A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in *Capsicum*

Jiaowen Cheng, Zicheng Zhao, Bo Li, Cheng Qin, Zhiming Wu, Diana L. Trejo-Saavedra, Xirong Luo, Junjie Cui, Rafael F. Rivera-Bustamante, Shuaicheng Li, Kailin Hu

SUPPLEMENTARY INFORMATION TABLE of CONTENTS

I.	Supplementary Tables2
II.	Supplementary Figures
	Supplementary Figure S1. Overview of SSR distribution in Chiltepin genome17
	Supplementary Figure S2. Overview of SSR distribution in pepper M2 mitochondrial genome.
	Supplementary Figure S3. Overview of SSR distribution in pepper C2 chloroplast genome. 19
	Supplementary Figure S4. Relative frequency of SSR motif with different length, by the
	number of repeats in six pepper genomes
	Supplementary Figure S5. Relative frequency of SSR motif with different length, by number
	of repeats in five plant species
	Supplementary Figure S6. Number and density comparison of SSR units on 13 chromosomes
	of Zunla-1 reference genome
	Supplementary Figure S7. Genotyping of 21 pepper lines with three newly developed
	polymorphic SSR markers23

I. Supplementary Tables

Supplementary Table S1. A representative collection of 21 pepper genotypes for availability test of SSR primer pairs.

Number	Varieties	Species	Origin of location	Phenotypic characterization of fruit
1	YNXML	C. frutescens	Yunnan, China	small fruit size, erect, pungent, green
2	HYL	C. chinense	Hainan, China	middle fruit size, pendent, pungent, yellow
	1	C have store	Bolivia (South	
3	/	C. Daccaium	America)	middle fruit size, pendent, pungent, green
4	Zunla-1	C. annuum	Guizhou, China	small fruit size, erect, pungent, green
5	CM334	C. annuum	Morelos, Mexico	small fruit size, erect, pungent, green
6	BA3	C. annuum	Guangdong, China	middle fruit size, pendent, pungent, green
7	B702	C. annuum	Guangdong, China	small fruit size, pendent, pungent, green
8	ZJ14	C. annuum	Guizhou, China	small fruit size, erect and fascicled, pungent, green
9	11c255-1	C. annuum	Beijing, China	large fruit size, pendent, non-pungent, green
10	11c320-1	C. annuum	Beijing, China	large fruit size, pendent, non-pungent, green
11	11c1363-1	C. annuum	Beijing, China	line fruit shape, pendent, pungent, green
12	QBY	C. annuum	Guizhou, China	small fruit size, erect, pungent, green
13	2308	C. annuum	Guangdong, China	middle fruit size, pendent, pungent, green
14	G16	C. annuum	Guangdong, China	small fruit size, erect, pungent, purple
15	QKY	C. annuum	Guizhou, China	small fruit size, erect, pungent, green
16	DFSJ	C. annuum	Guangdong, China	large fruit size, pendent, pungent, green
17	H36	C. annuum	Hunan, China	middle fruit size, pendent, pungent, green

18	H40	C. annuum	Hunan, China	middle fruit size, pendent, pungent, green
19	H46	C. annuum	Jiangsu, China	large fruit size, pendent, pungent, green
20	Chiltepin	C. annuum var. glabriusculum	Queretaro, Mexico	small fruit size, erect, pungent, green, fertile, semi-wild type
21	B088	C. annuum	Guangdong, China	middle fruit size, pendent, pungent, green

Supplementary Table S2. List of 11 different genomes for SSR identification in present study.

Name of variety/Species	Latin name	Genome type	Abbr. N1 N2	Cromosome Number	Accession number or release version	Genome Size (bp)	References or web sources
							http://peppersequence.genomics.
Zunla-1	Capsicum annuum	Nuclear	N1	13	Release 2.0	3,363,962,270	cn/page/species/index.jsp
	C. annuum var.						http://peppersequence.genomics.
Chiltepin	glabriusculum	Nuclear	N2	13	Release 2.0	3,528,040,346	cn/page/species/index.jsp
FS4401	C. annuum	Mitochondrial	M1	1	KJ865409	507,452	Jo et al. 2014
Jeju	C. annuum	Mitochondrial	M2	1	KJ865410	511,530	Jo et al. 2014
FS4401	C. annuum	Chloroplast	C1	1	NC_018552	156,781	Jo et al. 2011
American bird	C. annuum var.						
pepper	glabriusculum	Chloroplast	C2	1	KJ619462	156,612	Zeng et al. 2014
	Solanum						ftp://ftp.solgenomics.net/tomato_
Tomato	lycopersicum	Nuclear	Т	13	SL2.50	823,944,053	genome/assembly/build_2.50/
							http://solanaceae.plantbiology.ms
Potato	Solanum tuberosum	Nuclear	Р	13	version 4.03	773,029,444	u.edu/pgsc_download.shtml
							ftp://www.icugi.org/pub/genome/
Cucumber	Cucumis sativus	Nuclear	Cu	8	version 2	198,529,394	cucumber/Chinese long/v2/
Arabidopsis	Arabidopsis thaliana	Nuclear	А	5	version 10	119,146,352	ftp://ftp.arabidopsis.org/home/tai

							r/Sequences/whole_chromosome
							<u>s/</u>
							ftp://ftp.ensemblgenomes.org/pu
							b/plants/release-25/fasta/oryza_s
Rice	Oryza sativa	Nuclear	R	12	IRGSP-1.0.25	373,245,530	<u>ativa/dna/</u>

Supplementary Table S3. Frequency distribution of the perfect SSRs with different repeat number in all genomes that investigated in present study.

Genome	SSR	Repeat n	umber																	Total
Genome	type	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	>20	Totai
N1	Mono-	0	0	0	0	0	0	171,548	80,702	45,845	26,448	16,720	11,227	7,301	4,851	3,117	2,086	1,439	6,092	377,376
	Di-	0	0	63,109	36,006	26,573	18,510	12,943	9,325	6,885	5,417	4,387	3,504	2,698	2,159	1,758	1,466	1,047	2,246	198,033
	Tri-	156,266	44,330	20,037	10,586	5,752	3,557	2,404	1,956	1,785	1,593	936	722	604	522	471	388	319	2,060	254,288
	Tetra-	20,579	6,452	2,906	1,443	783	485	286	154	126	75	67	36	34	28	15	17	16	137	33,639
	Penta-	4,989	1,011	282	125	82	34	30	20	15	12	18	6	1	7	5	4	0	22	6,663
	Hexa-	4,424	1,117	434	263	103	87	44	23	24	12	10	4	5	6	3	2	0	20	6,581
	Total																			876,580
N2	Mono-	0	0	0	0	0	0	177,504	81,962	44,890	25,252	15,244	9,925	6,376	3,895	2,559	1,716	1,182	4,853	375,358
	Di-	0	0	63,481	34,986	26,022	18,508	12,693	8,476	5,849	4,182	2,824	2,095	1,584	1,168	902	740	558	1,620	185,688
	Tri-	158,105	43,724	19,863	10,203	5,552	3,486	2,265	1,600	1,281	1,043	895	538	380	336	258	223	182	1,697	251,631
	Tetra-	20,563	6,530	2,932	1,428	735	496	307	160	98	74	33	33	26	28	12	11	18	161	33,645
	Penta-	4,983	982	258	92	59	40	19	11	7	8	4	8	3	3	1	4	2	23	6,507
	Hexa-	4,581	1,145	426	247	88	49	35	27	16	10	4	8	8	1	4	2	1	34	6,686
	Total																			859,515
M1	Mono-	0	0	0	0	0	0	13	7	1	0	0	0	1	0	0	0	0	0	22
	Di-	0	0	6	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7

	Tri-	12	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15
	Tetra-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Penta-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Hexa-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total																			44
M2	Mono-	0	0	0	0	0	0	13	5	4	0	0	0	1	0	0	0	0	0	23
	Di-	0	0	7	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
	Tri-	12	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15
	Tetra-	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Penta-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Hexa-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total																			47
C1	Mono-	0	0	0	0	0	0	12	5	2	2	1	1	0	2	0	0	0	0	25
	Di-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Tri-	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
	Tetra-	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Penta-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Hexa-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total																			29
C2	Mono-	0	0	0	0	0	0	12	7	2	0	1	1	0	0	0	3	1	0	27
	Di-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Tri-	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
	Tetra-	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Penta-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Hexa-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total																			31

Т	Mono-	0	0	0	0	0	0	44,244	21,380	8,573	6,025	2,456	1,814	917	609	317	209	138	240	86,922
	Di-	0	0	14,890	8,662	6,477	4,954	3,723	2,711	2,307	1,974	1,833	1,553	1,417	1,317	1,169	1,113	1,054	7,332	62,486
	Tri-	40,456	12,890	6,568	3,621	2,245	1,604	1,097	757	542	414	275	194	183	121	98	70	59	162	71,356
	Tetra-	8,025	1,881	616	325	137	100	73	43	34	14	12	4	6	1	3	1	4	12	11,291
	Penta-	1,461	192	52	15	15	6	5	3	3	2	1	4	0	0	1	0	0	1	1,761
	Hexa-	1,145	242	107	39	15	18	6	5	1	0	0	1	0	0	2	0	0	1	1,582
	Total																			235,398
Р	Mono-	0	0	0	0	0	0	59,108	24,070	13,117	7,655	5,096	3,613	2,428	1,731	1,255	889	643	2,306	121,911
	Di-	0	0	12,754	7,303	5,125	3,825	3,025	2,302	1,902	1,502	1,155	1,087	633	316	217	129	98	502	41,875
	Tri-	41,162	12,160	5,188	2,511	1,459	796	488	275	107	54	50	18	18	18	13	9	14	680	65,020
	Tetra-	5,876	1,185	314	117	32	13	7	4	2	2	3	2	2	3	0	0	0	33	7,595
	Penta-	2,638	367	75	21	3	2	1	0	0	1	2	0	0	0	1	1	0	10	3,122
	Hexa-	1,483	318	93	17	10	4	3	7	9	3	1	2	3	4	2	3	1	84	2,047
	Total																			241,570
Cu	Mono-	0	0	0	0	0	0	26,424	13,286	7,788	5,195	3,738	2,925	2,569	2,084	1,451	969	616	2,040	69,085
	Di-	0	0	8,869	5,552	4,223	2,718	1,526	755	394	229	153	74	62	32	25	5	6	494	25,117
	Tri-	17,165	5,486	2,555	1,269	624	204	99	43	20	16	7	18	8	5	4	4	3	269	27,799
	Tetra-	3,787	934	262	71	23	9	8	5	3	2	4	1	0	1	2	2	2	60	5,176
	Penta-	1,273	286	38	4	6	4	0	7	2	2	0	2	1	1	1	0	2	36	1,665
	Hexa-	854	155	11	3	6	1	5	1	1	1	2	3	0	0	0	0	0	62	1,105
	Total																			129,947
А	Mono-	0	0	0	0	0	0	14,155	6,946	3,839	2,441	1,735	1,335	1,087	783	589	441	358	1,042	34,751
	Di-	0	0	3,121	1,660	1,213	845	551	381	284	196	199	157	139	98	80	64	58	329	9,375
	Tri-	11,885	3,238	1,270	515	217	95	69	50	29	14	12	17	16	6	5	0	4	27	17,469
	Tetra-	753	119	35	7	2	1	1	0	0	1	0	0	0	0	0	0	2	1	922
	Penta-	310	29	7	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	351

Т

	Hexa-	121	38	9	2	3	1	2	0	0	0	1	0	0	1	0	0	0	0	178
	Total																			63,046
R	Mono-	0	0	0	0	0	0	36,537	11,850	6,236	3,467	2,176	1,416	883	598	486	332	243	607	64,831
	Di-	0	0	12,817	6,790	3,995	2,626	1,743	1,154	845	659	553	516	424	370	330	328	294	3,926	37,370
	Tri-	52,359	17,919	6,730	2,797	987	437	177	107	71	52	35	44	29	31	36	32	27	301	82,171
	Tetra-	5,641	1,474	447	195	111	73	59	41	27	25	24	18	9	9	11	4	5	37	8,210
	Penta-	2,353	484	95	18	3	0	0	3	0	0	0	0	0	0	1	0	0	1	2,958
	Hexa-	1,133	182	47	14	6	1	1	2	2	2	0	1	0	1	0	0	0	1	1,393
	Total																			196,933

—: this type of SSR were not detected in the present study.

Supplementary Table S4. Frequency of classified SSR motif (1~6bp) in different genomes^a.

This table is provided in the form of a single file.

Supplementary Table S5. List of 11,772 unique SSR primer pairs identified from the chromosome P0 of Zunla-1 reference genome.

This table is provided in the form of a single file.

Supplementary Table S6. List of 31,111 unique SSR primer pairs identified from the chromosomes P1 to P3 of Zunla-1 reference genome. This table is provided in the form of a single file. Supplementary Table S7. List of 24,982 unique SSR primer pairs identified from the chromosomes P4 to P6 of Zunla-1 reference genome. This table is provided in the form of a single file.

Supplementary Table S8. List of 22,024 unique SSR primer pairs identified from the chromosomes P7 to P9 of Zunla-1 reference genome. This table is provided in the form of a single file.

Supplementary Table S9. List of 23611 unique SSR primer pairs identified from the chromosomes P10 to P12 of Zunla-1 reference genome. This table is provided in the form of a single file.

	SSR									
Nomenclature ^a	type	SSR	size	Chr	start	end	Forward primer (5'-3')	Tm(°C)	Reverse primer (5'-3')	Tm(°C)
							ACGGTTGGTGGACTCTCAT		GGGATTTGCGAAAACTT	
SSR_P0_163110979 [#]	p6	(TTTAAT)4	24	P0	163,110,979	163,111,002	Т	58.94	GCA	57.85
							CGCACCTTTTCCGACTCTT		AGAAAGTCACTCCTCTC	
SSR_P0_164189256 [#]	p5	(CATGT)4	20	P0	164,189,256	164,189,275	Т	58.77	CGC	59.11
							AGTCGACTTACAGCTGAGG		ACCATATAATCACGCCT	
SSR_P0_438581243 [#]	p6	(TATTTT)4	24	P0	438,581,243	438,581,266	Т	58.09	CAAGA	57.04
							GCCGTCACCTTCGATTACA		TGTAATCGACGGTGCTA	
SSR_P0_449855951 [#]	p6	(CCATCT)9	54	P0	449,855,951	449,856,004	С	59.00	GCA	59.19
SSR_P0_456808942 [#]	p6	(CAACTT)5	30	P0	456,808,942	456,808,971	AAGCTCAGGACTCGTTTCA	57.59	ACGTGAATGAGCCAAGT	57.67

Supplementary Table S10.Information of the 88 newly developed SSR markers from chromosome P0 in present study.

							TT		ATGT	
							TACATCCGCCTCTGAACTC		TTTACTTGTGGTTTCGGA	
SSR_P0_462067694 [#]	рб	(ATATTC)4	24	P0	462,067,694	462,067,717	С	58.89	AGC	57.03
		(TA)6(ATA					TGGCTGTTACCGGTCATCT		TGCGTAACAGAGGATTG	
SSR_P0_471765445 [#]	c*	A)5*	29	P0	471,765,445	471,765,473	Т	59.02	CAG	58.27
							ACAAGTATGGAGGGAGCA		CTCCCGAGGCCCCATAT	
SSR_P0_480209261 [#]	c*	(AT)6(T)13*	24	P0	480,209,261	480,209,284	AATT	57.68	ATC	58.88
							AGGGGTGTGACATCGTTCA		CCAGAATCACTACCCAA	
SSR_P0_480718061 [#]	p4	(ATAA)4	16	P0	480,718,061	480,718,076	Т	59.02	GGC	57.96
		(G)16(GAG)					AACTGTGCTCCTCCCTTCT		TCGCCATTCACTTCACTC	
SSR_P0_480905753 [#]	c*	4*	27	P0	480,905,753	480,905,779	С	59.02	СТ	59.02
							TCAAGACTTTTCATCACAC		AGGAATTGAAGGATCGG	
SSR_P0_480940810	p4	(TATT)4	16	P0	480,940,810	480,940,825	CAGA	57.97	AGGG	59.23
							GCCCGTCACTAAAAGTCTC		TCTGGAATGGCTGTACT	
SSR_P0_487884506 [#]	p4	(TAAT)4	16	P0	487,884,506	487,884,521	С	58.28	ACCA	58.17
							CCTAGAATGACCCCGACTG		GGGGCTCCATACCAGAA	
SSR_P0_488531631 [#]	p2	(TA)7	14	P0	488,531,631	488,531,644	Т	58.51	AGA	58.79
									TGATGATACATATGTCTG	
SSR_P0_489955492	p2	(AT)6	12	P0	489,955,492	489,955,503	CATCACACACCCCAATGCC	59.11	CCAAGA	57.58
							ACTAACTGAAACGGCTGA		TCGGTGTCCAATGGTAA	
SSR_P0_491728482 [#]	p2	(AG)6	12	P0	491,728,482	491,728,493	CAC	58.52	GCT	59.02
							CGGTGGCTAGAGAGGAAG		AATCCGACTCACCTTCA	
SSR_P0_491740645 [#]	рб	(TGCTGA)4	24	P0	491,740,645	491,740,668	AG	58.97	GCA	59.02
		(AAT)5tataa					TGTGGGATTGGCGCTTTAA		TGTATACAAAAGCGTGG	
SSR_P0_493610495 [#]	с	taac(AAT)6	42	P0	493,610,495	493,610,536	G	58.83	CGG	58.92

							TGTGGTTTGGCTTTGAAGG		AGTCACTTAACCATTTTG	
SSR_P0_494287518	p1	(T)10	10	P0	494,287,518	494,287,527	G	58.88	ACGTGA	58.88
		(A)13gcacaa								
		caaac(AAT)					GTGAAGTCCGGAGAGAGT		GGCCGAGGATATGAAGG	
SSR_P0_494755411 [#]	с	6	42	P0	494,755,411	494,755,452	GA	58.46	TGA	58.95
		(ATTT)4cct					ACGCGCTTTGTCATGTGTA		ACGTGTTAGCCTACGGT	
SSR_P0_494756680 [#]	с	c(T)12	32	P0	494,756,680	494,756,711	А	58.78	GAA	59.04
							AGCTTTTAAGGATGGTGGC		TGAGATCCAATGAGAAT	
SSR_P0_494816190 [#]	p1	(T)10	10	P0	494,816,190	494,816,199	А	57.40	AAAATGGG	57.17
							GTTGGGTTGGCAATGGACA		CTCGACTTGTCGCTTAGC	
SSR_P0_495003120 [#]	p3	(GAA)4	12	P0	495,003,120	495,003,131	Т	59.02	AC	59.01
							GCGACGCCTTTCAGATTTC		CTTCCTAGACCCCACCTG	
SSR_P0_495031739	p3	(AAC)4	12	P0	495,031,739	495,031,750	А	59.20	TG	59.10
		(TA)6cac(A					GGTTGGGCTTGATGACTGT		TCTTATCTCTCCGCACCG	
SSR_P0_495114418 [#]	с	T)7	29	P0	495,114,418	495,114,446	G	59.12	AC	58.98
							TCCATACCGCGACAACAA		GCTCGTGTTGTTTGCGTT	
SSR_P0_496173676 [#]	p1	(T)10	10	P0	496,173,676	496,173,685	AC	58.85	TT	58.74
									GCAGCGACAGGAGTTGA	
SSR_P0_496193829 [#]	р3	(TTC)4	12	P0	496,193,829	496,193,840	TGTCCTCCTCCTTCTCTGT	57.30	AAA	59.06
							TTTTCATGGCCAGGACTTC		ATTTGCGTCTGTTCGGTG	
SSR_P0_496530536	p3	(ATC)4	12	P0	496,530,536	496,530,547	G	58.47	TT	58.70
							TGTCGCTGTGCATGTAGTT		CCGACATTGGAAACCGT	
SSR_P0_496647902 [#]	p3	(AAT)4	12	P0	496,647,902	496,647,913	G	58.85	GTT	59.05
							GCCATGCAAACAGGAAAG		TTGGGGTGGGTATGAAA	
SSR_P0_498360802 [#]	p4	(AAAT)4	16	P0	498,360,802	498,360,817	GA	59.03	GGT	58.54
SSR_P0_503923900 [#]	p6	(AAAAGG)	30	P0	503,923,900	503,923,929	TTGGGATCTTCGTCAGCAG	59.02	TGTCATGGGGTAGACAG	57.08

		5					Т		AGA	
		(CTAT)8(T					TAATCACTCCACAGGCTGC		CCACACACGTTTTAGGG	
SSR_P0_506473556 [#]	c*	AT)7*	50	P0	506,473,556	506,473,605	А	59.02	AAGA	58.16
							TGTTGCTCGATTAGGCTGG		GTTTTCAAGCAGTGCCTC	
SSR_P0_512937722 [#]	рб	(TTTGAA)4	24	P0	512,937,722	512,937,745	А	59.10	GA	59.06
							TTCGGCTGGAAAAGGATTG		CGAGGGAAGTAGGGTTA	
SSR_P0_526557141 [#]	p5	(TTTTG)4	20	P0	526,557,141	526,557,160	G	58.46	GGG	58.59
							TTAGGGGGCCCAACAGAAG		CTCATTCGTGTCGGTGTT	
SSR_P0_530599646 [#]	p5	(TGTTC)5	25	P0	530,599,646	530,599,670	AG	59.01	GG	59.21
							CACTGCTCAAACACCACGA		ATAGTTCCAGCGCGCAA	
SSR_P0_538786861 [#]	рб	(TTCAGT)4	24	P0	538,786,861	538,786,884	А	58.99	TAC	58.78
							TTCCACCCTTACAGCTGAG		AAGAAAGGGGTGGGGTA	
SSR_P0_547445673 [#]	p5	(TAAAA)4	20	P0	547,445,673	547,445,692	G	59.02	TGG	58.99
		(TAGA)5(A					GTAGGGCAAGGAGAGAGC		GATCCCAACTGAGCTCC	
SSR_P0_570807688 [#]	c*	G)8*	33	P0	570,807,688	570,807,720	AA	59.10	TGT	59.09
							CCTAAGTCAATCCGGCTCC		CTTGGGCTCAACGTATG	
SSR_P0_573751529 [#]	p5	(TTTGT)4	20	P0	573,751,529	573,751,548	Т	58.88	GTG	58.91
							TCAAATGGCTTCTGTTGAG		AGAGTATCTGACACGCA	
SSR_P0_580381951 [#]	p4	(TTTA)6	24	P0	580,381,951	580,381,974	GT	57.77	CCA	58.45
		(AATAAA)					TCCAAACTACAAGCCTGCC		TGACACCAAGCGACAAC	
SSR_P0_587527153 [#]	p6	4	24	P0	587,527,153	587,527,176	Т	59.23	TTT	58.26
							GCCGGTGATTTAATATTTT		ACAACTAAGCTGGTGGG	
SSR_P0_587565701 [#]	p4	(AATA)4	16	P0	587,565,701	587,565,716	GTGCA	58.89	ACA	58.86
							CCATGCCCTAAACGTGACA		CTTAGCCATAGTCGGGA	
SSR_P0_593258174 [#]	p4	(AACC)4	16	P0	593,258,174	593,258,189	G	58.91	GCA	58.96

		(TA)7ttg(AT					GCGGCATACAAAGGAAGG		GAGTAGACCCTGGGCAA	
SSR_P0_595611863 [#]	c)7	31	P0	595,611,863	595,611,893	AG	58.98	TGA	58.80
		(AT)12(AC					TCAACAGTACGGCAGGAC		ATTCTGAACGCGTGCTTC	
SSR_P0_596062534 [#]	c	AT)4	40	P0	596,062,534	596,062,573	AT	59.03	TC	58.93
							GGCAATTGTCTAGGGCTTC		TCGTGCATCTCAATCATA	
SSR_P0_597136478 [#]	p1	(A)10	10	P0	597,136,478	597,136,487	А	57.87	TCAGT	57.79
							TGATGTGCAGTGGATGGGT		AGACTGAGGGACGGGTA	
SSR_P0_597243550 [#]	p1	(A)10	10	P0	597,243,550	597,243,559	А	58.72	GTA	58.71
							ACACAACCAACCCATAA		GCGTGAGGAGAGGAGAA	
SSR_P0_597479614 [#]	p1	(A)10	10	P0	597,479,614	597,479,623	AGTG	59.04	TGA	58.89
							AATTCCCCTGCCTTGTTTG		AGAGGATGATGGTGTTG	
SSR_P0_597975613	p1	(T)10	10	P0	597,975,613	597,975,622	С	59.31	GCT	58.71
							CCAACAATCACTGCAGGCT		GTGCCAATTACGTCCGG	
SSR_P0_599973541	p4	(GAAA)4	16	P0	599,973,541	599,973,556	Т	59.04	TTC	59.56
							AGTTCGACCCTTGTGTCAC		AGAGGTGGAAGGTTGGA	
SSR_P0_601491402	p2	(TA)7	14	P0	601,491,402	601,491,415	А	59.17	GTC	58.65
							AATGATTGGACGTGGCATG		TCTGGTGGCAGTGGACT	
SSR_P0_603004334	p2	(AT)7	14	P0	603,004,334	603,004,347	С	59.54	ATG	59.10
							CGCCGGACTTAACCTGAAA		GGAATTCACTGGGGCAA	
SSR_P0_604165084 [#]	p2	(AT)7	14	P0	604,165,084	604,165,097	С	59.21	TGG	59.17
							TTGTTCCCTCAAGTGGACC		CGTCGGAGTGGCTAAAA	
SSR_P0_606387537	p3	(TTA)6	18	P0	606,387,537	606,387,554	А	58.78	TGA	58.00
							TGAGGGTCTTTCGGGAAAC		GACTGCATTTTCCCACTA	
SSR_P0_606517693	р3	(TGT)5	15	P0	606,517,693	606,517,707	А	58.87	ACCA	58.85
							ACAATCTCTCTGCCCCACA		GAGCACCCTTTACTCCTC	
SSR_P0_606531330	р3	(TGT)4	12	P0	606,531,330	606,531,341	А	58.93	GT	59.10

							TGGTTTCTCTCAACTCTGC		GGCGAATCGGATGTCAA	
SSR_P0_607395188	p3	(TTG)4	12	P0	607,395,188	607,395,199	CA	59.23	CAA	58.92
							TTAGCGTGACATCTTTGCC		ACGCCTGGAATTACACT	
SSR_P0_608011956	р3	(CAA)5	15	P0	608,011,956	608,011,970	G	58.92	GGT	59.31
		(A)10(AT)7					ACGGGATGATATTATTCGA		TATCAACTGGGCCGGAT	
SSR_P0_609133294 [#]	c*	*	23	P0	609,133,294	609,133,316	ATGGA	57.71	CTC	58.95
		(AT)7c(TA)					TCCGGCAAGTACTTACCCT		CCGCCCCAAACTAGACA	
SSR_P0_610565641 [#]	c	7	29	P0	610,565,641	610,565,669	Т	58.35	GAT	59.46
							CACCCGCAACCAAGATCA		GCCACCATGTAAGCTTC	
SSR_P0_635258944 [#]	p5	(TAGTG)4	20	P0	635,258,944	635,258,963	AA	59.04	CAC	59.19
		(A)10(AAT)					TGAGCCTCATATTGTGCCC		AGGTGCCACGTCCAATA	
SSR_P0_643195941 [#]	c*	5*	23	P0	643,195,941	643,195,963	Т	58.78	GAT	58.80
							TTTCCCCGGCAAAATATCC		CCCCATCTTGCAGGAATT	
SSR_P0_647206762 [#]	p5	(AAGAG)4	20	P0	647,206,762	647,206,781	А	57.47	CG	58.97
							TCTACGACTACAGCGTACC		CGACCTCAACAAGACTC	
SSR_P0_655489419 [#]	p5	(TAATT)6	30	P0	655,489,419	655,489,448	Т	57.32	TATGC	58.82
		(A)10(AAA					CGCAGAAATACGTTGGGCT		GCCGACGATGATCTACT	
SSR_P0_672904565	c*	AG)4*	26	P0	672,904,565	672,904,590	А	58.35	CCT	58.76
							CACGAGCTCAAGGTGAAT		TGGACCTCTTGCATCCGT	
SSR_P0_684352014 [#]	p5	(AAAAC)4	20	P0	684,352,014	684,352,033	CA	57.92	AA	58.73
							TGTCCACCATTTTCCTGTT		AAGCAAGCAAGAGAGTC	
SSR_P0_705767169 [#]	p5	(TTTAT)4	20	P0	705,767,169	705,767,188	GT	57.98	AGC	58.48
		(A)15(AT)8					GCTAGGGCCACGACTAAG		AGGCATACTTAAAGCAC	
SSR_P0_706518612 [#]	c*	*	30	P0	706,518,612	706,518,641	AT	58.96	GCT	57.60
							GGGGCAGAATTGTACAAG		ACGTCATCCATCAGACC	
SSR_P0_706679929 [#]	рб	(ATCTGA)4	24	P0	706,679,929	706,679,952	CC	59.18	ACA	58.73

							CACTTGACTCACAGCGATG		CCACCCGCTGATAACCA	
SSR_P0_707670527 [#]	p5	(GAAAA)4	20	P0	707,670,527	707,670,546	G	58.93	AGA	59.75
		(ATT)5t(AT					ATGCTTCGTCCTCTGTCCT		AGAGGTCAACTAGCCAA	
SSR_P0_712009853 [#]	c	A)4	28	P0	712,009,853	712,009,880	С	59.18	AGAAA	57.29
		(CAC)4aaatt								
		ttagtagattctta								
		atcattggtacta					CCCCTCCCTCAATTCACCT		ATGAACAAGAATCCAAA	
SSR_P0_712433624 [#]	c	c(GTT)4	57	P0	712,433,624	712,433,680	Т	59.00	CAAGCT	57.20
		(AAAAAT)					TGCTCCGACACATATGGAG		GACGCAACACCAGACAA	
SSR_P0_712988435 [#]	p6	4	24	P0	712,988,435	712,988,458	Т	58.52	CAT	59.06
		(ATAC)6ata					ATCCTTCATCCCACGTCGA		ATTTCCCACACCTACTCG	
SSR_P0_713201073 [#]	c	tatat(AC)7	46	P0	713,201,073	713,201,118	А	58.81	CA	59.02
							TCTGCTTCAACACTATTCA		ACTGCTCCTCTCCGAAG	
SSR_P0_713466835	p4	(AAAT)4	16	P0	713,466,835	713,466,850	GACA	57.79	ATG	58.89
							TGAAGTAGACAAATCACC		AAGACATGGGCGGAGGA	
SSR_P0_713643490	p4	(TAAA)4	16	P0	713,643,490	713,643,505	GACT	57.13	AAA	59.60
							TAATGCCTCCCTGATACCC		TGCTACCATCTTGCGTGA	
SSR_P0_714045050 [#]	p4	(AAAT)5	20	P0	714,045,050	714,045,069	С	58.26	TC	58.06
							ATGAGAAGGGGTGTACGA		GAAAAGGTTGGTGTTCG	
SSR_P0_714546534 [#]	p2	(TA)7	14	P0	714,546,534	714,546,547	GC	59.18	GCT	58.97
							GCCGAACACCAACCTTTTC		AGTTGAAGGGTCTGGCT	
SSR_P0_714547079 [#]	p3	(CAC)4	12	P0	714,547,079	714,547,090	Т	58.97	TGA	58.86
							AGAAGGATGAATCGGCCC		ATCGTCATCATGGCCTA	
SSR_P0_714549623 [#]	p2	(AT)6	12	P0	714,549,623	714,549,634	TT	58.78	GGG	59.02
							CGTAACGGAATCCTACCAC		TTCTCCGACATGACTGCT	
SSR_P0_714550164	р3	(TGA)4	12	P0	714,550,164	714,550,175	С	57.79	CA	58.74

							GTTCAGGGTGAGGAGTGA		TGTTTTGTGGTCAGGGTG	
SSR_P0_714575011	p1	(A)10	10	P0	714,575,011	714,575,020	GG	59.39	TG	58.53
							TGTCAACAAGGCATGACTT		ACTAGCGTGTACCAGTT	
SSR_P0_714623683 [#]	p4	(ATGT)10	40	P0	714,623,683	714,623,722	TGA	58.71	GCT	59.03
							GTATCGTGCCAGCAAGTAC		ATTGGTGGTGGTCTGGG	
SSR_P0_714657262	p1	(A)10	10	P0	714,657,262	714,657,271	А	58.00	TAG	59.01
							TTGGCATGTGTCCTATCGG		AGCTTCGGAATTAGGGG	
SSR_P0_714673559	р3	(CAA)4	12	P0	714,673,559	714,673,570	Т	59.09	TCT	58.12
							CCTGTATCTTCCTCGTCCC		TCCACCGGAGACAGACT	
SSR_P0_714675881	р3	(TGC)4	12	P0	714,675,881	714,675,892	С	58.96	TTC	59.03
									CCAGGAAGGCTCTTAAG	
SSR_P0_714679449 [#]	p1	(T)10	10	P0	714,679,449	714,679,458	CTGGTTCCCTCTTCCTCTCC	58.80	GGT	58.71
							AGGCTCTCACGCTTCTCTA		TGCATTGAAGGAGGCTT	
SSR_P0_714680259	р3	(TCA)4	12	P0	714,680,259	714,680,270	С	58.90	TGT	58.00
							ACGCAAATTTCACACCTAA		TGGGAGAGACTTAAGGA	
SSR_P0_714733497 [#]	p1	(T)10	10	P0	714,733,497	714,733,506	GAGA	58.61	GAGG	57.61

^aThe 65 polymorphic SSR markers were labeled with #.

II. Supplementary Figures

Supplementary Figure S1. Overview of SSR distribution in Chiltepin genome.

A total of 859,515 SSR loci with 123,281 presented in compound formation (C and C*), which form into 736,234 SSR units, were identified in the Chiltepin genome. The various number of SSR units and protein coding genes in each window size of 1000kb were used for drawing this picture and showed with different colours. Track A shows the gene density, tracks B to I refer to the C, C*, Mono-, Di-, Tri-, Tetra-, Penta-, Hexa- type, respectively.

Supplementary Figure S2. Overview of SSR distribution in pepper M2 mitochondrial genome.

The M2 genome refers to the mitochondrial genome of pepper line 'Jeju' (*Capsicum annuum*). Perfect SSRs with 1, 2, 3 and 4 bp length of motif were represented by red, yellow, blue and green lines, respectively. And compound SSRs were showed with purple lines. Number with * and # in the front means that the corresponding SSRs were located in the intergenic and genic region, respectively.

Supplementary Figure S3. Overview of SSR distribution in pepper C2 chloroplast genome.

The C2 genome refers to the chloroplast genome of semi-wild pepper line 'American bird pepper' (*C. annuum var. glabriusculum*). Perfect SSRs with 1, 3 and 4 bp length of motif were represented by red, blue and green lines, respectively. And compound SSRs were showed with purple lines. Number with * and # in the front means that the corresponding SSRs were located in the intergenic and genic region, respectively.

A and **B** for the nuclear genomes N1 and N2; **C** and **D** for the mitochondrial genomes M1 and M2; **E** and **F** for the chloroplast genomes C1 and C2, respectively. The graph was based on the total SSR motif identified in nuclear (n_{N1} = 876,580 and n_{N2} = 859,515), mitochondrial (n_{M1} =44 and n_{M2} =47) and chloroplast (n_{C1} =29 and n_{C2} =31) genomes.

Supplementary Figure S5. Relative frequency of SSR motif with different length, by number of repeats in five plant species.

A, Tomato; B, Potato; C, Cucumber; D, Arabidopsis; E, Rice.

Supplementary Figure S6. Number and density comparison of SSR units on 13 chromosomes of Zunla-1 reference genome.

Supplementary Figure S7. Genotyping of 21 pepper lines with three newly developed polymorphic SSR markers.

The order of sampling application on 21 lanes (1~21) was same to the order of samples in **Supplementary Table S1**. Lane M, Marker I (100~600 bp ladder). **A**, **B** and **C** for the marker SSR_P0_580381951, SSR_P0_655489419 and SSR_P0_449855951, respectively.