SUPPORTING INFORMATION

Potential Dual Role of Eugenol in Inhibiting Advanced Glycation End Products in Diabetes: Proteomic and Mechanistic Insights

Priyanka Singh^{1, 2}, Ramesha H. Jayaramaiah¹, Sachin B. Agawane¹, Garikapati Vannuruswamy¹, Arvind M. Korwar¹, Atul Anand^{1,2}, Vitthal S. Dhaygude³, Mahemud L. Shaikh⁴, Rakesh S. Joshi⁵, Ramanamurthy Boppana⁴, Mahesh J. Kulkarni¹, Hirekodathakallu V. Thulasiram^{2, 6}, Ashok P. Giri^{1,*}

Table of contents:

Page No.

Supplementary Figure S1	
Supplementary Figure S2	
Supplementary Figure S3	
Supplementary Table S1	S6
Supplementary Table S2	
Supplementary Table S3	
Supplementary Table S4	S8

Supplementary Figure S1: Glycation modifications depicting surface exposed lysine residues (A) glycated BSA with aminoguanidine hydrochloride (B) glycated BSA with eugenol methyl ether

Supplementary figure S2: MS/MS spectra annotation of AGE modified peptides of MSA at (A) K588 (B) R168 (C) K549 (D) R452; K, Lysine; R, Arginine.

Supplementary Figure S3: MS/MS spectra annotation of AGE modified peptides of BSA at (A) K36 (B) K88 (C) K160 (D) K184 (E) K263 (F) K438 (G) K548

Compound name	O. kilimandscharicum	O. tenuiflorum	O. gratissimum	
Monoterpenes		*		
Pinene	0.92 ± 0.2	ND	ND	
β- Ocimene	ND	ND	4.94 ± 0.3	
Borneal	0.74 ± 0.003	ND	ND	
Borneol	ND	1.2 ± 0.06	ND	
Camphene	3.59 ± 0.01	ND	ND	
Camphor	47.33 ± 0.3	ND	ND	
Eucalyptol	19.85 ± 0.16	ND	ND	
Limonene	4.97 ± 0.01	ND	ND	
Myrtenol	0.99 ± 0.15	ND	ND	
Terpineal	0.28 ± 0.002	ND	ND	
Terpineol	0.25 ± 0.03	ND	ND	
Terpinolene	0.41 ± 0.01	ND	ND	
Thujanol	2.78 ± 0.01	ND	0.5	
Cis-thujene	ND	ND	0.24	
Sesquiterpenes				
α- Caryophyllene	0.45 ± 0.02	ND	ND	
α- Copaene	0.56 ± 0.01	3.33 ± 0.12	1.54	
α- Humulene	ND	0.88 ± 0.04	ND	
β- Bourbonene	ND	1 ± 0.05	0.39	
β- Caryophyllene	3.68 ± 0.02	14.5 ± 0.09	2.87 ± 0.03	
β- Cubebene	0.39 ± 0.004	2.33 ± 0.01	0.66 ± 0.05	
β- Elemene	0.25 ± 0.002	0.89 ± 0.06	0.36 ± 0.05	
δ- Cadinene	0.18 ± 0.01	3.11 ± 0.15	0.36 ± 0.001	
Elemol	ND	1.72 ± 0.08	ND	
Farnesene	0.69 ± 0.23	ND	ND	
Germacrene D	5.19 ± 0.05	5.83 ± 0.35	9.52 ± 0.15	
Germacrene-D-al	0.09 ± 0.01	ND	0.21	
Murrolene	ND	ND	$0.10\ \pm 0.01$	
Others				
Eugenol	ND	ND	78.25 ± 0.4	
Eugenol Methyl Ether	ND	60.41 ± 0.75	ND	
Dodecane	0.19 ± 0.002	0.37 ± 0.02	ND	
Dodecene	0.18 ± 0.002	0.43 ± 0.01	ND	
Heptene	0.33 ± 0.02	ND	ND	
Octane derivative	0.10 ± 0.03	0.46 ± 0.12	ND	
Tetradecane	ND	0.23 ± 0.01	ND	

Supplementary Table S1: GC-MS-based chemical profiling of leaf tissue of *Ocimum kilimandscharicum*, *Ocimum tenuiflorum* and *Ocimum gratissimum*

^ND (not detected)

Eugenol 99.9 (200 MHz, CDCl ₃); δ(ppm): (50 MHz, CDCl ₃); δ(ppm): (164 g/mol) 3.30–3.33(d, 2H, H-7), 3.87 δ(ppm): 39.86 (C-7), (s, 3H, H-10), 5.03 (br s, 1H, 52.82 (C-10), 111.05 H-9), 5.08 -5.12 (m, 1H, H- 3), 114.20 (C-6), 115 9), 5.5 (br s, 1H, 1-OH), (C-9), 121.14 (C-5), 5.85-6.05 (m, 1H, H-8), 6.69 131.89 (C-4), 137.79 (m, 2H, H-3, 5), 6.83-6.87 8), 143.86 (C-1), 146 (m, 1H, H-6). (C-2) Eugenol Methyl Ether 98.2 (200 MHz, CDCl ₃); δ(ppm): (50 MHz, CDCl ₃); 3.85 (s, 3H, H-10), 3.86 (s) δ(ppm): 39.77 (C-7) (C-7)	(C- 49 (C- 39
Eugenol99.9 $(200 \text{ MHz, CDCl}_3); \delta(\text{ppm}):$ $(50 \text{ MHz, CDCl}_3);$ (164 g/mol) $3.30-3.33(\text{d}, 2\text{H}, \text{H-7}), 3.87$ $\delta(\text{ppm}): 39.86 (\text{C-7}),$ $(s, 3\text{H}, \text{H-10}), 5.03 (\text{br s}, 1\text{H}, 10), 5.05 (\text{br s}, 11, 10), 100 (\text{C-9}), 121.14 (\text{C-5}), 5.85 (\text{br s}, 1\text{H}, 10), 5.05 (\text{br s}, 100 (\text{c}, 10), 111.05 (\text{c}, 11, 10), 100 (\text$	(C- 49 (C- 39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(C- 49 (C- 39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(C- 49 (C- 39
H-9), $5.08 - 5.12$ (m, 1H, H- 9), 5.5 (br s, 1H, 1-OH), $5.85 - 6.05$ (m, 1H, H-8), 6.69 (m, 2H, H-3, 5), $6.83 - 6.87$ (m, 2H, H-3, 5), $6.83 - 6.87$ (m, 1H, H-6).3), 114.20 (C-6), 115 (C-9), 121.14 (C-5), 131.89 (C-4), 137.79 (m, 2H, H-3, 5), $6.83 - 6.87$ (m, 1H, H-6).Eugenol Methyl Ether98.2(200 MHz, CDCl_3); δ (ppm): 3.85 (s, $3H$, H-10), 3.86 (s)(50 MHz, CDCl_3); δ (ppm): 39.77 (C-7)	49 (C- 39
9), 5.5 (br s, 1H, 1-OH), $5.85-6.05$ (m, 1H, H-8), 6.69 (m, 2H, H-3, 5), 6.83-6.87 (m, 1H, H-6).(C-9), 121.14 (C-5), 131.89 (C-4), 137.79 $8), 143.86$ (C-1), 146 (C-2)Eugenol Methyl Ether98.2(200 MHz, CDCl_3); δ (ppm): 3.85 (s, 3H, H-10), 3.86 (s)(50 MHz, CDCl_3); δ (ppm): 39.77 (C-7)	(C- .39
5.85-6.05 (m, 1H, H-8), 6.69 (m, 2H, H-3, 5), 6.83-6.87 (m, 1H, H-6).131.89 (C-4), 137.79 8), 143.86 (C-1), 146 	(C- .39
(m, 2H, H-3, 5), 6.83-6.87 8), 143.86 (C-1), 146 (m, 1H, H-6). (C-2) Eugenol Methyl Ether 98.2 (200 MHz, CDCl ₃); δ(ppm): (50 MHz, CDCl ₃); 3 85 (s. 3H, H-10) 3 86 (s. δ(ppm): 39 77 (C-7)	.39
(m, 1H, H-6). (C-2) Eugenol Methyl Ether 98.2 (200 MHz, CDCl ₃); δ(ppm): (50 MHz, CDCl ₃); 3 85 (s, 3H, H-10) 3 86 (s) δ(ppm): 39 77 (C-7)	
Eugenol Methyl Ether 98.2 (200 MHz, CDCl ₃); δ (ppm): (50 MHz, CDCl ₃); 3 85 (s. 3H, H-10) 3 86 (s. δ (ppm): 39.77 (C-7)	
Eugenol Methyl Ether 98.2 (200 MHz, $CDCI_3$); $\delta(ppm)$: (50 MHz, $CDCI_3$); 3 85 (s. 3H, H-10), 3 86 (s. $\delta(ppm)$: 39.77 (C-7)	
3.85 (s, 3H, H-10), 3.86 (s, -1.86 (nnm), 39.77 (C-7))	
(178 g/mol)	
3H, H-11), 3.31-3.34 (d, 2H, 55.75 (C-10), 55.89 (C-
H-7), 5.03 (br s, 1H, H-9), 11), 111.18 (C-3), 11	1.79
5.08 (m, 1H, H-9), 5.85-6.05 (C-6), 115.57 (C-9),	
(m, 1H, H-8), 6.70 (br s, 1H, 120.35 (C-5), 132.59	(C-
H-3), 6.73-6.74 (m, 1H, H-5), 4), 137.66 (C-8), 147	.32
6.78-6.82 (m, 1H, H-6). (C-1), 148.84 (C-2).	
Camphor 98 (200 MHz CDCl ₂): δ (npm): (50 MHz CDCl ₂):	
$\begin{array}{c} (200 \text{ MHz}, \text{ CDCI}_3), \text{ (ppH)}. \\ (30 \text{ MHz}, \text{ CDCI}_3), \text{ (ppH)}. \\ (30 \text{ MHz}, \text{ CDCI}_3), \text{ (ppH)}. \\ (30 \text{ MHz}, \text{ CDCI}_3), \text{ (ppH)}. \end{array}$	
$(152 \text{ g/mol}) \tag{C 3H H 8) 0.91 (s 3H H 19); 0.04} 0 (ppin); 9.22 (c 10); 0 (ppin); 9.22$	0)
(3, 511, 11-6), (0.51, (3, 511, 11-1), 12, (C-6), 15.70 (C	- <i>)</i>), 5)
$\begin{array}{c} 7, 0.70 (8, 511, 11-10), 1.25 \\ 1.47 (m, 2H, H, 4), 1.65, 1.80 \\ 1.42 (02, 10, 2), 42 (22, 14, 29) (6, 2) \\ 1.42 (22, 14, 2), 1.25 \\ 1.42 ($	- <i>3)</i> ,
$\begin{array}{c} 1.47 (111, 2\Pi, \Pi-4), 1.03-1.00 \\ (10, 211, 11, 5), 1.90, 2.00 (11, 11, 12, 12, 12, 12, 12, 12, 12, 12, $	- <i>2</i>),
(m, 2H, H-3), 1.89-2.09 (m, 46.7/ (C-7), 57.69 (C-7))	-0),
2H, H-2). 200.98 (C-1).	

Suplementary Table S2: NMR spectroscopic data of purified compounds

Supplementary Table S3: Average precursor ion intensity and other information of AGE modified and corresponding unmodified peptides in *in vivo* plasma samples.

Sl	Mod Site	Pepti de Start- end	Peptide sequence	Peptide m/z Da	Peptide MH+ Da	PCS	Avg. XCorr	STZ- control (APII)	Vehicle control (APII)	Eug (APII)
1	588	585- 602	AAD K *DTC*FSTE GPNLVTR	715.3	2143.97	+3	4.44	2.29e4	1.60e4	2.24e4
2	UM	585- 602	AADKDTCFSTEGP NLVTR	661.3	1981.92	+3	6.39	2.44e4	5.81e5	4.41e5
3	168	153- 168	ENPTTFMGHYLHE VA R *	688.6	2063.95	+3	2.10	2.06e4	2.20e4	7.88e3
4	UM	153- 168	ENPTTFMGHYLHE VAR	634.6	1901.90	+3	5.16	2.16e4	3.10e5	9.20e4
5	549	549- 558	K*QTALAELVK	421.5	1262.71	+3	3.71	1.20e5	8.41e4	5.78e4
6	UM	549- 558	KQTALAELVK	367.5	1100.66	+3	4.72	3.51e5	7.05e5	7.78e5
7	452	439- 452	APQVSTPTLVEAA R *	801.4	1601.83	+2	1.03	1.49e4	8.56e4	8.92e4
8	UM	439- 452	APQVSTPTLVEAA R	720.4	1439.79	+2	4.46	1.5e4	9.64e4	1.50e5

^ UM, Unmodified; * Indicates modified amino acid side chain; PCS, Peptide Charge State; APII, Average Precursor Ion Intensity.

Supplementary Table S4: Extent of AGE modification on peptides *in vitro*. Values in the table represent the average cumulative intensity ratio (CIR) of AGE modified peptides to their unmodified form

Sample/Site	K36	K88	K160	K184	K263	K438	K490	K548
BSA	0	0	0	0	0	0	0	0
	(± 0.0)	(± 0.0)	(± 0.0)	(± 0.0)	(± 0.0)	(± 0.0)	(± 0.0)	(± 0.0)
glycated	11.91 (±	14.52	47.09	16.36	12.70	184.28	09.44	199.82
BSA	02.56)	(±02.32)	(±10.78)	(± 04.40)	(±01.61)	(± 46.10)	(±02.47)	(±47.55)
glycated	04.91 (±	06.93	16.46	06.07	05.46	68.79	03.47	30.61
BSA+AMG	00.83)	(±00.52)	(±03.63)	(±01.08)	(±00.56)	(± 14.04)	(±00.43)	(±03.44)
glycated	02.03 (±	03.43	05.90	04.08	06.19	24.66	05.47	36.52
BSA+EUG	00.11)	(±00.69)	(±00.96)	(±00.23)	(±01.32)	(± 06.62)	(±01.08)	(±03.20)

[^] Bovine Serum Albumin, BSA; Aminoguanidine hydrochloride, AMG; Eugenol, EUG; lysine, K; Arginine, R.