Supplementary Material Applied Microbiology and Biotechnology

Carboxydotrophic growth of Geobacter sulfurreducens

Jeanine S. Geelhoed^{a,b}, Anne M. Henstra^{a,*} and Alfons J.M. Stams^a

^aLaboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands ^bNIOZ Royal Netherlands Institute for Sea Research, Korringaweg 7, 4401 NT Yerseke, The Netherlands ^{*}present address: Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2EF, Nottingham, United Kingdom

Corresponding author: Jeanine S. Geelhoed, NIOZ Royal Netherlands Institute for Sea Research, Korringaweg 7, 4401 NT Yerseke, The Netherlands Phone: +31 (0)113577473 Fax: +31 (0)113573616 Email: jeanine.geelhoed@nioz.nl

Supplementary Table S1 Specific enzyme activities of cell free extracts of cultures grown with carbon monoxide, acetate or formate as electron donor.

Supplementary Table S2 Genomes containing gene clusters consisting of genes putatively encoding CooS-CooF-FNOR, denoted by locus tags of CooS indicated in bold. Also listed are locus tags for other CooS and CODH-ACS type anaerobic carbon monoxide dehydrogenase genes, and the presence of aerobic-type carbon monoxide dehydrogenase genes.

Supplementary Fig S1 Phylogenetic tree of CooS subunits of *Geobacter sulfurreducens* and known CO utilizing microorganisms and of CooS subunits of organisms not reported to use CO that have gene clusters encoding CooS, CooF and FNOR.

Supplementary Table S1

Carboxydotrophic growth of *Geobacter sulfurreducens* Jeanine S. Geelhoed, Anne M. Henstra and Alfons J.M. Stams

Electron donor for growth Carbon monoxide, 40 kPa in headspace В Cell free extract, preparation А С D Specific activity (μ mol e-donor mg protein⁻¹ min⁻¹) (avg \pm std (n)) Enzymatic conversion E-donor E-acceptor CO dehydrogenase CO, 100 kPa 0.94 ± 0.15 (3) 3.36 ± 0.06 (2) 1.63 ± 0.01 (2) 4.09 ± 0.34 (2) BV, 2 mM Formate dehydrogenase Formate, 20 mM BV, 2 mM 0.006 ± 0.0007 (3) 0.035 ± 0.008 (2) 0.005 ± 0.0001 (2) 0.005 ± 0.0016 (2) Hydrogenase H₂.100 kPa BV, 2 mM 0.033 ± 0.003 (4) 0.068 ± 0.000 (2) 0.099 ± 0.006 (3) 0.191 ± 0.012 (2) H₂ formation Dithionite,25mM n.t.^b 0.003 ± 0.0001 (2) 0.018 ± 0.0004 (3) protons 0.006 ± 0.0006 (3) +MV, 5 mMH₂ formation CO, 100 kPa no activity n.t. no activity no activity protons NADPH oxidase NADPH, 5 mM BV, 2 mM 0.93 ± 0.06 (3) 1.71 ± 0.04 (2) NADH oxidase NADH, 5 mM 0.50 ± 0.001 (2) BV, 2 mM 0.29 ± 0.04 (2) NADH, 20 mM 0.34 ± 0.02 (2) 0.40 ± 0.04 (4) BV, 2 mM NADPH formation CO, 100 kPa NADP⁺, 5 mM 0.062 ± 0.004 (2) 0.15 ± 0.02 (2) NADH formation CO, 100 kPa NAD^+ , 5 mM 0.013 ± 0.008 (3) 0.005 ± 0.003 (2)

Specific enzyme activities of cell free extracts of cultures grown with carbon monoxide, acetate or formate as electron donor^a. Data for Fig. 3.

^a Fumarate (40 mM) as electron acceptor

^b n.t. = not tested

Electron donor for growth			Acetate, 16 mM			Formate, 40 mM ^c	
Cell free extract, preparation		Е	F	G	Н		
Enzymatic conversion	E-donor	E-acceptor	Specific activity (μ mol e-donor mg protein ⁻¹ min ⁻¹) (avg \pm std (n))				
CO dehydrogenase	CO, 100 kPa	BV, 2 mM	0.21 ± 0.01 (2)	0.076 ± 0.005 (2)	0.30 ± 0.06 (4)	5.96 ± 0.21 (3)	
Formate dehydrogenase	Formate, 20 mM	BV, 2 mM	0.64 ± 0.009 (2)	0.40 ± 0.02 (2)	1.57 ± 0.17 (6)	1.80 ± 0.17 (3)	
Hydrogenase	H _{2,} 100 kPa	BV, 2 mM	1.04 ± 0.09 (2)	0.74 ± 0.03 (2)	1.65 ± 0.06 (3)	0.53 ± 0.033 (3)	
H ₂ formation	Dithionite,25mM	protons	n.t.	n.t.	0.20 ± 0.017 (3)	0.24 ± 0.023 (3)	
H ₂ formation	+ CO, 100 kPa	protons	n.t.	n.t.	n.t.	n.t.	
NADPH oxidase	NADPH, 5 mM	BV, 2 mM	1.54 ± 0.02 (2)	1.35 ± 0.1 (2)			
NADH oxidase	NADH, 5 mM	BV, 2 mM	0.20 ± 0.01 (2)	0.062 ± 0.002 (2)			
	NADH, 20 mM	BV, 2 mM	0.31 ± 0.01 (2)	0.082 ± 0.004 (2)			
NADPH formation	CO, 100 kPa	NADP ⁺ , 5 mM	n.t.	n.t.			
NADH formation	CO, 100 kPa	NAD^+ , 5 mM	n.t.	n.t.			

(continued). Specific enzyme activities of cell free extracts of cultures grown with carbon monoxide, acetate or formate as electron donor^a

^a Fumarate (40 mM) as electron acceptor

^b n.t. = not tested

^c 0.8 mM acetate added

Supplementary Table S2

Carboxydotrophic growth of *Geobacter sulfurreducens* Jeanine S. Geelhoed, Anne M. Henstra and Alfons J.M. Stams

Genomes containing gene clusters consisting of genes putatively encoding CooS-CooF-FNOR, denoted by locus tags of CooS indicated in bold. Also listed are locus tags for other CooS and CODH-ACS type anaerobic carbon monoxide dehydrogenase genes, and the presence of aerobic-type carbon monoxide dehydrogenase genes.

Species	Growth with CO	CooS	CODH-ACS	Aerobic-type CO dehydrogenase
Geobacter sulfurreducens	+	GSU 2098		
Geobacter daltonii	n.r. ^a	Geob_0362, 1046		
Geobacter uraniireducens	n.r.	Gura_0618		
Pelobacter carbinolicus	n.r.	Pcar_0057		
Deferrisoma camini	n.r.	DefcaDRAFT_3102 ^b , 3435	DefcaDRAFT_2710	3 aerobic-type
Clostridium carboxidivorans	+	CcarbDRAFT_0341, 1756	CcarbDRAFT_0164, 2944	
Clostridium autoethanogenum	+	CAETHG_ 3005 , 3899	CAETHG_1621/1620	
Clostridium ljungdahlii	+	CLJU_c09110, c17910	CLJU_c37670	
Desulfotomaculum acetoxidans	n.r.	Dtox_2327, 2933	Dtox_1270, 3780	
Desulfotomaculum gibsoniae	n.r.	Desgi_2753, 3080	Desgi_2052	≥6 aerobic-type
Caldicellulosiruptor saccharolyticus	n.r.	Csac_0400		
Desulfobacterium autotrophicum	n.r.	HRM2_ 43440		
Desulfobacula toluolica	n.r.	TOL2_00990, 38110		
Azotobacter vinelandii	n.r.	Avin_04490		
Carboxydothermus hydrogenoformans	+	CHY_0034, 0085, 0736, 1824	CHY_1221	
Carboxydothermus ferrireducens	+	CarfeDRAFT_00002400,	CarfeDRAFT_00014810	1 aerobic-type
		00009660, 00010430		

^an.r.= not reported. ^bGrey shading indicates the presence of a gene cluster with a different order of genes putatively encoding CooS, CooF and FNOR.

Supplementary Fig S1

Carboxydotrophic growth of *Geobacter sulfurreducens* Jeanine S. Geelhoed, Anne M. Henstra and Alfons J.M. Stams

Phylogenetic tree of CooS subunits of *Geobacter sulfurreducens* (bold) and known CO utilizing microorganisms (black) and of CooS subunits of organisms not reported to use CO that have gene clusters encoding CooS, CooF and FNOR (in this order: green, see also Fig. 4, or in a different order: blue, see also Table S2). The CODH subunit of the CO dehydrogenase/acetyl-CoA synthase complex of *C. hydrogenoformans* was used as outgroup. Accession numbers in UniProt and/or Locus tags in IMG are listed. Bootstrap values \geq 50% are indicated at the nodes. The scale bar indicates the evolutionary distance corresponding to 5 substitutions per 100 amino acids.

Phylogenetic analysis of monofunctional CODH (CooS) protein sequences showed that CooS sequences of *Geobacter/Pelobacter* sp. and *Deferrisoma camini* are placed together (Group I). The proteins in Group I are most closely related to CooS proteins of the Archaeal *Thermococcus* spp., that oxidize CO + H₂O to H₂. The deltaproteobacterial CooS proteins of the CO-oxidizing sulfate reducing bacterium *Desulfovibrio desulfuricans* are more distantly related. The CooS protein sequences of *Clostridium carboxidivorans*, *Cl. autoethanogenum* and *Cl. ljungdahlii* that are part of CooS-CooF-FNOR gene clusters grouped together with the CooS protein sequences of *Caldicellulosiruptor saccharolyticus* and *Desulfotomaculum acetoxidans* and *Dsm. gibsoniae* that are also part of such clusters (Group II). The CooS protein sequences of *Desulfobacterium autotrophicum*, *Carboxydothermus hydrogenoformans* (CHY0736), *Desulfobacula toluolica* and *Azotobacter vinelandii* are scattered over the tree and not closely related to other putative CooS proteins that can be directly linked to CooF and FNOR.