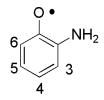
Supporting Information for

Structural Examination of the Transient 3-Aminotyrosyl Radical on the PCET Pathway of *E. coli* Ribonucleotide Reductase by Multifrequency EPR Spectroscopy

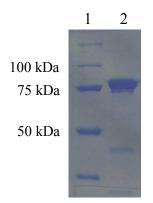
Mohammad R. Seyedsayamdost,^{†,&} Tomislav Argirevic,[§] Ellen C. Minnihan[†], JoAnne Stubbe^{*,†,‡} and Marina Bennati^{*,§}

Department of Chemistry[†] and Biology[‡], Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, and Max Planck Institute for Biophysical Chemistry[§], 37077 Göttingen, Germany <u>Marina.Bennati@mpibpc.mpg.de</u> [&]Current address: Department of Biological Chemistry and Molecular Pharmacology, 240 Longwood Avenue, C1-609, Boston, MA 02115

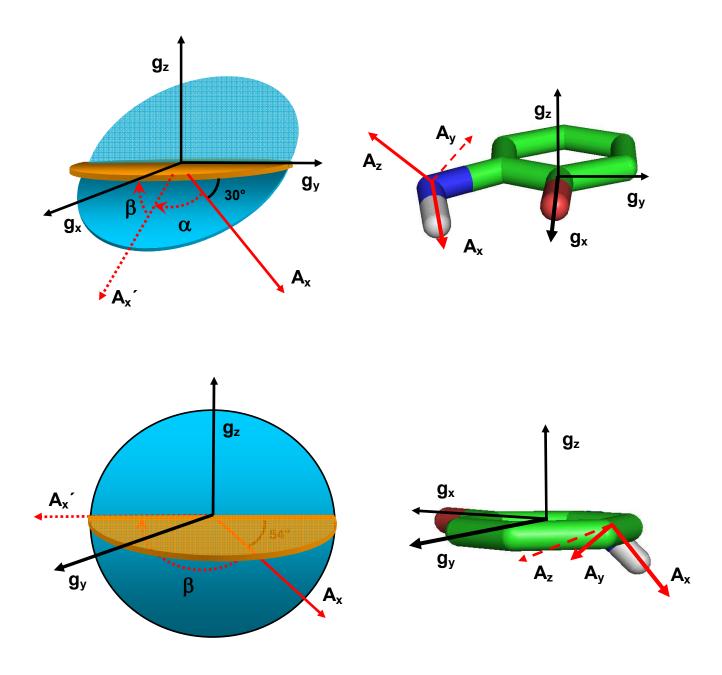
Entry	Reference	g factor	${}^{b}\mathbf{A_{3}}^{\mathbf{H}}$	${}^{b}\mathbf{A_{4}}^{\mathbf{H}}$	${}^{b}\mathbf{A_{5}}^{\mathbf{H}}$	^b A ₆ ^H	${}^{b}\mathbf{A^{N}}$	^b A ^{N-H}
1	Neta <i>et al.^c</i>	2.00372	< 0.28	12.1	2.8	8.2	13.3	14.8 $(2)^d$
2	Loth <i>et al.</i> ^e	nr ^l	1.29	6.5	1.5	6.1	12.4	21.3/16.2
3	Loth <i>et al.</i> ^f	nr^{l}	0.28	8.4	3.9	7.0	12.6	19.3/15.4

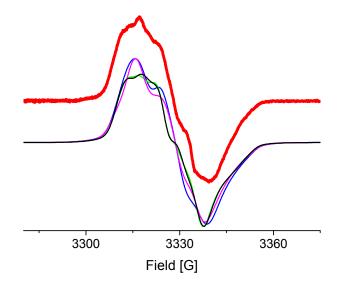

Table S1. Summary of EPR parameters (in MHz)^a previously reported for an *o*-aminophenol radical.^b

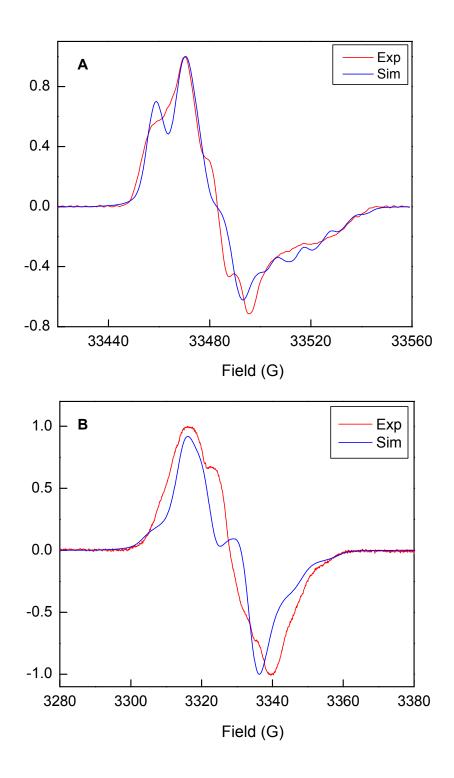
^{*a*} Hyperfine coupling constants were reported in Gauss, they have been converted to MHz as per 1 G=2.8 MHz. ^{*b*} See Figure S1 for numbering scheme of *o*-aminophenol radical. A_x^{H} is the hyperfine coupling constant from the proton attached to C_x of the *o*-aminophenol radical. A^N is the coupling from the N–nucleus, A^{N-H} is the coupling from the amine protons. ^{*c*} Generated by in situ radiolysis/EPR spectroscopy in water at room temperature (Ref. 36). ^{*d*} Two protons with identical hyperfine splitting constants. ^{*e*} Spectra obtained in CH₂Cl₂/THF at -61°C (Ref. 41). ^{*f*} Spectra obtained in CH₃OH at -75°C (Ref. 41).

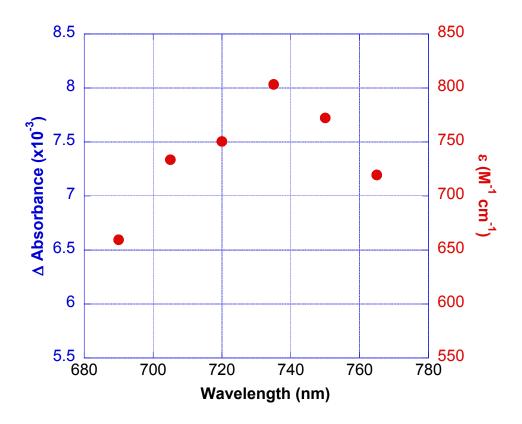

Table S2. UV spectral properties of authentic $[^{14}N]$ -NH₂Y^{*a*} and synthetic $[^{15}N]$ -NH₂Y determined in H₂O at 25°C.

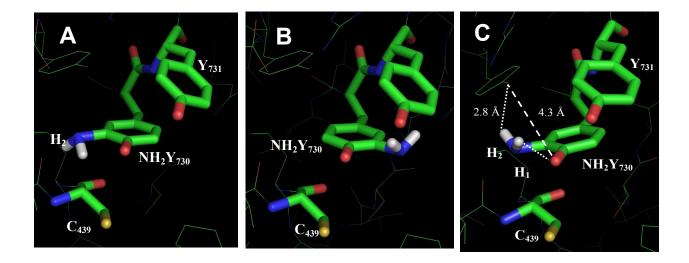
Protonation Form	Authentic NH ₂ Y $\lambda_{max} (nm)^{b}$, $\epsilon (M^{-1}cm^{-1})^{c}$	Synthetic ¹⁵ N-NH ₂ Y λ_{max} (nm), ϵ (M ⁻¹ cm ⁻¹) ^c
$H_3N^+ - Y$	$275 \pm 1, 2150 \pm 150$	$275 \pm 1, 1900 \pm 130$
H_2N-Y	$289 \pm 1, 3200 \pm 220$	$289 \pm 1, 3200 \pm 220$
H_2N-Y^-	$303 \pm 1,5100 \pm 360$	$303 \pm 1,4700 \pm 330$

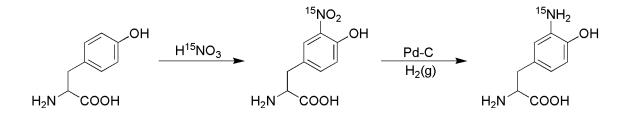

^{*a*} "Authentic" $[^{14}N]$ -NH₂Y was obtained from Sigma-Aldrich. ^{*b*} Estimated error based on accuracy of spectrophotometer. ^{*c*} Estimated error based on accuracy of spectrophotometer and microbalance weight measurements.


Figure S1. Numbering scheme for the spectral data on the *o*-aminophenol radical data in Table S1. Accordingly, A_3^{H} in Table S1 corresponds to the hyperfine coupling constant from the proton attached to C_3 .


Figure S2. SDS PAGE analysis of purified [¹⁵N]-NH₂Y₇₃₀- α 2. Lane (1), MW marker. The MW for the relevant bands is indicated. Lane (2), purified Y₇₃₀NH₂Y- α 2 (5 µg).


Figure S3. Euler rotations and A tensors for N-H(1) (top) and N-H(2) (bottom). (Top) Two rotations are required to co-linearize the A and g tensor axes. The first rotation occurs about A_z (Euler angle α , here negative) and generates A_x' co-linearizing g_y and A_y . The second rotation occurs about A_y' (or g_y) and corresponds to Euler angle β (here also negative). This leads to co-linear g_x/A_x and g_z/A_z axes. (B) In case of N-H(2), the first rotation occurs about A_y and moves A_x to A_x' (Euler angle β , here negative). The second rotation occurs about A_z (Euler angle γ , here negative). See Table 1 for values of α , β and γ for each proton. The negative values of the angles are due to the requirement of counter-clockwise rotations in the Euler convention. For clarity, the translation of the other tensor axes after each rotation is not shown (i.e. A_y' and A_z').


Figure S4: Simulations of the 9 GHz CW-EPR spectrum of $[^{15}N]$ -NH₂Y₇₃₀• for the four possible combinations of the β angle signs for the two NH₂ protons, i.e. ++ (green), +- (blue), -+ (magenta), -- (black). The red bold trace is the observed 9 GHz spectrum of $[^{15}N]$ -NH₂Y₇₃₀• in protonated buffer.


Figure S5: Observed 94 GHz (A) and 9 GHz (B) EPR spectrum of $[^{14}N]$ -NH₂Y₇₃₀•- α 2 (red trace) and computation of the spectrum of an ideal *sp2*-hybridized nitrogen in NH₂Y• (blue trace). The poor simulation of the data here contrasts to those in Figs. 5-7, where an *sp3*-hybridized nitrogen was used.

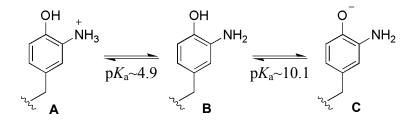

Figure S6. Spectral reconstruction of the UV-vis spectrum of the broad, long wavelength feature observed upon stopped-flow reaction of $Y_{730}NH_2Y$ -a2 with β 2, CDP, and ATP. $Y_{730}NH_2Y$ -a2 and ATP were rapidly mixed with β 2 and CDP in a 1:1 ratio to give final concentrations of 30 μ M, 3 mM, 30 μ M, and 1 mM, respectively. Reactions were conducted at 25 °C and monitored over 5 seconds in 15 nm intervals. At each wavelength, kinetic traces were averaged and fit bi-exponentially. The total change in absorbance over the timecourse (left axis, blue) was used to determine approximate extinction coefficients (right axis, red) by determining the amount of NH₂Y• formed under identical experimental conditions and assuming that the broad, long-wavelength feature and NH₂Y• form in an equimolar ratio.

Figure S7: Models of the Y_{731} -NH₂ Y_{730} -C₄₃₉ pathway. These orientations are consistent with the EPR data, but result in steric clashes within $\alpha 2$ and are inconsistent with recent structural data. In (A) the amino group is sterically hindered by the backbone carbonyl of L₄₃₈ (the distance to H₂ is 1.7 Å) and in (B) it is too close to residue Y731. (C) is inconsistent with the recent structure of NH₂Y- $\alpha 2$ or NO₂Y- $\alpha 2$ (Uhlin & Stubbe, unpublished results).

Scheme S1. Synthetic scheme used for preparation of [¹⁵N]-NH₂Y. See Methods for details.

Scheme S2. Different protonation states and $pK_{a}s$ of NH₂Y. Species A, B, and C have absorption maxima at 275, 289, and 303 nm, respectively. The $pK_{a}s$ for conversion of A to B and B to C are from Refs. 31 and 32.