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Supplementary Figure 1: Examples of changes in linear trend and CUSUM. (a) The existence of

an abrupt jump (a) and a slope change (b). The traces are fitted with straight lines afit(t) (grey

lines). (c) and (d) are the difference time series d(t) = a(t) − afit(t) of the traces in (a) and (b),

respectively. (e) and (f) are the CUSUM curves of (c) and (d), respectively. The total fluctuation

of the CUSUM curves are denoted as Ddata.
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Supplementary Figure 2: Hypothesis test for the existence of change point. (a) A permuted trace

obtained by permuting the time ordering of the original one in Supplementary Figure 1d. (b)

The CUSUM curve of the permuted trace (dark) with total fluctuation Dpermute is compared to

the original one (grey). (c) The distribution of Dpermute obtained by generating an ensemble of

permuted traces. For a given type I error (e.g., 5%), a cutoff value, Dcutoff, can be found such that

the null hypothesis (i.e., no change point) is rejected if Ddata ≥ Dcutoff, whereas the null hypothesis

is accepted if Ddata < Dcutoff.
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Supplementary Figure 3: Determining change point location and its uncertainty. (a)-(b) Break-

down of the traces into two segments to evaluate the squared error Eq. 2 for the two traces in

Supplementary Figures 1a-b. The grey lines are the fitted lines. (c)-(d) The resulting SE(t∗). The

change point location tch is assigned to the time at the global minimum of SE(t∗). The error bar of

SE(tch) at the change point location is estimated by bootstrapping, and the uncertainty in change

point location indicated by the grey area is determined as the time interval whose SE values are

enclosed by the error bar of SE(tch).
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Supplementary Figure 4: Multiple change points are detected by applying the permutation test

recursively thereby binary segmenting the time trace. The progression of the detection is from (a)

to (d). The dashed lines show the location of the detected change points at each recursive step.
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Supplementary Figure 5: Information curve for the tradeoff between compression and distortion

with a fixed number of clusters. Error bar represents the sampling and change point location errors

in evaluating Dhard. β∗ is chosen to be the desired “softness” of the clustering to incorporate the

effects of error.
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Supplementary Figure 6: Validation of the change point and clustering analyses using rotary trace

obtained by simulating the scheme in Figs. 3a-c in the main text. The relaxation time of rotary

fluctuations is set to 20 µs, i.e., mimicking the 40 nm bead case (see Figs. 4g-h in the main text).

(a) A segment of trace showing the results from change point and clustering analyses. Blue dots:

rotary trace. Vertical lines: detected change points. Notations and the rules to assign change point

intervals as pause intervals are the same as in Fig. 2a of the main text. Likewise, change points

between two pause intervals of the same catalytic dwells are removed. (b) Dwell time survival

probability of the pause intervals obtained from the change point and clustering analyses (red line)

shows good agreement with the expected dwell distribution of the simulation model (blue line).

The expected dwell time of a pause interval of the simulation model corresponds to step 1 to 5 in

Figs. 3a-b of the main text. Inset: comparison of the dwell time survival probabilities in linear-log

scale to show agreements at the short timescales. (c) Agreement of slope distribution obtained from

the change point and clustering analyses (red line) with the expected distribution of the simulation

model (blue line). The expected slope distribution of the simulation model is obtained by fitting

the simulated rotary trace from step 1 to 5 in Figs. 3a-b of the main text by a straight line. The

validations in (b) and (c) show that the change point and clustering analyses can reliably extract

the dwell time statistics.
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Supplementary Figure 7: Unbiased slope distribution for the case when there is no angular incre-

ment between the pre- and post-hydrolysis states in Figs. 3a-b of the main text. i.e., d1 = d2 = 0◦.

Red line: distribution obtained from change point and clustering analyses of the simulated rotary

trace. Blue line: expected distribution from the simulation model. The rotary trace is obtained by

simulating the scheme in Figs. 3a-c of the main text, with the relaxation time of rotary fluctuations

set to 20 µs, i.e., mimicking the 40 nm bead case. This validation shows that the change point

and clustering analyses reliably extract the unbiased slope distribution when there is no angular

increment at the catalytic dwells.
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Supplementary Figure 8: Demonstration of the difficulty to detect the small angular increment

from the angular histogram of the catalytic dwell. The histogram is obtained from the rotary trace

by simulating the scheme in Figs. 3a-c in the main text, with relaxation time of rotary fluctuations

set to 20 µs, i.e., mimicking the 40 nm bead case, and with angular increment between pre- and

post-hydrolysis states set to 20◦. Red line: fitting of the rotary angles with a normal distribution.

The deviation of the histogram from the fitted normal distribution is insignificant to tell that there

is an angular increment at the catalytic dwell.
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Supplementary Figure 9: 2D correlograms for P (τ ′, τ) − P (τ ′)P (τ), with the dwell time of the

current catalytic dwell τ and the next catalytic dwell τ ′ extracted from the single F1 experimental

data by change point and clustering analyses. P (τ ′, τ): joint probability density of τ ′ and τ . P (τ ′)

(and P (τ)): probability density of τ ′ (and τ). The correlograms from the three catalytic dwells,

i.e., pause 1 to 2, pause 2 to 3, and pause 3 to 1, are plotted separately from the left to right,

respectively. (P (τ ′, τ)− P (τ ′)P (τ)) has small values fluctuating randomly around zero indicating

that τ ′ and τ are not correlated. The lack of correlation between τ ′ and τ is further confirmed

by permutation test for the Pearson correlation coefficient (PCC) of τ ′ and τ as follows: Let

{(τ ′1, τ1), (τ ′2, τ2), · · · } be the set of consecutive dwell times obtained from the experimental trace

and Cdata be the PCC of this set. We permute the positions of τi in the set {(τ ′1, τ1), (τ ′2, τ2), · · · }

to remove the correlation (if there is any) between τ ′ and τ , and compute the permuted PCC. This

permutation procedure is repeated many times and a set of permuted PCCs is generated. The

original Cdata is then compared to the set of permuted PCCs to obtain the two-sided p-value. For

all experimental traces considered in this work, the two-sided p-values are always larger than, e.g.,

5%, indicating that no correlation between τ ′ and τ can be detected with statistical significance.

9



Supplementary Notes

Supplementary Note 1: Testing the existence of change points by permutation

method

We generalize the change point algorithm developed by Taylor [1], which detects changes

in the mean values, to detect both sudden jumps and changes in the linear trend (see e.g.,

Supplementary Figures 1a and b) in a time series. To decide if change points exist in a time

series, permutation test is employed to test the two hypotheses: There is no change point

(the null hypothesis), and there exists at least one change point (the alternative hypothesis).

Here we first describe how to detect the existence of a single change point, and the detection

of multiple change points will be discussed in Supplementary Note 3.

Suppose we have a segment of time series as shown in Supplementary Figure 1a or b,

we decide if change point(s) exists by comparing the statistical significance of the null and

alternative hypotheses in terms of the cumulative sum (CUSUM) of the time series as follows:

The time series a(t) is first fitted by a straight line afit(t) (Supplementary Figures 1a-b), and

the difference time series, d(t) = a(t)− afit(t), is constructed (Supplementary Figures 1c-d).

The CUSUM is defined by the cumulative sum of the difference time series as

CUSUM(t) =
t∑

t′=1

(a(t′)− afit(t
′)). (1)

The CUSUMs for the two traces in Supplementary Figures 1a-b are shown in Supple-

mentary Figures 1e-f. It is expected that the total fluctuation of CUSUM curve, denoted by

Ddata = max(CUSUM(t)) − min(CUSUM(t)), has a bigger value if it is more likely that a

change point exists, i.e., the fitted straight line afit(t) cannot describe well the trends in the

time series a(t). In order to justify how big the value of Ddata is enough to reject the null

hypothesis, we need to estimate the range of values Ddata can take when no change point

exists.

To create such ensemble of traces with no change points, we permute the time ordering

of the difference time series d(t) to obtain the permuted traces dpermute(t). Supplementary

Figure 2a shows an example of dpermute(t) obtained by permuting the trace d(t) in Supple-

mentary Figure 1d. It is expected that the random permutation should wash away any

change point in the original trace d(t). The CUSUM of the permuted trace dpermute(t) is

again evaluated and the total fluctuation Dpermute can be obtained (see Supplementary Fig-

ure 2b). Similarly, an ensemble of permutation traces is generated to create the distribution
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of Dpermute as shown in Supplementary Figure 2c. The distribution P (Dpermute) provides an

estimation of how big the total fluctuation in the CUSUM can be when no change point

exists.

We declare the existence of change point(s) when the null hypothesis can be rejected

with more than a given confidence, e.g., 95%, by determining the cutoff value Dcutoff (see

Supplementary Figure 2c) such that the probability of finding Dpermute ≥ Dcutoff (shaded

area in Supplementary Figure 2c) equals to (100 − 95)% = 5%. If we have Ddata ≥ Dcutoff

from the original time series, the null hypothesis can be rejected with confidence ≥ 95% and

we declare the existence of at least one change point, whereas no change point is concluded if

Ddata < Dcutoff. The 95%-confidence used above to reject the null hypothesis also represents

a 5% probability of type I error, where the type I error denotes the probability to have

a false positive, i.e., the chance for the algorithm to conclude that a change point exists

even it really does not. One can in general choose the value of type I error in a change

point detection. A smaller type I error corresponds to a more conservative assignment of

change point (i.e., with a larger value of Dcutoff) and therefore results in a smaller number

of detected change points.

On the other hand, the type II error, that corresponds to the probability of missing

change point at time instant where change point actually exists, is not explicitly controlled

in our algorithm. To avoid the missing a large number of change points in the detection,

the choice of an extremely small value of type I error should be avoided, i.e., the assignment

of change point should not be too conservative. Some undesired change points resulted

from the detection can later be removed by the clustering procedure discussed below in

Supplementary Note 4.

Supplementary Note 2: Determining the location of change point and its uncer-

tainty

If the null hypothesis (i.e., no change point exists) is rejected, we declare that change

point(s) exists and the next step is to determine the location of the most prominent change

point. We use the squared error (SE) to determine the location. Supplementary Figures

3a-b demonstrate the detection using the traces in Supplementary Figures 1a-b. For a given
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time t∗ (1 < t∗ < T ), the SE is defined as

SE(t∗) =
t∗∑
t′=1

(a(t′)− aL
fit(t

′))2 +
T∑

t′=t∗+1

(a(t′)− aR
fit(t

′))2, (2)

where T is the number of data points, aL
fit(t

′) and aR
fit(t

′) are, respectively, straight lines

fitted to the left and right segments of the time series separated at t = t∗ (grey lines in

Supplementary Figures 3a-b). The resulting SE(t∗) are shown in Supplementary Figures

3c-d. The time tch at which SE(t∗) reaches its minimum represents the location where the

left and right segments are best described by the fitted straight lines, and therefore serves

as the best estimation of the change point location. If there exist multiple change points in

the time series, SE(t∗) can have several minimum and the global minimum is chosen as the

location of the most prominent change point.

Next we provide a simple scheme based on bootstrapping method [2] to estimate the error

bar associated with the determined change point location. The error bar represents the un-

certainty in pinpointing the change point location due to the sampling error in evaluating the

SE. Suppose that the change point location is determined to be at t∗ = tch, we first estimate

the uncertainty in SE(tch) =
∑tch

t′=1(a(t′)−aL
fit(t

′))2 +
∑T

t′=tch+1(a(t′)−aR
fit(t

′))2 by bootstrap-

ping method as follows: The segment of data, {a(1), · · · , a(tch)}, under the first summation

in evaluating SE(tch) is resampled with replacement (i.e., bootstrapping). Similarly a boot-

strap resampling is performed for the second segment {a(tch + 1), · · · , a(T )}. As before, we

fit each of these two bootstrapped segments with straight line, and the bootstrapped squared

error SEboot
1 (tch) is evaluated. This process is repeated many times (usually ∼ 1000 times)

to generate an ensemble of bootstrapped SE, i.e., {SEboot
1 (tch), · · · , SEboot

1000(tch)}, which gives

the bootstrap distribution of SE(tch). The error bar (shown in Supplementary Figures 3c-d)

associated with the value of SE(tch) corresponds to the bootstrap 68% confidence interval,

i.e., the interval from the 16th percentile to the 84th percentile of the bootstrap distribution.

Since any time instant t∗ in the neighborhood of tch can potentially be a change point if the

value of SE(t∗) falls inside the error bar of SE(tch), we simply denote the uncertainty in the

change point location (grey area in Supplementary Figures 3c-d) by the time interval whose

SE values are enclosed by the error bar of SE(tch).

It can be easily seen that the size of the error bar in the change point location depends on

the number of data points before and after a change point, and on how prominent a change

point is. For instance, the presence of a larger number of data points before and after a
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change point can give rise to a smaller error bar for the value of SE(tch), and therefore results

in a smaller uncertainty in the change point location. Likewise, a prominent change point,

e.g., a big jump or slope change, results in a steep SE(t∗) curve with a sharp minimum (see

e.g., Supplementary Figure 3c) which can also lead to a smaller uncertainty in the estimated

change point location.

Supplementary Note 3: Detecting multiple change points recursively

To detect and locate multiple change points in the time trace, the algorithm above is

applied recursively by binary segmentation. Supplementary Figure 4 shows the progression

in identifying multiple change points at different recursive steps. For a given segment of

time series containing multiple change points, we first apply the algorithm discussed above

to decide if change point(s) exists and to locate the most prominent change point (Supple-

mentary Figure 4a). The trace is then divided into two disjoint segments separated by the

change point just found. The permutation test is applied again to each of the segments to

identify additional change points (see Supplementary Figure 4b). The binary segmentation

is then repeated (Supplementary Figures 4c-d) until no change points could be found in the

segments anymore.

Finally, we note that the resulting change points from the above procedure of binary

segmentation may contain some error both in the hypothesis tests for their existence and

in their location estimations. This is because the change points on the left and right hand

sides of the segmentation, that will be detected in later stages of the binary segmentation

(e.g. the change points that have not yet been detected in Supplementary Figure 4a), can

defect the hypothesis test and the estimation of change point location at the current stage

of the segmentation. Therefore, we perform a final clean-up procedure as follows: Let the

locations of the multiple change points resulted from the binary segmentation be ti for the i-

th change point with i = 1, 2, 3, · · · and t1 < t2 < t3 < · · · . The hypothesis test and location

estimation are carried out again for each change point at ti by only using the segment of the

time series from ti−1 to ti+1. In this way, the existence and location of each change point

can be evaluated more precisely free from the effect of the undetected change points.

Supplementary Note 4: Clustering to assign change point intervals to catalytic

dwells

We first introduce the concept of “soft” clustering as follows. Given Ne elements,
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{e1, e2, · · · , eNe}, “hard” clustering algorithm assigns each element to exactly one cluster

(or group) out of Nc clusters, {C1, C2, · · · , CNc} with Nc ≤ Ne. On the other hand, soft

clustering allows the elements to belong to more than one cluster with a certain “mem-

bership”. These memberships are specified by the conditional probability P (Cα|ei) (with∑Nc
α=1 P (Cα|ei) = 1) for the given element ei belonging to the cluster Cα. The hard clustering

is a special case of soft clustering in which P (Cα|ei) equals to either zero or one.

Clustering procedures assign dissimilar elements to distinct clusters and so one needs

to provide a distance (or dissimilarity measure), d(ei, ej) (with d(ei, ej) = d(ej, ei) and

d(ei, ei) = 0), between the elements. In our study of the rotary time series of F1-ATPase,

the distance between two change point intervals (the elements) is chosen to be the difference

between the mean angles of the intervals. From the element-to-element distance d(ei, ej),

one can obtain the element-to-cluster distance d(ei, Cα) as the weighted average,

d(ei, Cα) =
Ne∑
j=1

P (ej|Cα)d(ei, ej), (3)

where P (ei|Cα) = P (Cα|ei)P (ei)/P (Cα) is the probability of finding the element ei in the

cluster Cα. The distortion in the cluster description represents the averaged element-to-

cluster distance,

〈d(ei, Cα)〉P (ei,Cα) =
Ne∑
i=1

Nc∑
α=1

P (ei, Cα)d(ei, Cα)

=
Nc∑
α=1

P (Cα)

[
Ne∑
i,j=1

P (ei|Cα)P (ej|Cα)d(ei, ej)

]
.

(4)

The second line of Eq. 4 tells us that the distortion is the intra-cluster distance (the term

inside the square brackets) averaged over the clusters. It can be easily checked that 0 ≤

〈d(ei, Cα)〉P (ei,Cα) ≤
∑Ne

i,j=1 P (ei)P (ej)d(ei, ej). The distortion obtains its minimum value at

zero when there are Nc = Ne clusters and each element is itself a cluster, i.e., no compression.

In this case, we simply have P (Cα|ei) = P (ei|Cα) = δα,i (δα,i = 1 if α = i and δα,i = 0

otherwise) and P (Cα) = P (ei). The maximum distortion is reached when there is only

one cluster (Nc = 1 and P (C1) = 1) and all elements are assigned to this cluster, i.e.,

P (C1|ei) = 1 for i = 1, · · · , Ne. This corresponds to the maximally compressed case.

On the other hand, the mutual information [3] between the elements and the clusters,

I(C, e) =
Ne∑
i=1

Nc∑
α=1

P (Cα, ei) log

[
P (Cα|ei)
P (Cα)

]
≥ 0, (5)
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provides a measure to quantify the degree of compression (or clustering) described by the

membership P (Cα|ei) with Nc clusters. Here P (Cα, ei) = P (Cα|ei)P (ei). In the least

compressed case when there are Nc = Ne clusters (i.e., each element is itself a cluster),

I(C, e) = H(e) = −
∑Ne

i=1 P (ei) logP (ei), which is just the information content of the ele-

ments. In the maximum compressed case when there is only one cluster (Nc = 1) (i.e., all

elements are assigned to a single cluster), I(C, e) = 0 and the cluster carries no information

of the elements.

Rate distortion theory [3-5], developed by Claude Shannon in his foundational work

on information theory, formulates the tradeoff between compression and distortion to find

the most compressed description of the elements for a given degree of distortion. Suppose

there are Nc clusters, the tradeoff corresponds to minimize the mutual information I(C, e)

with respect to P (Cα|ei) subject to the constraint 〈d(ei, Cα)〉P (ei,Cα) = D, where D is the

desired value for the distortion. The solution to this constrained optimization problem can

be obtained using the method of Lagrange multiplier, where we minimize the Lagrange

function,

L = I(C, e) + β〈d(ei, Cα)〉, (6)

with respect to P (Cα|ei) with the Lagrange multiplier β ≥ 0. The formal expression of

P (Cα|ei) that minimizes Eq. 6 (i.e., by setting ∂L/∂P (Cα|ei) = 0) is given by [3],

P (Cα|ei) =
P (Cα) exp [−βd(ei, Cα)]

Z(ei, β)
, (7)

where Z(ei, β) is the “generalized” partition function,

Z(ei, β) =
Nc∑
α′=1

P (Cα′) exp [−βd(ei, Cα′)] , (8)

to ensure correct normalization (i.e.,
∑Nc

α′=1 P (Cα′|ei) = 1).

The expression Eq. 7 only serves as a formal solution since the right hand side of the

equality also depends on P (Cα|ei) through

P (Cα) =
Ne∑
i=1

P (Cα|ei)P (ei) (9)

and

P (ei|Cα) =
P (Cα|ei)P (ei)∑Ne
j=1 P (Cα|ej)P (ej)

. (10)
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Moreover, the actual value of the Lagrange multiplier β have to be determined by requiring

〈d(ei, Cα)〉P (ei,Cα) = D where P (Cα|ei) has the form of Eq. 7. In practice, the determination

of P (Cα|ei) in the optimization problem is solved numerically by an iterative procedure,

called the Blahut-Arimoto algorithm [3], in terms of the self-consistent equations Eq. 7, 9

and 10. For given Nc (Nc = 3 in the current study for the 3 catalytic dwells) and β, the

iterative procedure is as follows:

[Step 1] P (Cα|ei) (α = 1, · · · , Nc, i = 1, · · · , Ne) are randomly generated with∑Nc
α=1 P (Cα|ei) = 1.

[Step 2] P (Cα) and P (ei|Cα) are evaluated using Eq. 9 and Eq. 10, respectively. The

element-to-cluster distance d(ei, Cα) are then evaluated by Eq. 3. Next the partition

functions Z(ei, β) can be obtained using Eq. 8.

[Step 3] The memberships are then updated from P (Cα|ei) to P ′(Cα|ei) using Eq. 7 as

P ′(Cα|ei) = P (Cα) exp [−βd(ei, Cα)] /Z(ei, β).

[Step 4] The procedure stops if the updated memberships, P ′(Cα|ei), agree with the old

one, P (Cα|ei), up to a chosen precision. If convergence is not reached yet, Step 2 to

4 are repeated with the initial memberships replaced by the updated one, i.e., setting

P (Cα|ei) = P ′(Cα|ei).

We note that generally the above procedure may not lead to the global minimum of

the Lagrange function and therefore multiple runs (> 20 in this work) with different initial

conditions, i.e., with different set of P (Cα|ei) in Step 1 above, are performed and the iteration

result with the minimum value of the Lagrange function is used.

Before addressing how we fix the value of β that is required as an input to the iterative

procedures for a given number of cluster Nc, we first give some intuitions on the meaning

of β and its relation to the “softness” of the clustering. First let us consider the case when

β is a very large positive number. For a given element ei, the partition function in Eq. 8,

Z(ei, β) =
∑Nc

α′=1 P (Cα′) exp [−βd(ei, Cα′)]
−−−→
β large P (Cα′′) exp[−βd(ei, Cα′′)], where Cα′′ is

the cluster having the smallest element-to-cluster distance with ei, i.e., d(ei, Cα′′) is the

smallest among all Nc clusters. After substituting Z(ei, β)→ P (Cα′′) exp[−βd(ei, Cα′′)] into

Eq. 7, one obtains P (Cα|ei) = δα,α′′ as β → ∞. Therefore, the large β case corresponds
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to the hard clustering case in which the element ei is assigned to the cluster Cα′′ having

the smallest element-to-cluster distance with ei. Moreover, one can see in this case that

the Lagrange function (Eq. 6) is dominated by the second term, β〈d(ei, Cα)〉, and so the

minimization problem reduces to the minimization of the distortion only.

On the other hand, P (Cα|ei) (Eq. 7) becomes independent of Cα when β = 0. This

means that each element is equally assigned to the clusters, i.e., the softest clustering case.

In this case even for Nc > 1, there is no need to distinguish the clusters as their membership

P (Cα|ei) are the same, so there exists effectively only one cluster and all elements belong to

it, i.e., the maximally compressed case. This can also be seen from the Lagrange function

(Eq. 6) that when β = 0, the minimization reduces to the minimization of the compression

(the mutual information) only. In general, the Lagrange multiplier β characterizes both the

degree of softness, and the tradeoff between compression and distortion in the clustering.

Such tradeoff can be visualized by the information curve as shown in Supplementary Figure

5 in which each point on the curve represents the best compression (i.e., with the lowest

mutual information) given the corresponding distortion value.

We now move on to the determination of the degree of softness. Here we adopt an

error-based algorithm [6] to determine the appropriate softness (i.e., the value of β) for

the clustering as follows. We first perform hard clustering of the elements with a large β

corresponding to the black dot in the information curve in Supplementary Figure 5 and let

us denote the corresponding value of the distortion as Dhard = 〈d(ei, Cα)〉|hard. One can

think that the obtained hard clustering corresponds to the case when there is no error in

evaluating the element-to-element distance d(ei, ej) so that the change point intervals can

be assigned to a particular cluster unambiguously. However, in practice there exist several

errors that can affect the evaluation of d(ei, ej), which include the uncertainty in the change

point locations that affects the range of data points belonging to each change point interval,

and the sampling error to evaluate the mean angle of the change point intervals with finite

number of data points. Therefore, the assignment of the elements, especially for those

located near the cluster boundaries, to the clusters can be fuzzy (i.e., soft).

To determine the degree of softness originated from the errors in evaluating d(ei, ej), we es-

timate the error in Dhard associated with the sampling error and uncertainties in change point

location in terms of the bootstrapping method [2] similar to those in the change point detec-

tion. The idea is to evaluate the bootstrapped mean angle by resampling with replacement

17



the data points inside a change point interval whose boundaries are randomly chosen accord-

ing to the error bars of the change point location. Using the bootstrapped mean angles of all

the change point intervals, the bootstrapped distances dboot(ei, ej) (i, j = 1, · · · , Ne) can be

calculated and the hard clustering procedure is performed to obtain the bootstrapped dis-

tortion Dboot
hard. This bootstrapping procedure is then repeated for many times (usually 1000

times) to generate an ensemble of bootstrapped distortion, {Dboot
hard,1, D

boot
hard,2, · · · , Dboot

hard,1000},

which gives the bootstrap distribution of Dboot
hard representing the possible variations of Dhard

due to the sampling and change point location errors. The error bar (shown in Supple-

mentary Figure 5) associated with the value of Dhard corresponds to the bootstrap 68%

confidence interval, i.e., the interval from the 16th percentile to the 84th percentile of the

bootstrap distribution. Let β∗ be the largest value of β that falls outside the error bar of

Dhard (Supplementary Figure 5), any β > β∗ then represents clustering with too small dis-

tortion that can be allowed by the sampling and change point location errors. Therefore, we

choose β∗ as the desired value of β which also fixes the degree of softness in the clustering.

One can easily see that β∗ is smaller and the clustering is softer if the sampling and change

point errors are bigger, simply reflecting the fact that the assignment of the elements to the

clusters become more ambiguous.
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