
Residual viremia in treated HIV+ individuals
Supporting Information

A Derivation of the reproductive ratio R and the quantity RL

The reproductive ratios R gives the average number of new cell infections caused by a single
infected cell in a completely susceptible population, assuming the standard viral dynamics model
[1, 2]. To derive R, given by eq. (2) in the main text, we employ the next generation matrix
method [3].

The quantity RL describes how R is modified assuming the latent reservoir dynamics in eq. (1),
i.e., how latent reservoir dynamics affect the average number of new productive cell infections
caused by a single productively infected cell. The derivation of RL is given in Sec. A.2. Note
that the quantity RL is not the reproductive ratio for the standard model extended to incorporate
latent reservoir dynamics, eq. (1) in the main text. That reproductive ratio has a more complex
interpretation since both latently and productively infected cell represent infectious classes.

A.1 Derivation of R

The basic reproductive ratio R is a well-known quantity [4]. We re-derive it here for the reader’s
convenience.

The basic reproductive ratio R, given by eq. (2) in the main text, is derived from the standard
viral dynamics model [1, 2]

dI
dt

= (1− ε)βTV −δ I

dV
dt

= pI− (c+βT )V.

with the target cells T held constant, using the the next generation method, in which the equations
are written in vector form,

d~x
dt

= F (~x)−V (~x),

~x = ( I V )T [3]. The next generation method then gives the reproductive ratio as the spectral
radius (maximum eigenvalue) of the matrix FṼ−1, where F = dF

d~x is the matrix that captures the
rate of appearance of new infections in the compartment I, productively infected cells, and Ṽ = dV

d~x
is the matrix that gives the rate of transfer of individuals between compartments I and V by all other
means, and is expressed as the rate of transfer of individuals out of a compartment minus their rate
of transfer into the compartment. In this case,

F =

(
0 (1− ε)βT
0 0

)
, Ṽ =

(
δ 0
−p c+βT

)
, and Ṽ−1 =

(
1/δ 0

p/(δ (c+βT )) 1/(c+βT )

)
.

Then the spectral radius of FṼ−1, and therefore the reproductive ratio, is
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R =
(1− ε)βT p
(c+βT )δ

,

as in eq. (2).
Alternatively, if we assume the concentration of target cells is constant and apply the quasi-

steady approximation V = pI/(c+βT ), our viral dynamics model is reduced to the single ODE,

İ =
(1− ε)βT p

c+βT
I−δ I.

Then using the next-generation matrix method, F = (1−ε)βT p
c+βT , Ṽ = δ , and again R = FṼ−1 =

(1−ε)βT p
(c+βT )δ .

A.2 RL: Average number of new cell infections altered by latent reservoir
dynamics

The reproductive ratio R computed above is defined as the average number of infected cells I in
the second generation, starting from a single infected cell I. The introduction of latent reservoir
dynamics in the viral dynamics model, eq. (4)

dL
dt

= f Rδ I +(ρ−a−µ)L

dI
dt

= aL−δ [1− (1− f )R] I,

will alter this average. We define this new average number of productively infected cells I produced
by a single I to be RL.

To calculate RL, consider, for a moment, the latent cell dynamics in isolation. New latently
infected cells are born at rate ρ and clear at rate a+ µ . The latent reservoir reproductive ratio is
therefore ρ/(a+µ), which we know to be less than 1, since the latent reservoir is decaying [5]. A
single latently infected cell will produce, on average, ρ/(a+ µ) new latently infected cells. The
new latently infected cells will, in turn, produce an average of ρ/(a+ µ) new latently infected
cells. Proceeding in this manner we find that the total number of latently infected cells produced
by a single latently infected cell is given by the geometric series

∞

∑
j=0

(
ρ

a+µ

) j

=
1

1−
(

ρ

a+µ

) .
But latently infected cells are not isolated; each can activate at rate a or die at rate µ . We’re

interested in the number of new productively infected cells I that derive from latently infected cells
L, which occurs per L with probability a/(a+ µ). Thus, the total number of new productively
infected cells that derive from a single latently infected cell is 1

1−
(

ρ

a+µ

)
( a

a+µ

)
=

a
a+µ−ρ

.
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Note that a+µ−ρ > 0 since the latent reservoir is decaying.
Finally we compute RL, the average number of secondary productively infected cells caused by

a single productively infected cell. On average, a productively infected cell will produce (1− f )R
productively infected cells and f R latently infected cells. But a latently infected cell, on average,
produces a/(a+µ−ρ) productively infected cells. Therefore,

RL = (1− f )R+ f R
(

a
a+µ−ρ

)
.

After some simplification, we find that

RL = R
(

1− f
(

1− a
a+µ−ρ

))
.

B Model (4): analysis and parameter derivation

B.1 Analytic solution of model (4)
The system of equations (4), assuming a constant number of target cells T so that the reproductive
ratio R is constant, is a 2x2 linear system which has the general solution(

L
I

)
= c1~v+eλ+t + c2~v−eλ−t

where λ± are eigenvalues with associated eigenvectors~v±,

λ± =
1
2

(
−η1−δ (1− (1− f )R)±

√
(η1−δ (1− (1− f )R))2 +4aδ f R

)
(A)

~v± =

(
−η1 +δ (1− (1− f )R)±

√
(η1−δ (1− (1− f )R))2 +4aδ f R

2a

)
(B)

(eigenvectors are not normalized). Since all parameters are positive, and 0 < f < 1 and 0 < R < 1,
one can show that both eigenvalues λ± are negative:

λ− =−
(

η1 +δ (1− (1− f )R)+
√
(η1−δ (1− (1− f )R))2 +4aδ f R

)
/2 < 0

since all quantities inside the parenthesis are positive. The sign of λ+ is less clear, but still negative:
λ+ < 0⇒

1
2

(
−η1−δ (1− (1− f )R)+

√
(η1−δ (1− (1− f )R))2 +4aδ f R

)
< 0√

(η1−δ (1− (1− f )R))2 +4aδ f R < η1 +δ (1− (1− f )R)

(η1−δ (1− (1− f )R))2 +4aδ f R < (η1 +δ (1− (1− f )R))2 .
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The last step is true since both sides of the inequality are positive. This last expression simplifies
to the inequality

a f R < η1 (1− (1− f )R)
⇒ 0 < η1−R(η1(1− f )−a f ) .

But 0≤ R≤ 1, so η1−R(η1(1− f )−a f )≥ η1− (η1(1− f )−a f ) = (η1 +a) f > 0, since η1, a,
and f are positive. Therefore, a f R < η1 (1− (1− f )R) and the eigenvalue λ+ is indeed negative.

The larger eigenvalue λ+ is closer to zero, and ~v+ is therefore the slow manifold of the fixed
point (L, I) = (0,0). We will focus on dynamics along~v+.

B.2 Quasi-equilibrium initial conditions
We are interested in exploring viral dynamics in patients on long-term treatment. Let t = 0 rep-
resent an arbitrary time after the initiation of treatment, after transient viral load dynamics have
passed, and the viral load is below the detection level of clinical assays. The subsequent dynamics
correspond to dynamics along the slow manifold described by the eigenvalue λ+ and correspond-
ing eigenvector ~v+. Therefore, to investigate viral dynamics in patients on long-term treatment,
our initial conditions should lie along this slow manifold, with I0 and L0 in quasi-equilibrium. To
this end, if we choose the number of latently infected cells to be L0 at t = 0, we need to set the
number of productively infected cells at t = 0, I0, so that it is on the slow manifold, i.e., so that
L0/I0 =~v(1)+ /~v(2)+ , where~v+ =

(
~v(1)+ ~v(2)+

)
, that is,

I0 =
2aL0

−η1 +δ (1− (1− f )R)+
√

(η1−δ (1− (1− f )R))2 +4aδ f R
. (C)

B.3 Latent reservoir dynamics: activation rate a and decay rate η1

Other than the latent reservoir net half-life, tL
1/2, model parameters relating to latent reservoir dy-

namics, η1 and a, remain unclear. First we consider η1. Let η2 = ln(2)/tL
1/2 be the net decay rate

of the latent reservoir when replenishment by de novo infection is considered, so that L(t)∼ e−η2t .
In our model, −η2 must correspond to the slowest decay, i.e., the largest eigenvalue, λ+ (eq. (A)),
i.e.,

η2 =−λ+ =−1
2

(
−η1−δ (1− (1− f )R)+

√
(η1−δ (1− (1− f )R))2 +4aδ f R

)
. (D)

Using this equation to determine η1, the latent reservoir decay rate in the absence of replenishment,
we find

η1 = η2−
aδ f R

η2−δ (1− (1− f )R)
. (E)

Since η2 = ln(2)/tL
1/2, and there are established estimates for both tL

1/2 and the infected cell death
rate δ , we obtain an equation for the parameter η1 as a function of f , a, and R. If the fraction
f = 0, η2 = η1, which is expected since η1 = −(ρ − a− µ) is the latent reservoir decay rate in
absence of replenishment by de novo infection.
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To determine the activation rate a we employ the quasi-steady assumption I = cV/p, I0 =
cV0/p, neglecting βT since c� βT . Substituting this and (E) in to eq. (C) we find

a = (δ (1− (1− f )R)−η2)
cV0

pL0
, (F)

C Infected cell lineage distribution if R < 1

If the reproductive ratio R < 1, the lineage of infected cells generated from the activation of a
single latently infected cell goes extinct as t→ ∞. However, when considering the possibility of a
sequence of viral mutations that may result in a reproductive ratio R > 1 for a mutant, for example
by conferring resistance to ongoing therapy, the number of generations before the lineage goes
extinct becomes important. The number of generations represents the number of “chances” for the
drug resistance mutations to take place.

To compute the number of generations we employ the branching process analogue of the dif-
ferential equations model assuming a constant number of target cells T ,

İ = βTV −δ I
V̇ = pI− (c+βT )V,

which can be expressed as a series of reactions,

V
βT→ I

I δ→ /0
I

p→ I +V
V c→ /0.

The branching process is subcritical since R = (1− ε)pβT/δ (c+ kT )< 1 (eq. (2), so the lineage
will go extinct as t → ∞. Our aim is to compute the probability distribution of the number of
generations before extinction in this subcritical branching processes [6].

To compute this probability distribution, we require the offspring distribution, that is, the dis-
tribution of the number of infected cells in the first generation following the activation of a latently
infected cell into a productively infected cell. Assuming n viral progeny from a single productively
infected cell, the number of new infected cells (offspring) j is given by the binomial distribution

probability q j,n =

(
n
j

)(
βT

c+βT

) j(
c

c+βT

)n− j
: j virions infect cells, n− j clear. So the probabil-

ity generating function [7] for the number of infected offspring, assuming n viral progeny for each
infected cell, is

h̃(x) =
n

∑
j=0

q j,nx j.

The number of viral progeny before infected cell death is given by a geometric distribution with
probability rn =

(
p

p+δ

)n(
δ

p+δ

)
. The probability generating function for the number of infected
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offspring from a single infected cell is therefore

h(x) =
∞

∑
n=0

rn

n

∑
j=0

q j,nx j

=

(
δ

p+δ

)
∞

∑
n=0

(
p

p+δ

)n n

∑
j=0

(
n
j

)(
βT

c+βT

) j( c
c+βT

)n− j

x j

=

(
δ

p+δ

)
∞

∑
n=0

[(
p

p+δ

)(
c

c+βT

)]n n

∑
j=0

(
n
j

)(
βT
c

x
) j

=

(
δ

p+δ

)
∞

∑
n=0

[(
p

p+δ

)(
c

c+βT

)(
βT
c

x+1
)]n

=

(
δ

p+δ

) 1

1−
(

p
p+δ

)(
c

c+βT

)(
βT
c x+1

)


=
1

1+R(1− x)
, (G)

summing the series and recalling that R = pβT/δ (c+ kT ).
To obtain the probability distribution on the number of generations until extinction, we fol-

low [6]. Define α j as the number of individuals in generation j and let G denote the number of
generations to extinction, so that G = k when αk ≥ 1 and αk+1 = 0. The cumulative generation
distribution from a single initial case is defined by fk = Pr{G≤ k|α0 = 1}. Then

fk = h( fk−1), (H)

f−1 = 0, where h(x) is the probability generating function for the offspring distribution, eq. (G) [6].
The probability of the lineage surviving to the kth generation, fk, depends on the probability of
surviving to the (k-1)st generation, fk−1, and the distribution on the number of infected offspring
from that generation. Then if we start with α0 cells, from the branching property, the cumulative
generation distribution will be f α0

k . Solving the recurrence relation eq. (H) we find

fk =
1−Rk+1

1−Rk+2 . (I)

For example, from the recurrence relation eq. (H), f0 = 1/(1+R), which we also recover from
eq. (I), f0 = (1− R)/(1− R2), after noting that 1− R2 = (1− R)(1+ R). Finally, define gk =
Prob{G = k}, the probability that there are exactly k generations, given α0 cells in the first gener-
ation. Then gk = f α0

k − f α0
k−1. If we start with a single infected cell, i.e., α0 = 1, we can solve from

eq. (I) to find

gk = fk− fk−1

=
1−Rk+1

1−Rk+2 −
1−Rk

1−Rk+1

gk =
Rk(R−1)2(

1−Rk+1
)(

1−Rk+2
) .
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Thus, given a basic reproduction number R < 1, we can compute the probability that the lineage
created by a single infected cell has k generations - k chances to mutate to a drug resistant mutant
- before going extinct.

D Model predictions using arbitrary values for f

We investigate the contribution of ongoing viral replication to viral load and latent reservoir re-
plenishment in patients on treatment. Here we use arbitrary values of the latent cell fraction f .
Figure 2 shows the total viral load and contributions from viral production by newly infected cells
(viral replication) and by activated latent cells. The viral load V is calculated using the quasi-steady
assumption V = pI/(c+βT ). Results shown in Fig. 2 assume that the fraction of infections that
lead to latency f = 10−4, but the qualitative results shown are not sensitive to f . As shown in
Fig. 2, for increasing R, the viral replication contribution to the viral load increases. The fraction
of circulating infected cells attributable to viral replication - indicating the viral replication con-
tribution to the viral load - is given in Table A. Note that the approximation we derive, Ir/I ≈ R,
is reasonably good even for unrealistically large f = 0.1. Viral production by new cell infections
only has a greater contribution than viral production in latent cells for R > Rc, ≈ 0.5 (Rc is given
by eq. (10)).

Table A: Fraction of circulating virus attributable to newly infected cells Ir/I at equilibrium for
different reproductive ratios, drug efficacies ε , and latent fractions f . The associated reproductive
ratio is also given. Other parameters are as in Table 1. Note that the critical value of R, Rc
(eq. (10)), above which circulating virus is dominantly produced by newly infected cells, is
Rc = 0.50, 0.50, 0.50, 0.56 for f = 10−6, 10−4, 10−3, and 10−1, respectively.

ε = 0.999 (R = 0.0023) ε = 0.99 (R = 0.023) ε = 0.9 (R = 0.23)
f = 10−6 0.0023 0.0230 0.2301
f = 10−4 0.0023 0.0230 0.2301
f = 10−3 0.0023 0.0230 0.2299
f = 10−1 0.0021 0.0207 0.2071

In Fig. A we show the latent reservoir size, with pre-existing portion and the portion coming
from reservoir replenishment via viral replication, i.e. the fraction of new cell infections becoming
latently infected cells, for f = 0.1 (which is unrealistically high) and decreasing drug efficacy ε ,
i.e., increasing reproductive ratio R. As the reproductive ratio increases so does the latent reservoir
replenishment. These quantitative results are quite sensitive to f : for smaller f , the new latent
cells curve remains very near 0, even for R > Rc (not shown). However only for unrealistically
high values of f , i.e. f = 0.1, do we note any discernible contribution of ongoing viral replication
to the latent reservoir, as in Fig. Ac.
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Figure A: Total latent reservoir size (black, solid line) with pre-existing portion (blue, dashed
lines) and new latent cell infections (red, dash-dotted line) for latent cell fraction f = 0.1 and drug
efficacy (reproductive ratio) (a) ε = 0.999 (R = 0.0023), (b) ε = 0.99 (R = 0.023), and (c) ε = 0.9
(R = 0.0023). Other parameters set to δ = 1 day−1 and t1/2 =44 months.

The model predicts that it is theoretically possible, in patients on treatment, for a substantial
portion of the viral load to be associated with viral replication, and for the contribution of new cell
infections to the latent reservoir to be non-negligible. But in making these theoretical predictions
we used an arbitrary range in latent cell fraction f and reproductive ratio R. The upper ranges used,
i.e., f = 0.1, are likely not very realistic. Observations, for example in Joos et al. [8], suggest that
there is very little evolution in the viral genome in patients on treatment, implying that theoretical
scenarios with large contributions from viral replication - e.g. Fig. A with large f - are not likely.
In Sec. 3 we discuss realistic values for these parameters, and show associated predictions in the
main text.

E Parameter choice: baseline drug efficacy ε

For our simulation results, we employ a latent cell activation rate a that is computed using eq. (6)
assuming a drug efficacy ε = 0.99. With the recent exception of raltegravir [9], an integrase in-
hibitor, drug efficacy is poorly characterized and our choice of ε = 0.99 is an educated guess. Here
we assume alternative baseline drug efficacies ε = 0.6, 0.7, 0.8, 0.9, 0.999, 0.9999, and 1, and
verify that the qualitative results we report in the main text are insensitive to this choice.

Table B shows the activation rates computed from eq. (6),

a = (δ (1− (1− f )(1− ε)R∗)−η2)
cV0

pL0

for ε = 0.6, 0.7, 0.8, 0.9, 0.999, 0.9999, and 1. The critical drug efficacy εc, below which the
drug regimen is not suppressive, is ε ≈ 1−1/R∗ = 0.57 (the approximation arises because we use
R = (1− ε)R∗, neglecting latent reservoir dynamics in RL, eq. (3), and in the critical drug efficacy
for the full model,

ε
L
c = 1− 1

R∗

(
a+µ−ρ

a+(µ−ρ)(1− f )

)
.

Note that the relationship is linear.
Observe that in Table B, the initial number of latent activations per day aL0 remains relatively

of the same order, or less, than the aL0 = 174 discussed in the main text using baseline ε = 0.99.
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Table B: Latent cell activation rates a computed from eq. (6) with different baseline assumption
for drug efficacy ε with residual viremia V0 =3.1 copies/mL and a latent reservoir size of L0 =1
per 106 CD4+ T-cells. Remaining parameters as in Table 1.

Baseline drug Reproductive Activation rate a Average # of latent cell
efficacy ε ratio R from eq. (6) activations per day, aL0

1 0 1.782×10−3 178
0.9999 0.00023 1.781×10−3 178
0.999 0.0023 1.777×10−3 178
0.99 0.023 1.741×10−3 174
0.9 0.23 1.372×10−3 137
0.8 0.46 9.62×10−4 96
0.7 0.69 5.52×10−4 55
0.6 0.92 1.42×10−4 14

Recall from Sec. 5.3 that this rate gives the number of HIV lineages initiated per day, that may go
through some few rounds of viral replication before dying out, as illustrated in Fig. 3. These rounds
of replication represent chances for mutations including resistance mutations to rise. We found that
for realistic values of R < 1, the number of rounds of viral replication is small, implying that it is
highly improbable that a drug resistant mutant will emerge from a single latent cell activation.
However, the probability of having a greater number of rounds of viral replication increases with
the number of latent cell activations, but since aL0 for these different baseline ε values does not
dramatically increase, the results of our stochastic model analysis in Sec. 5.3 hold: consistency
with observations of recent viral evolution in patients on ART [10], but with little opportunity for
drug resistance mutants, which occur with probability O(10−5) [11, 12], before the lineages die
out.

The baseline assumption on ε, which changes the assumed latent cell activation rate a as shown
in Table B, does not change the model prediction eq. (11),

Ir

Ia + Ir
≈ R,

that is, that the proportion of residual viremia associated with viral replication is approximately the
reproductive ratio R. That model prediction relies only on the assumption that f � 1. SI Figures
B and C replicate Fig. 2 in the main text, which shows the predicted contribution to total viral
load from residual replication and latent cell activation, this time assuming the unrealistic, extreme
baseline drug efficacies ε = 0.6 and ε = 1 from Table B. The quantitative results, total viral loads,
differ from those in Fig. 2: if we fix a assuming that the baseline drug efficacy of ε = 0.6 gives a
viral load of 3.1 copies/mL, improving drug efficacies up to ε = 0.9 and ε = 0.99 decrease total
viral load below 3.1 copies/mL. Conversely, if we fix a assuming that the baseline drug efficacy of
ε = 1 gives a viral load V0 of 3.1 copies/mL, diminished drug efficacies of ε = 0.9 and ε = 0.99
must permit viral loads higher than 3.1 copies/mL. However, the qualitative result remains, i.e. that
the contribution of residual replication to total viral load is approximately R.
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Figure B: Contributions of latent cell activation and residual replication assuming baseline drug
efficacy ε = 0.6. Total HIV RNA copies per mL (black, solid line), on a linear scale, with con-
tributions from activated latently infected cells (blue, dashed line) and from newly infected cells
(red, dash-dotted lines) for fraction of infections leading to latency f = 10−4 and drug efficacy (a)
ε = 0.99 (R = 0.023, V0 ≈ 0.25 copies/mL), (b) ε = 0.9 (R = 0.23, V0 ≈ 0.32 copies/mL), and
(c) ε = 0.6 (R = 0.92, V0 ≈ 3.1 copies/mL). The activation rate a is chosen so that the initial viral
load is V0 = 3.1 copies/mL assuming baseline drug efficacy ε = 0.6, with other parameters as in
Table 1.
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Figure C: Contributions of latent cell activation and residual replication assuming baseline drug
efficacy ε = 1. Total HIV RNA copies per mL (black, solid line), on a linear scale, with con-
tributions from activated latently infected cells (blue, dashed line) and from newly infected cells
(red, dash-dotted lines) for fraction of infections leading to latency f = 10−4 and drug efficacy
(a) ε = 0.99 (R = 0.023, V0 ≈ 3.2 copies/mL), (b) ε = 0.9 (R = 0.23, V0 ≈ 4 copies/mL), and (c)
ε = 0.6 (R = 0.92, V0 ≈ 40 copies/mL). The activation rate a is chosen so that the initial viral load
is V0 = 3.1 copies/mL assuming baseline drug efficacy ε = 1, with other parameters as in Table 1.
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F Supporting figures

Figure D: Reproduced from Archin et al. (PNAS 2012) [13], Fig. 2. Caption: Correlation between
model prediction and the measured frequency of latently infected cells. Predicted infectious units
per million resting CD4+ cells (IUPM) was computed as [L(tF)/ f βT (tF)]×106, i.e., the fraction
of CD4+ cells at the time of leukopheresis, tF , that are predicted to be latently infected in 1 million
resting CD4+ T cells, and is expressed in arbitrary units of 1014 f β .
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Figure E: Stochastic simulation realization [14] of viral load dynamics for (a) drug efficacy ε = 0.9,
associated with R = 0.23 and mean viral load V0 ≈ 4 copies/mL, and (b) ε = 0.6, associated with
R = 0.92 and mean viral load V0 ≈ 38 copies/mL. The green, thick line gives total viral load, the
sum of the viral output from rounds of replication resulting from latent cell activations, shown at
the bottom of each figure. Note that in each case, the latent cell activations occur at the same time;
the larger mean viral load in (b) is caused by the larger number of rounds of replication following
each latent cell activation for R = 0.92. The latent reservoir decay rate η2 = log(2)/44 months and
aL0 is chosen so that the initial viral load is V0 = 3.1 copies/mL assuming baseline drug efficacy
ε = 0.99, infection cell death rate δ = 1 day−1, and latency fraction f = 10−4.
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(c) Number of cells activated
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Figure F: Probability distribution on number of viral replication following activation of latently
infected cells. (a) The probability on the maximum number of rounds of viral replication achieved
as a function of the number of latent cell activations, using (a) drug efficacy ε = 0.999, associated
with basic reproductive ratio R = 0.0023 and initial viral load V0 ≈ 3 copies/mL, (b) ε = 0.9,
associated with R = 0.23 and V0 ≈ 4 copies/mL, and (c) ε = 0.6, associated with R = 0.92 and
V0 ≈ 38 copies/mL. The latent reservoir decay rate η2 = log(2)/44 months and aL0 is chosen so
that the initial viral load is V0 = 3.1 copies/mL assuming baseline drug efficacy ε = 0.99, infection
cell death rate δ = 1 day−1, and latency fraction f = 10−4. Note that these are discrete distribution
functions, with the dots in (a) indicating probability of cells achieving k generations; the lines are
included for clarity and have no meaning.
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