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1. Supplementary Note S1

Supplementary Note S1. Derivation of optimal learning algorithms.

Here we will derive the optimal learning algorithm for the models in Box 2 by casting each
model as a Kalman filter model [S1], and then using the standard solution for Kalman filters.

A Kalman filter model consists of an unobservable (hidden) state x and state covariance
matrix P, which need to be inferred from a sequence of observations r, and a set of
assumptions about how observations are generated. These assumptions include the state-
transition matrix F, which determines how states change over time; the state-to-
observation transformation matrix H, which determines how observations are generated
given the current state; and the state noise covariance matrix Q and observation noise
covariance matrix C, which introduce stochasticity into state transitions and the generation
of observations.

Given observation r; at time step t, an optimal learning algorithm updates the estimates of
the current state and the state covariance matrix as follows:

X, = Fx;_y + K (r; — HFx;_4) €Y

P, = FP,_,FT + Q — K,.H(FP,_,FT + Q), (2)
where

K, = (FP,_,FT + QHT(H(FP,_;FT + QHT + ) ! (3)

Model I: Independent states

In this baseline model, described in Box 2 (Figure IA), each state corresponds to an
independent one-dimensional Kalman filter model with the following properties:

Xy = [Ve] F=[1] H =[1] Q= I[q]
Substituting the above terms into equations (1) and (3) we get:

Ve = Vg + K (e — v q) (4)

where
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Thus, the estimated state is updated by the difference between the observation and the
previous estimate (i.e., the prediction error; . — v,_1) multiplied by an adaptive learning
rate (K;) that reflects the relationship between the state and observation variance.

Model II: States with independent and shared variance

The next model described in Box 2 (Figure IB) consists of multiple states, all of which are
affected by the same general source of variance. For the case of three states, the model
corresponds to a three-dimensional Kalman filter whose three dimensions represent three
states with both state-specific (q4.3) and shared (q4) variance:

Vg1 100 1.0 0 g+ a1 g dg
th[vt,zl F:[O 1 0] H=|0 1 0] Q= g g tq2 dg
Vt3 0 0 1 0 0 1 dg dg 4g t 43
Substituting the above terms into equations (1) and (3) we get:
Ut Vt-11 Tt1 — Vt-11
Vea| = |Ve-12| + K¢ [Tt2 = Vi-1,2], (6)
Ut,;3 Vt-1,3 Tt3 — Vt-1,3
where
Ki =P 1 + QP +Q+ O (7

Thus, the estimated states are updated by the vector of prediction errors (r; — X;_)
multiplied by the matrix K;, which integrates the different types of covariance. Importantly,
due to the variance that is shared between the states (i.e., the off-diagonal entries in Q), the
Kalman gain matrix K; has nonzero off-diagonal values, and thus each state is updated not
only by its own prediction error, but also by the prediction errors of the other states.

Model lll: A state with momentum

The final model described in Box 2 (Figure IC) corresponds to a two-dimensional Kalman
filter, consisting of a state (v;) and its momentum (m;). Observations are only directly
dependent on the state v;, but v, is updated at each time step by addition of the
momentum m; (as indicated by the triangular state-transition matrix F):

s o _ _[am O
Xt‘[vt] F_[1 1 H=100 1] Q_[O qv]
Substituting the above terms into equations (1) and (3) we get:

my=my_q + Kt,l((rt —Vpq) — mt—l) (8)

Ve =V q t+ Kt,Z( Kisme_q + 1 — Ut—l)' 9



P¢ +P¢ q +Z“ 'P“ i
where K, ; = =“—2and K, , = ——< L
’ qutXijPij ’ Qu+C+X;jPyj

betweenOand 1, and K, 5 = Ki — 1 is an adaptive scaling factor.
t,2

are adaptive learning rates whose value is

Thus, the momentum estimate consists of a running average of recent outcome prediction
errors, and the state estimate update includes a bonus that is proportional to the
momentum estimate.
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