Supplementary material:

Characterization of antimicrobial peptide, Penisin, a Class la Noval Lantibiotic from a

Paenibacillus sp. Strain A3

Piyush Baindara¹, Vasvi Chaudhray¹, Garima Mittal¹, Luciano M. Liao², Carolina O. Matos², Neeraj Khathri¹, Octavio L. Franco^{3,4}, Prabhu B. Patil¹ and Suresh Korpole^{1‡}

1. CSIR-Institute of Microbial Technology, Chandigarh, India. 2. Institute of Chemistry, Federal University of Goiás, Goiânia, GO, Brazil 3. Centro de Analises Proteomicas e Bioquimicas, Pós-graduação em Ciências Genomicas e Biotecnologia, Brasília, Brazil 4. S-Inova, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil

Supplementary Table 1: Identity of putative homologous genes involved in biosynthesis of penisin (9.8 Kb region).

ORF	Size of	Putative	Sequence homolog (Genbank	Identities
	putative	function	accession)	(%)
	protein (aa)			
penR	269	Transcription	transcriptional regulator [Paenibacillus	92%
		al regulator	elgii], WP_010497942.1	
penD	561	Dehydratase	dihydroxy-acid dehydratase	99%
			[Paenibacillus ehimensis],	
			WP_025851100.1	
penC	454	Cyclase	lanthionine synthetase C-like protein	92%
			[Paenibacillus elgii], WP_010497958.1	
penT	625	ABC	ABC transporter ATP-binding protein	96%
		transporter	[Paenibacillus sp. MSt1],	
		(ATP-binding	WP_036689879.1	
		protein)		
penB	1040	Biosynthesis	ElgB [Paenibacillus elgii B69],	94%
			AFI99858.1	
penA2	63	penisin	elgicins [Paenibacillus elgii B69],	74%
			AFI99859.1	
penA1	64	penisin	elgicins [Paenibacillus elgii B69],	94%
			AFI99859.1	

Supplementary Figure S1: Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences of *Paenibacillus* species showing the phylogenetic relationship between strain A3 and other members. Bootstrap values greater than 50% are given at the nodes. Bar indicates 0.01 substitutions per site.

Supplementary Figure S2: Two dimensional TLC of total polar lipid analysis of strain A3. The total polar lipids were detected by spraying with 5% phosphomolybdate and identified based on Rf values obtained for species of the genus *Paenibacillus*.

Supplementary Figure S3: Pegylation assay of purified penisin with MPEG (maleimide PEG, 5 kDa) in presence of TCEP (*tris*(2-carboxyethyl)phosphine) to access the presence of free cysteine. Same assay has been done in the presence of denaturing agent, Urea. MPEG; maleimide PEG, 5 kDa, T; *tris*(2-carboxyethyl)phosphine, U; urea.

Supplementary Figure S4: Temperature, pH and protease test of penisin. (A) Well diffusion assay of penisin after treatment at different temperatures for 30 min. Penisin at 37°C used as a control. (B) Well diffusion of penisin at different pH range (penisin at 7.0 served as control). (C) Well diffusion assay of pensin after 6 h treatment with trypsin. Untreated penisin used as a control. (D) Well diffusion assay of penisin after 6 h treatment with proteinase K. Untreated penisin served as a control.