Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

Laura Rix^{1*}, Malik S. Naumann¹, Jasper M. de Goeij², Christina E. Mueller³, Ulrich

Struck⁴, Jack J. Middelburg⁵, Fleur C. van Duyl⁶, Fuad A. Al-Horani⁷, Christian Wild^{1,8}, Dick

van Oevelen³

¹Coral Reef Ecology Group (CORE), Leibniz Center for Tropical Marine Ecology (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany

²Department of Aquatic Environmental Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, the Netherlands

³Royal Netherlands Institute for Sea Research (NIOZ-Yerseke), PO Box 140, 4400 AC Yerseke, the Netherlands

⁴Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany

⁵Department of Earth Sciences – Geochemistry, Utrecht University, PO Box 80.021, 3508 TA Utrecht, the Netherlands

⁶Royal Netherlands Institute for Sea Research (NIOZ-Texel), PO Box 59, 1790AB Den Burg, Texel, the Netherlands

⁷The University of Jordan – Aqaba and Marine Science Station (MSS), PO Box 2595, Aqaba 77110, Jordan

⁸Faculty of Biology and Chemistry (FB 2), University of Bremen, NW 2 / Leobener Str., 28359 Bremen, Germany

*corresponding author, E-mail: <u>laura.n.rix@gmail.com</u>

Supplementary Information:

Supplementary Figures:

Supplementary Figure S1: Flow-chart describing the three phases of the warm-water (WW) and cold-water (CW) stable isotope-tracer experiments. Phase 1 describes the labeling of the WW and CW corals with ¹³C and ¹⁵N tracers, Phase 2 outlines the transfer of coral mucusderived C and N from the ¹³C and ¹⁵N-labeled corals into the sponge tissues in aquaria flowthrough set-ups (WW: n = 3 aquaria replicates each with three sponge specimens per treatment) or a recirculation chamber set-up (CW: n = 1 chamber set-ups with three sponge specimens per treatment), and Phase 3 shows the transfer of coral mucus-derived C and N from the ¹³C and ¹⁵Nlabeled sponges to the sponge detritus in individual incubation chambers (WW: n = 9, CW: n =3).

Supplementary Tables

Supplementary Table S1. Environmental parameters characteristic of warm-water (WW), Red Sea coral reefs and cold-water (CW), north Atlantic *Lophelia pertusa* **reefs.** Parameters include dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP), dissolved organic carbon (DOC), particulate organic carbon (POC), particulate nitrogen (PN), and chlorophyll a (Chl *a*). ^a indicates the inorganic nutrient supply limiting WW coral growth and ^b the organic nutrient supply limiting CW coral growth.

Parameter	Warm-water	Cold-water
	Red Sea coral reefs	North Atlantic coral reefs
Depth (m)	$1 - > 100^{1}$	$50 - > 1000^2$
Temperature (°C)	$21 - 29^3$	$6 - 10^{2,4,5}$
DIN $(\mu mol L^{-1})^a$	$0.2 - 1.1^{6}$	$2.2 - 19.1^2$
SRP (μ mol L ⁻¹) ^a	$0.04 - 0.1^{6}$	$0.3 - 3.6^2$
DOC (μ mol L ⁻¹)	$76 - 87^7$	$51 - 73^8$
POC $(\mu mol L^{-1})^b$	$6.3 - 10.3^{6}$	$1.2 - 5.2^{4,9,10}$
POC:PN	$7.3 - 10.2^{6}$	$5.8 - 9.0^{4,9,10}$
Chl a ($\mu g L^{-1}$)	$0.1 - 0.2^{6}$	$0.02 - 1.17^2$
Current velocity (cm s ⁻¹)	$0 - 10^{3}$	$0-50^{2,4,5}$
Aragonite saturation (Ω_{arag})	$3.7 - 4.4^3$	$1.4 - 2.4^2$
pH	$8.2 - 8.3^3$	$7.92 - 8.19^2$
Salinity	$40.5 - 41.0^3$	$34.6 - 35.7^2$

Supplementary References

- 1 Fricke, H. W. & Schuhmacher, H. The depth limits of Red Sea stony corals: An ecophysiological problem (A deep diving survey by submersible). *Mar. Ecol.* **4**, 163-194, doi:10.1111/j.1439-0485.1983.tb00294.x (1983).
- 2 Findlay, H. S. *et al.* Fine-scale nutrient and carbonate system dynamics around cold-water coral reefs in the northeast Atlantic. *Scientific Reports* **4**, doi:10.1038/srep03671 (2014).
- 3 Silverman, J., Lazar, B. & Erez, J. Community metabolism of a coral reef exposed to naturally varying dissolved inorganic nutrient loads. *Biogeochemistry* **84**, 67-82, doi:10.1007/s10533-007-9075-5 (2007).
- 4 Wagner, H., Purser, A., Thomsen, L., Jesus, C. C. & Lundalv, T. Particulate organic matter fluxes and hydrodynamics at the Tisler cold-water coral reef. *J. Mar. Syst.* **85**, 19-29, doi:10.1016/j.jmarsys.2010.11.003 (2011).
- 5 Mienis, F. *et al.* Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE rockall trough margin, NE Atlantic ocean. *Deep-Sea*

Research Part I-Oceanographic Research Papers **54**, 1655-1674, doi:10.1016/j.dsr.2007.05.013 (2007).

- 6 Rix, L. *et al.* Seasonality in dinitrogen fixation and primary productivity by coral reef framework substrates from the northern Red Sea. *Mar. Ecol. Prog. Ser.* **533**, 79-92, doi:10.3354/meps11383 (2015).
- 7 Naumann, M. S. *et al.* Budget of coral-derived organic carbon in a fringing coral reef of the Gulf of Aqaba, Red Sea. *J. Mar. Syst.* **105**, 20-29, doi:10.1016/j.jmarsys.2012.05.007 (2012).
- 8 van Duyl, F. C., Hegeman, J., Hoogstraten, A. & Maier, C. Dissolved carbon fixation by sponge-microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. *Mar. Ecol. Prog. Ser.* **358**, 137-150, doi:10.3354/meps07370 (2008).
- 9 Kiriakoulakis, K., Freiwald, A., Fisher, E. & Wolff, G. A. Organic matter quality and supply to deep-water coral/mound systems of the NW European Continental Margin. *Int J Earth Sci* **96**, 159-170, doi:10.1007/s00531-006-0078-6 (2007).
- 10 Kiriakoulakis, K., Bett, B. J., White, M. & Wolff, G. A. Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic. *Deep-Sea Research Part I-Oceanographic Research Papers* **51**, 1937-1954, doi:10.1016/j.dsr.2004.07.010 (2004).