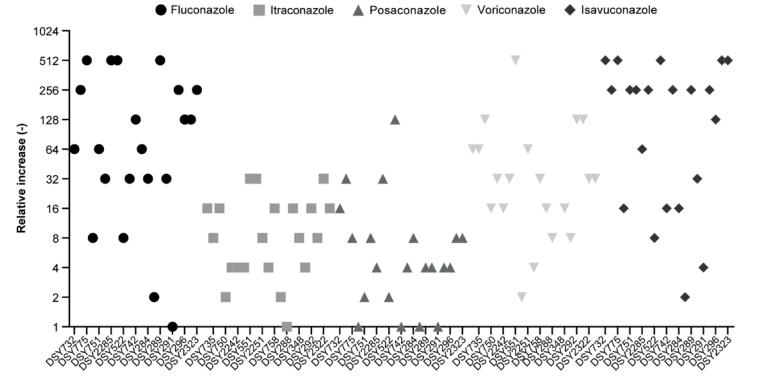

Strain	DST	AAT1a	ACC1	ADP1	MPIb	SYA1	VPS13	ZWF1b	Clade	S
DSY281	408	2	5	5	2	2	20	5	1	
DSY284	408	2	5	5	2	2	20	5	1	
DSY347	309	13	10	45	6	7	32	15	3	
DSY288	309	13	10	45	6	7	32	15	3	
DSY289	309	13	10	45	6	7	32	15	3	
DSY348	309	13	10	45	6	7	32	15	3	
DSY290	1158	8	14	16	9	129	20	157		S
DSY291	1158	8	14	16	9	129	20	157		S
DSY292	1159	8	14	16	9	129	20	81		S
DSY294	461	60	10	21	1	7	11	15	11	
DSY296	461	60	10	21	1	7	11	15	11	
DSY2321	1259	2	2	2	12	2	5	5	1	
DSY2322	1259	2	2	2	12	2	5	5	1	
DSY2323	1259	2	2	2	12	2	5	5	1	
DSY731	1260	13	75	11	6	7	32	105	3	
DSY732	1261	13	19	86	6	7	32	40	3	
DSY735	1261	13	19	86	6	7	32	40	3	
DSY544	1161	2	2	5	9	2	68	5	1	
DSY775	1161	2	2	5	9	2	68	5	1	

SUPPLEMENTARY TABLE A1 Multilocus sequence typing data of clinical isolates

DSY2309	1203	62	12	21	4	6	30	4	11
DSY750	1203	62	12	21	4	6	30	4	11
DSY751	1203	62	12	21	4	6	30	4	11
DSY2243	1195	21	3	5	18	72	102	84	6
DSY2242	1195	21	3	5	18	72	102	84	6
DSY2284	1201	62	72	21	1	130	183	4	11
DSY2285	1201	62	72	21	1	130	183	4	11
DSY550	309	13	10	45	6	7	32	15	3
DSY551	309	13	10	45	6	7	32	15	3
DSY520	1160	8	3	5	55	2	5	5	1
DSY522	1160	8	3	5	55	2	5	5	1
DSY2250	1199	2	5	5	2	2	27	16	1
DSY2251	1200	2	2	5	2	2	27	16	1
DSY741	804	2	3	2	2	2	20	5	1
DSY742	66	2	3	5	2	2	6	5	1

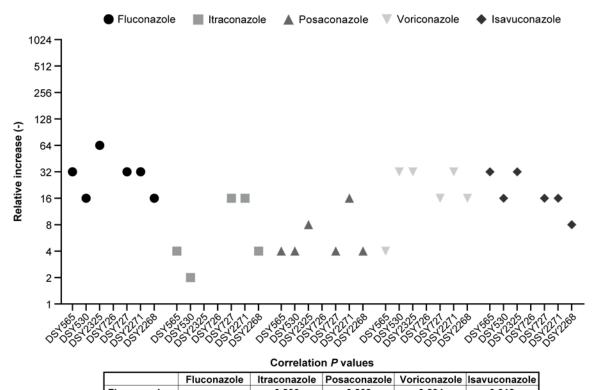
Data were generated according to published recommendations (1). Clade assignments were performed according to methods described by Odds et al (2).


DST, diploid sequence type; S, singleton.

SUPPLEMENTARY FIG A1 Correlations between relative MIC increases caused by *ERG11* mutations.

	Fluconazole	Itraconazole	Posaconazole	Voriconazole	Isavuconazole
Fluconazole		0.0003		0.032	0.010
Itraconazole	0.0003			0.022	0.003
Posaconazole					
Voriconazole	0.0325	0.0219			0.003
Isavuconazole	0.0104	0.0035		0.003	

Values were obtained from Table 3. The data were processed by GraphPad Prism 6 software. Correlations were evaluated by P values detailed at the bottom of the Figure. The correlation matrix was obtained by 2-tailed parametric Pearson tests. P value ≤ 0.05 indicates significant correlation.



SUPPLEMENTARY FIG A2 Correlations between relative MIC increases caused by azole resistance in C. albicans isolates.

Correlation P values

	Fluconazole	Itraconazole	Posaconazole	Voriconazole	Isavuconazole
Fluconazole		0.160	0.885	0.002	0.206
Itraconazole	0.160		0.904	0.171	0.056
Posaconazole	0.885	0.904		0.907	0.049
Voriconazole	0.002	0.171	0.907		0.559
lsavuconazole	0.206	0.056	0.049	0.559	

Values were obtained from Table 5. The data were processed by Graph Prism 6 software. Correlations were evaluated by P values detailed at the bottom of the Figure. The correlation matrix was obtained by 2-tailed parametric Pearson tests. P value ≤ 0.05 indicates significant correlation.

SUPPLEMENTARY FIG A3 Correlations between relative MIC increases caused by azole resistance in C. glabrata isolates

Fluconazole		0.800	0.262	0.234	0.018
Itraconazole	0.800		0.192	0.659	0.935
Posaconazole	0.262	0.192		0.095	0.515
Voriconazole	0.234	0.659	0.095		0.512
Isavuconazole	0.018	0.935	0.515	0.512	

Values were obtained from Table 6. The data were processed by Graph Prism 6 software. Correlations were evaluated by P values detailed at the bottom of the Figure. The correlation matrix was obtained by 2-tailed parametric Pearson tests. P value ≤ 0.05 indicates significant correlation.

SUPPLEMENTARY REFERENCES

- Bougnoux M-E, Tavanti A, Bouchier C, Gow NAR, Magnier A, Davidson AD, Maiden MCJ, d'Enfert C, Odds FC. 2003. Collaborative consensus for optimized multilocus sequence typing of Candida albicans. J Clin Microbiol 41:5265-5266.
- Odds FC, Bougnoux M-E, Shaw DJ, Bain JM, Davidson AD, Diogo D, Jacobsen MD, Lecomte M, Li S-Y, Tavanti A, Maiden MCJ, Gow NAR, d'Enfert C. 2007. Molecular phylogenetics of Candida albicans. Eukaryot Cell 6:1041-1052.