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1. Supplementary Note S1 

 

Supplementary Note S1. Derivation of optimal learning algorithms. 

Here we will derive the optimal learning algorithm for the models in Box 2 by casting each 

model as a Kalman filter model [S1], and then using the standard solution for Kalman filters. 

A Kalman filter model consists of an unobservable (hidden) state 𝐱 and state covariance 

matrix 𝐏, which need to be inferred from a sequence of observations 𝐫, and a set of 

assumptions about how observations are generated. These assumptions include the state-

transition matrix 𝐅, which determines how states change over time; the state-to-

observation transformation matrix 𝐇, which determines how observations are generated 

given the current state; and the state noise covariance matrix 𝐐 and observation noise 

covariance matrix 𝐂, which introduce stochasticity into state transitions and the generation 

of observations.     

Given observation 𝐫𝑡 at time step 𝑡, an optimal learning algorithm updates the estimates of 

the current state and the state covariance matrix as follows: 

𝐱𝑡 = 𝐅𝐱𝑡−1 + 𝐊𝑡(𝐫𝑡 − 𝐇𝐅𝐱𝑡−1)                                                          (1) 

𝐏𝑡 = 𝐅𝐏𝑡−1𝐅T + 𝐐 − 𝐊𝑡𝐇(𝐅𝐏𝑡−1𝐅T + 𝐐),                                       (2) 

where 

𝐊𝑡 = (𝐅𝐏𝑡−1𝐅T + 𝐐)𝐇T(𝐇(𝐅𝐏𝑡−1𝐅T + 𝐐)𝐇𝑇 + 𝐂)−1                  (3)  

Model I:  Independent states 

In this baseline model, described in Box 2 (Figure IA), each state corresponds to an 

independent one-dimensional Kalman filter model with the following properties:  

𝐱𝑡 = [𝑣𝑡]             𝐅 = [1]             𝐇 = [1]            𝐐 = [𝑞] 

Substituting the above terms into equations (1) and (3) we get: 

𝑣𝑡 = 𝑣𝑡−1 + 𝐾𝑡(𝑟𝑡 − 𝑣𝑡−1)                                                                    (4) 

where 
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𝐾𝑡 =
𝑃𝑡−1 + 𝑞

𝑃𝑡−1 + 𝑞 + 𝐶
                                                                                 (5) 

Thus, the estimated state is updated by the difference between the observation and the 

previous estimate (i.e., the prediction error; 𝑟𝑡 − 𝑣𝑡−1) multiplied by an adaptive learning 

rate (𝐾𝑡) that reflects the relationship between the state and observation variance. 

Model II:  States with independent and shared variance 

The next model described in Box 2 (Figure IB) consists of multiple states, all of which are 

affected by the same general source of variance. For the case of three states, the model 

corresponds to a three-dimensional Kalman filter whose three dimensions represent three 

states with both state-specific (𝐪𝟏:𝟑) and shared (𝑞𝑔) variance: 

𝐱𝑡 = [

𝑣𝑡,1

𝑣𝑡,2

𝑣𝑡,3

]              𝐅 = [
1 0 0
0 1 0
0 0 1

]              𝐇 = [
1 0 0
0 1 0
0 0 1

]             𝐐 = [

𝑞𝑔 + 𝑞1 𝑞𝑔 𝑞𝑔

𝑞𝑔 𝑞𝑔 + 𝑞2 𝑞𝑔

𝑞𝑔 𝑞𝑔 𝑞𝑔 + 𝑞3

] 

Substituting the above terms into equations (1) and (3) we get: 

[

𝑣𝑡,1

𝑣𝑡,2

𝑣𝑡,3

] = [

𝑣𝑡−1,1

𝑣𝑡−1,2

𝑣𝑡−1,3

] + 𝐊𝑡 [

𝑟𝑡,1 − 𝑣𝑡−1,1

𝑟𝑡,2 − 𝑣𝑡−1,2

𝑟𝑡,3 − 𝑣𝑡−1,3

],                                                  (6) 

where 

𝐊𝑡 = (𝐏𝑡−1 + 𝐐)(𝐏𝑡−1 + 𝐐 + 𝐂)−1                                                      (7)  

Thus, the estimated states are updated by the vector of prediction errors (𝐫𝑡 − 𝐱𝑡−1) 

multiplied by the matrix 𝐊𝑡, which integrates the different types of covariance. Importantly, 

due to the variance that is shared between the states (i.e., the off-diagonal entries in 𝐐), the 

Kalman gain matrix 𝐊𝑡 has nonzero off-diagonal values, and thus each state is updated not 

only by its own prediction error, but also by the prediction errors of the other states.  

Model III:  A state with momentum 

The final model described in Box 2 (Figure IC) corresponds to a two-dimensional Kalman 

filter, consisting of a state (𝑣𝑡) and its momentum (𝑚𝑡). Observations are only directly 

dependent on the state 𝑣𝑡, but 𝑣𝑡 is updated at each time step by addition of the 

momentum 𝑚𝑡 (as indicated by the triangular state-transition matrix 𝐅): 

𝐱𝑡 = [
𝑚𝑡

𝑣𝑡
]              𝐅 = [

1 0
1 1

]              𝐇 = [0 1]            𝐐 = [
𝑞𝑚 0
0 𝑞𝑣

] 

Substituting the above terms into equations (1) and (3) we get: 

𝑚𝑡 = 𝑚𝑡−1 + 𝐾𝑡,1((𝑟𝑡 − 𝑣𝑡−1) − 𝑚𝑡−1)                                                            (8) 

𝑣𝑡 = 𝑣𝑡−1 + 𝐾𝑡,2( 𝐾𝑡,3𝑚𝑡−1 + 𝑟𝑡 − 𝑣𝑡−1),                                                          (9) 



where 𝐾𝑡,1 =
𝑃𝑡,1,1+𝑃𝑡,1,2

𝑞𝑣+∑ 𝑃𝑖,𝑗𝑖,𝑗
 and 𝐾𝑡,2 =

𝑞𝑣+∑ 𝑃𝑖,𝑗𝑖,𝑗

𝑞𝑣+𝐶+∑ 𝑃𝑖,𝑗𝑖,𝑗
 are adaptive learning rates whose value is 

between 0 and 1, and 𝐾𝑡,3 =
1

𝐾𝑡,2
− 1 is an adaptive scaling factor. 

Thus, the momentum estimate consists of a running average of recent outcome prediction 

errors, and the state estimate update includes a bonus that is proportional to the 

momentum estimate.     
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