

Supplementary Figure 1. Characterization of PGC-1^{*β*(*i*)skm-/-} mice.

(a) PGC-1 α transcript levels in gastrocnemius muscle of control and PGC-1 $\beta^{(i)skm-/-}$ mice at the indicated age, determined by RT-qPCR (n=4). (b) Body weight of control and PGC-1 $\beta^{(i)skm-/-}$ mice (n=11). (c) Lean and fat content of 26 week-old control and PGC-1 $\beta^{(i)skm-/-}$ mice analyzed by DEXA scanning (n=7). (d) Food intake in 18 week-old control and PGC-1 $\beta^{(i)skm-/-}$ mice (n=8). (e) Weight of gastrocnemius (Gastro), quadriceps (Quadri), tibialis anterior (Tibialis), Extensor digitorum longus (EDL) and soleus muscles from 26 week-old control and PGC-1 $\beta^{(i)skm-/-}$ mice (n=9). (f) Representative hematoxylin and eosin stained sections of gastrocnemius (Gastro) and tibialis muscles from 26 week-old control and PGC-1 $\beta^{(i)skm-/-}$ mice (n=4). Scale bar: 100 µm. (g-i) Distribution of gastrocnemius (g), tibialis anterior (h) and soleus (i) fiber cross section area (CSA) from 26 week-old control and PGC-1 $\beta^{(i)skm-/-}$ mice (n=8). Data are represented as mean +/- s.e.m. *, p<0.05, student's t test.

Supplementary Figure 2. Transcript levels of genes encoding proteins involved in energy metabolism in control and PGC-1 $\beta^{(i)$ skm-/-} muscle. (a-c) Relative transcript levels of Acadvl (FAO, Fatty Acid Oxidation), Fh1 and Idh3b (CA, Citric Acid cycle), Ndufs3, Sdhb, Uqcr11, Cytc, Cox5b, Atp5i and Atp5o (OXPHOS, Oxidative phosphorylation) in soleus (a), quadriceps (b) and tibialis anterior (c) of 8 week-old control and PGC-1 $\beta^{(i)$ skm-/-} mice, determined by RT-qPCR (n=4). Data are represented as mean +/- s.e.m. *, p<0.05, student's t test.

Supplementary Figure 3. Transcript levels of gene encoding proteins involed in mitochondrial dynamics and cardiolipin synthesis and remodelling. Relative transcript levels of Mfn1, Mfn2, Opa1, Drp1 and Fis1 in gastrocnemius muscle of 18 (a) and 26 (b) week-old control and PGC-1 β ^{(i)skm-/-} mice, determined by RT-qPCR (n=8). (c-e) Relative transcript levels of Pgs, Ptpmt, Taz and Lclat1 in gastrocnemius muscle of 8 (c), 18 (d) and 26 (e) week-old control and PGC-1 β ^{(i)skm-/-} mice, determined by RT-qPCR (n=8). Data are represented as mean +/- s.e.m. *, p<0.05, student's t test.

Supplementary Figure 4. Transcript levels of nuclear encoded transcription factors involved in mitochondrial biogenesis and of mitochondrial encoded proteins. Relative transcript levels of Nrf1, Gabpa, Erra, Err β , Err γ and Tfam in gastrocnemius muscle of 8 (a), 18 (b) and 26 (c) week-old control and PGC-1 $\beta^{(i)$ skm-/-</sup> mice, determined by RT-qPCR (n=8). (d-e) Relative transcript levels of Nd1, 2 and 4 (NADH deshydrogenase subunit 1, 2 and 4), Cox1, 2 and 3 (Cytochrome c oxidase subunit 1, 2 and 3), CytB (cytochrome B), Atp6 (ATP synthase 6), and of Tfb1 and Tfb2 in gastrocnemius muscle of 8 (d) and 26 (e) week-old control and PGC-1 $\beta^{(i)$ skm-/-</sub> mice, determined by RT-qPCR (n=8). Data are represented as mean +/- s.e.m. *, p<0.05, student's t test.

Supplementary Figure 5. Glucose homeostasis in PGC-1^{β(i)skm-/-} mice fed a regular chow or a high fat diet. (a) Fasting serum glucose levels in 18 and 26 week-old control and PGC- 1β (i)skm-/- mice (n=10) fed a regular chow diet, determined with an Olympus AU400 analyzer. (b) Fasting serum insulin levels in 26 week-old control and PGC-16 (i)skm-/- mice fed a regular chow diet, determined with a mouse ultra sensitive insulin ELISA kit (n=10). (c) Fasting serum glucose levels in 18 and 26 week-old control and PGC-1^{(i)skm-/-} mice fed high fat diet, determined with an Olympus AU400 analyzer (n=10). (d) Fasting serum insulin levels in 26 week-old control and PGC-16^{(i)skm-/-} mice fed high fat diet, determined with a mouse ultra sensitive insulin ELISA kit (n=10). Blood glucose levels, determined with an Accu-Chek Active blood glucometer during an intraperitoneal glucose tolerance test (IPGTT) (e) and an intraperitoneal insulin sensitive test (IPIST) (f), in 26 week-old control and PGC-1^{β(i)skm-/-} mice fed regular chow diet. (n=9). Blood glucose levels, determined with an Accu-Chek Active blood glucometer during an IPGTT (g) and an IPIST (h), in 26 week-old control and PGC-1β^{(i)skm-/-} mice fed high fat diet (n=9). (i) Body weight of control and PGC-1β^{(i)skm-/-} mice fed high fat diet. Muscle mass (j) and representative hematoxylin and eosin stained sections of gastrocnemius muscle (k) from 26 weeks control and PGC-1β^{(i)skm-/-} mice fed high fat diet (n=9). Scale bar: 100 μm. Data are represented as mean +/- s.e.m. *, p<0.05, student's t test.

Supplementary Figure 6. Oxidative stress in soleus muscle of sedentary PGC-1 β ^{(i)skm-/-}mice. (a)</sup> Dihydroethidium (DHE) staining intensity and (b) H₂O₂ levels determined by Amplex Red, in soleus muscle of 26 week-old sedentary control and PGC-1 β ^{(i)skm-/-}mice (n=9). Data are represented as mean +/- s.e.m. *, p<0.05, student's t test.

Supplementary Figure 7. Transcript levels in C_2C_{12} cells treated with H_2O_2 or transfected with a PGC-1 β expression vector. Transcript levels determined by RT-qPCR of (a) PGC-1 α , (b) PGC-1 β and (c) Sod2 in C_2C_{12} cells electroporated with an empty vector (pcDNA3) and cultured 6 h in presence (grey bars) or in absence (white bars) of 1.5 mM of H_2O_2 , and in untreated C_2C_{12} cells electroporated with a PGC-1 β , black bars) (n=3). Data are represented as mean +/- s.e.m. *, p<0.05, student's t test.

Supplementary Figure 8. Characterization of muscles in aged PGC-1 $\beta^{(i)$ skm-/-} mice. (a) Muscle mass and (b) representative hematoxylin and eosin stained sections of gastrocnemius muscle from 90 week-old control and PGC-1 $\beta^{(i)$ skm-/-} mice (n=3). Scale bar: 100 µm. (c) Transcript levels of genes encoding myofiber regeneration markers in tibialis muscle from 90 week-old control and PGC-1 $\beta^{(i)$ skm-/-} mice, determined by RT-qPCR. (n=3). Data are represented as mean +/- s.e.m.

Supplementary Figure 9. Oxidative stress in muscles of PGC-1 $\beta^{(i)$ skm-/- mice after exercise. (a) Dihydroethidium (DHE) staining intensity in soleus muscle of exercised 26 week-old control and PGC-1 $\beta^{(i)$ skm-/- mice (n=9). (b) H₂O₂ levels determined by Amplex Red, in soleus muscle of exercised 26 week-old control and PGC-1 $\beta^{(i)$ skm-/- mice (n=9). (c) Dihydroethidium (DHE) staining intensity and (d) PGC-1 β transcript levels, determined by RT-qPCR, in gastrocnemius muscle of 26 week-old sedentary and exercised control mice (n=9). Data are represented as mean +/- s.e.m. *, p<0.05, student's t test.

25 kDa

 $\mathsf{WB}:\alpha\text{-}\mathsf{Gapdh}$

WB : α-Gapdh

25 kDa .

WB : α-Gapdh

Supplementary Figure 10. Uncropped scans of western blots shown in Figure 1d (a), Figure 5e (b), and Figure 7f and k (c). Data presented in Figure 1d are boxed in panel (a).

Supplementary Table 1

List of primers used for PCR or RT-qPCR analyses of the indicated genes.

Gene	Primer (5' – 3')	Gene	Primer (5' – 3')
PGC-1β	1:CCTGTCTCTGCTTCCTAAGTATTGTGC	Nd1	CCCATTCGCGTTATTCTT
•	2:GTGAGGTTGGATCTGCTTATCCACTG		AAGTTGATCGTAACGGAAGC
	3:CTCTGGGGCCTCATGAGCTAATG		
GAPDH	GCAGCTGCTCAGCTGCCTGC	Ndufs3	CTGACTTGACGGCAGTGGAT
(DNA IC)	GATCGCACTTCTCATACTCG		CATACCAATTGGCCGCGATG
Cre	TTCCCGCAGAACCTGAAGATGTTCG	Ndufv1	ATCGCTCGACAGACATTGTG
	GGGTGTTATAAGCAATCCCCAGAAATGC		GTGGCCTTCTATCTGCTTGC
Hprt	GTTGGATACAGGCCAGACTTTGTTG	Ndufab1	CACCCCCACTGACGTTAGAC
	GATTCAACTTGCGCTCATCTTAGGC		TCGTCTTCCATGGCCATAAT
PGC-1β	TGCGGAGACACAGATGAAGA	Ndufb3	AAGGGACGCCATTAGAAACG
	GGCTTGTATGGAGGTGTGGT		TACCACAAACGCAGCAAACC
PGC-1α	AAGTGTGGAACTCTCTGGAACTG	Ndufb7	GGCCACACAACAAGAGATGA
	GGGTTATCTTGGTTGGCTTTATG	_	GCGTTTCACGTAATCCAGGT
Mhc I	AGATGAATGCCGAGCTCACT	Sdhb	TGGTGGAACGGAGACAAGTA
	CTCATCCAAACCAGCCATCT	_	TGGCAGCGGTAGACAGAGAA
Mhc IIA	AATCGAGGCCCAGAATAGGC	Sdhd	GATCCCTGCTGGGTACTTGA
			AAGTAGCAAAGCCCAGCAAA
Mhc IIX	CAAGACCGAAGGCGGAACTA	Cytc	AGAAGGGAGAAAGGGCAGAC
	IGACAGIGACGCAGAACAGG		IGAICIGAAIIIGGIGIGIGAA
Mhc IIB	ACGCIIGCACACAGAGICAG	Uqcrc1	GGGGCAAAAACATCCTTAGG
			ATCCGGCTCTCCCACTCAGC
Acadm	GGATGACGGAGCAGCCAATG	Uqcrfs1	IGGICICCCAGIIIGIIICC
A		11	GCAGCTTCCTGGTCAATCTC
Acadvi		Uqcr11	IGCIGAGCAGGIIICIAGGC
Dist		00	
Diat		Cox2	AATTAGCTCCTTAGTCCTCT
		Cart	
FN1		COX4I	
Mdb1		CayEb	GGATGGGGGCCATACACATAG
Mann		COX5D	
Ddhb		Atp51	
Fullb		Агры	
ldh3h		Atn50	
Idiibb		Ліро	TIGGTTIGGACTCAGGAAGC
Frrv		Fas	ACCCAAGCATCATTTTCGTC
L 117	GTAGCTAAGGTCCCTCGTGC	1 45	AGGATATGGAGAGGGGCTGGT
Opa1	GATGACACGCTCTCCAGTGA	Mfn1	CCTCCATGGGCATCATCGTT
	TCGGGGCTAACAGTACAACC		TGCAGCTTCTCGGTTGCATA
Mfn2	CTCAGGAGCAGCGGGTTTAT	Mrpl55	AGGACGGCTCCACTATCCAT
	GAGAGGCGCCTGATCTCTTC		ACTGTCCACTACCTCTGGCT
Drp1	AGAAAACTGTCTGCCCGAGA	Mrpl47	AAGCGACAGAGGTTGCCAAT
	GCTGCCCTACCAGTTCACTC		CCACTGCTTGAATTTGTGCCA
Fis1	CCGGCTCAAGGAATATGAAA	Mrps35	ATGGACGAGTATGTGTGGGC
	ACAGCCAGTCCAATGAGTCC		TCGTTCTCCCCCTCGTTCTT
Tomm40I	GAAGAGGGGGCCATCTTGAC	Sod1	CCAGTGCAGGACCTCATTT
	GGGCAGAGTCAGGTGGTAAC		TTGTTTCTCATGGACCACCA
Timm44	GGCCTTAACCGACAAGGTCA	Sod2	CCGAGGAGAAGTACCACGAG
	GTCAAGCTCCCCGGAAATCA		GCTTGATAGCCTCCAGCAAC
Timm8a1	TGCACCAGATGACGGAACTT	Sod3	TCTGCAGGGTACAACCATCA
	CGGGTTTGGACTTCTGGGTC		ACCTCCATCGGGTTGTAGTG
Mtg1	GTCGGTGTCCCCAATGTAGG	Gpx1	GTCCACCGTGTATGCCTTCT
	TTTCAATCCGAGGAGCCAGC	•	TCTGCAGATCGTTCATCTCG

Tsfm	AGTTGGTCCAGCAAGTAGCC	Nrf-1	GCACCTTTGGAGAATGTGGT
	CAATCGCTAGGGCCAACTGA		CTGAGCCTGGGTCATTTTGT
Gfm1	GGCAGGTTTACACGGGAAGA	Gabpa	TTCACCGGGGAACAGAACAG
	TGGGGCAACAATGGTCTCTC		ACGTTGTCCCCATTTTTGCG
Mrpl3	AGATGAGCCGTGGCCTTTAC	Tfam	AATTGCAGCCATGTGGAGGGA
	GTCAGGGCTGCGATTTTTCC		GCTCTCAGGTGGGATGCAG
Mrpl18	TGTGGCCTAACCGTGAGTTC	Errα	GCAAAGTCCTGGCCCATTTC
	CACAAGCCACCACGTTTCTG		GGCTAACACCCTATGCTGGG
Nd2	GGGCATGAGGAGGACTTAACCAAAC	Errβ	GGGAGCTTGTGTTCCTCATC
	TGAGGTTGAGTAGAGTGAGGGATGG		ATCTCCATCCAGGCACTCTG
Cox1	GCCTTTCAGGAATACCACGA	Nd4	CCACTGCTAATTGCCCTCAT
	AGGTTGGTTCCTCGAATGTG		CTTCAACATGGGCTTTTGGT
CytB	ATTCCTTCATGTCGGACGAG	Cox3	CAAGGCCACCACACTCCTAT
	ACTGAGAAGCCCCCTCAAAT		ATTCCTGTTGGAGGTCAGCA
Tfb1	GGAAGCAAACAGCACAGTCG	Atp6	CCTTCCACAAGGAACTCCAA
	GCTGCTTGATCTTGGGCTCT		GGTAGCTGTTGGTGGGCTAA
Pgs	ACACAGGTTCCAGTGGATCAG	Tfb2	CCCGTGGACATCCAGGAATC
	TTTATCTGCCCCTTCATGAGC		CCACTCTGGCACCAGCTTTA
Taz	GACCCTCATCTCTGGGGGGAT	Ptpmt	GCAACACCTCGAAGGAATGG
	CAGCTCCTTGGTGAAGCAGA	-	GAGATTGGCCAAGGTTGGGA
Lclat1	GTTGTGACCCCCGTGGAG		
	TCCATGACACCATGATTCTGAC		