solution that is in equilibrium with the crystalline
solid.
Predicted IC50 value for blockage of HERG K ⁺ channels.
Predicted apparent Caco-2 cell permeability in nm/sec. Caco-
2 cells are a model for the gut-blood barrier. QikProp
predictions are for non-active transport.
Predicted brain/blood partition coefficient. Note: QikProp
predictions are for orally delivered drugs so, for example,
dopamine and serotonin are CNS negative because they are too
polar to cross the blood-brain barrier.
Predicted apparent MDCK cell permeability in nm/sec.
MDCK cells are considered to be a good mimic for the
bloodbrain barrier. QikProp predictions are for non-active
transport.
Predicted skin permeability, log Kp.
PM3 calculated ionization potential (negative of HOMO
energy).
PM3 calculated electron affinity (negative of LUMO energy).
Number of likely metabolic reactions.
Prediction of binding to human serum albumin.
Predicted human oral absorption on 0 to 100% scale. The
prediction is based on a quantitative multiple linear regression
model. This property usually correlates well with HumanOral-
Absorption, as both measure the same property.
Solvent-accessible surface area of fluorine atoms.
Van der Waals surface area of polar nitrogen and oxygen
atoms and carbonyl carbon atoms.
Number of nitrogen and oxygen atoms.
Number of violations of Lipinski's rule of five. The rules
are: mol_MW < 500, QPlogPo/w < 5, donorHB \leq 5, accptHB
\leq 10. Compounds that satisfy these rules are considered drug-
like. (The "five" refers to the limits, which are multiples of 5.)
Number of heavy atoms (nonhydrogen atoms).

Table S2: Calculated values of the physicochemical properties displaying non-zero variance across the 15 ligands of Table 1

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
X.stars	1.00	3.00	3.00	3.00	2.00	2.00	2.00	3.00	3.00	3.00	3.00	3.00	1.00	1.00	3.00
X.rotor	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	4.00	4.00	4.00	5.00	3.00
CNS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	-1.00	-1.00	0.00
mol.MW	456.58	470.61	470.61	470.61	474.57	474.57	474.57	491.02	525.47	535.48	522.59	540.58	534.67	486.61	524.58
dipole	8.80	8.81	8.49	8.50	8.59	10.80	10.62	8.76	10.21	8.70	6.79	9.51	8.50	8.74	6.42
SASA	810.51	824.70	842.70	842.71	818.32	819.51	819.55	826.43	846.08	829.35	848.01	845.30	854.55	840.34	847.94
FOSA	442.04	498.59	530.17	530.23	436.94	442.06	442.05	435.90	435.45	435.58	461.45	439.67	493.28	465.77	428.27
FISA	58.34	58.33	58.34	58.34	58.35	58.33	58.33	58.35	58.34	58.35	58.33	58.34	120.62	107.11	58.33
PISA	310.13	267.78	254.19	254.15	286.60	272.14	272.14	276.48	239.37	275.06	251.82	249.14	240.66	267.45	259.62
WPSA	0.00	0.00	0.00	0.00	36.43	46.98	47.02	55.70	112.92	60.36	76.41	98.14	0.00	0.00	101.72
volume	1491.94	1536.28	1551.85	1551.91	1504.71	1508.06	1508.08	1527.19	1566.62	1534.36	1586.43	1589.81	1619.44	1558.62	1574.55
donorHB	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
accptHB	5.25	5.25	5.25	5.25	5.25	5.25	5.25	5.25	5.25	5.25	5.25	5.25	9.25	6.95	5.25
dip.2.V	0.05	0.05	0.05	0.05	0.05	0.08	0.07	0.05	0.07	0.05	0.03	0.06	0.04	0.05	0.03
ACxDN5.SA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
glob	0.78	0.78	0.77	0.77	0.78	0.78	0.78	0.78	0.77	0.78	0.78	0.78	0.78	0.77	0.77
QPpolrz	54.59	55.96	56.45	56.45	54.88	54.87	54.87	55.68	56.90	55.95	57.17	57.28	58.39	55.57	57.41
QPlogPC16	14.81	14.91	15.04	15.04	14.55	14.41	14.41	15.31	15.85	15.40	14.79	14.64	15.91	15.73	14.61
QPlogPoct	21.53	21.95	21.99	21.99	21.73	22.14	22.11	22.11	22.98	22.22	22.39	22.94	25.14	24.31	22.59
QPlogPw	8.69	8.43	8.38	8.38	8.56	8.46	8.46	8.52	8.33	8.51	8.19	8.17	12.46	11.50	8.47
QPlogPo.w	6.43	6.67	6.76	6.76	6.63	6.67	6.67	6.83	7.27	6.90	7.27	7.37	4.80	5.72	7.30
QPlogS	-8.34	-8.61	-8.95	-8.95	-8.65	-8.71	-8.71	-8.88	-9.51	-8.96	-9.22	-9.26	-6.92	-8.11	-9.49
CIQPlogS	-7.44	-7.74	-7.74	-7.74	-7.82	-7.82	-7.82	-8.17	-8.90	-9.11	-8.84	-9.22	-7.24	-7.43	-8.88
QPlogHERG	-6.59	-6.36	-6.48	-6.48	-6.52	-6.45	-6.45	-6.47	-6.38	-6.47	-6.36	-6.29	-6.23	-6.47	-6.46
QPPCaco	2771.38	2771.86	2771.29	2771.40	2770.64	2771.75	2771.50	2770.69	2770.91	2770.62	2771.72	2771.08	711.37	955.29	2771.80
QPlogBB	-0.26	-0.26	-0.28	-0.28	-0.17	-0.15	-0.15	-0.13	0.01	-0.12	-0.14	-0.08	-1.00	-0.93	-0.02
QPPMDCK	1488.85	1489.13	1488.80	1488.87	2356.68	2693.19	2694.29	3005.10	6185.16	3187.05	3903.73	5133.81	342.36	470.85	5371.79
QPlogKp	-1.21	-1.36	-1.41	-1.41	-1.30	-1.35	-1.35	-1.33	-1.46	-1.34	-1.32	-1.33	-2.51	-2.07	-1.39
IP.eV.	8.74	8.73	8.73	8.73	8.72	8.82	8.83	8.72	8.77	8.70	8.70	8.74	8.74	8.72	8.83
EA.eV.	0.51	0.51	0.51	0.51	0.49	0.54	0.56	0.50	0.52	0.49	0.48	0.49	0.60	0.51	0.53
X.metab	7.00	8.00	8.00	8.00	7.00	7.00	7.00	7.00	7.00	7.00	8.00	8.00	7.00	8.00	8.00
QPlogKhsa	1.42	1.55	1.59	1.59	1.45	1.46	1.46	1.52	1.63	1.54	1.65	1.66	0.68	1.25	1.66
PercHOA	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	93.15	100.00	100.00
SAfluorine	0.00	0.00	0.00	0.00	36.43	46.98	47.02	0.00	0.00	0.00	76.41	98.14	0.00	0.00	101.72
PSA	64.00	63.69	63.99	64.00	64.81	63.99	64.00	64.37	64.33	64.30	71.24	70.08	96.66	86.01	63.48
X.NandO	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	5.00	5.00	6.00	5.00	4.00
RuleOfFive	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	1.00	1.00	2.00
X.nonHatm	34.00	35.00	35.00	35.00	35.00	35.00	35.00	35.00	36.00	35.00	38.00	39.00	38.00	36.00	38.00

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	225.1429	30.9535	7.27	0.0000
SASA	-0.1003	0.0168	-5.97	0.0001
PISA	-0.0606	0.0125	-4.86	0.0005
IP.eV.	-14.2752	2.4131	-5.92	0.0001

Table S3. Statistics of the best predictive model for δ EC $_{50.}$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	6.7258	1.7255	3.90	0.0025
mol.MW	-0.0220	0.0040	-5.56	0.0002
\mathbf{PSA}	-0.0989	0.0265	-3.74	0.0033
X.NandO	2.3097	0.4570	5.05	0.0004

Table S4. Statistics of the best predictive model for μ EC_{50.}

Figure S1. Predictive model for δEC_{50} . Numbered black dots represent each individual compound in Table 1. δ _exp_EC₅₀ and δ _pred_EC₅₀ stand for experimental δEC_{50} and predicted δEC_{50} , respectively. The ideal correlation is indicated by a dotted line.

Figure S2. Predictive model for μ EC₅₀. Numbered black dots represent each individual compound in Table 1. μ _exp_EC₅₀ and μ _pred_EC₅₀ stand for experimental μ EC₅₀ and predicted μ EC₅₀, respectively. The ideal correlation is indicated by a dotted line.

Figure S3. Predictive model for δ/μ selectivity (arbitrarily set to more than 33-fold). Selective and nonselective compounds are represented as red and blue dots, respectively. The ideal correlation is indicated by a dotted line. The yellow lines indicate the 33-fold selectivity cut-off.