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1st Editorial Decision 26 August 2015 

 
Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from two of the three referees who agreed to evaluate your manuscript. Rather than delaying the 
process further, I prefer to make a recommendation now with the two available reports. As you will 
see from the reports below, the referees find the topic of your study of potential interest. They raise, 
however, several concerns, which should be convincingly addressed in a revision of the manuscript. 
The recommendations provided by the reviewers are very clear and refer to the need to tone down 
some of the claims and to clarify several aspects of the study. 
 
If you feel you can satisfactorily deal with these points and those listed by the referees, you may 
wish to submit a revised version of your manuscript. Please attach a covering letter giving details of 
the way in which you have handled each of the points raised by the referees. A revised manuscript 
will be once again subject to review and you probably understand that we can give you no guarantee 
at this stage that the eventual outcome will be favorable. 
 
 
------------------------------------------------------- 
 
 
Reviewer #1: 
 
The manuscript "A chemical-genetic interaction map of small molecules using high-throughput 
imaging in cancer cells" by Breinig et al describes a new dataset with high-content phenotyping of a 
compound library across a panel of cell lines which includes some isogenic pairs with specific 
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known differences. The resulting phenotypic fingerprints appear useful in generating new 
hypotheses. The dataset and its analysis will undoubtedly be of high interest to readers. There are 
some issues in the rigor of the interpretation that are fixable. The use of Bliss independence for drug 
synergy measurements is a problem. There are many other addressable minor issues. 
 
Major concerns 
-The paper is unusually rich in the 20/20 hindsight that so frequently accompanies the analysis of a 
new large-scale dataset. This is expected to some degree, and actually quite valuable in supporting 
the idea that a dataset will be useful for hypothesis generation. Here the reader's credulity is 
stretched when it is suggested that remarkably specific conclusions about drug mechanism can be 
derived solely from this data, when it fact what is being noted is that the data is simply consistent 
with already-known mechanisms. Obviously the dataset will be useful, but the implications about 
what could have been learned from this dataset alone need to be toned down enormously. A (non-
exhaustive) list of examples follows: 
+"Of note, our resource further informed about different bioactivities for structurally highly related 
compounds (arrowheads, off-diagonal).5-azacytidine and ara-c did not directly cluster together 
(arrowhead 1). Mechanistically, this finding is explained by the fact that, while both compounds are 
cytosine analogues, only 5-azacytidine inhibits DNA methyltransferases (Christman, 2002). 
[this is a post-hoc rationalization, not something any user could have been "informed about" from 
the dataset alone] 
+"the anti-helmitic compound niclosamide, which uncouples oxidative phosphorylation 
(MacDonald et al., 2006; Weinbach and Garbus, 1969), clustered together with rottlerin, a 
compound thought to target PKC. Our data indicate that rottlerin's mode-of-action is in fact linked to 
uncoupling oxidative phosphorylation, which is in accordance with recent findings..." [post-hoc 
rationalization] 
+"Of note, our map revealed connected biological processes perturbed by compounds that target 
different effector molecules (C11-16). For instance, we observed a cluster including inhibitors of 
folate metabolism and the DNA methyltransferase inhibitor 5-azacytidine (C16). Additionally, we 
found the iron chelator phenanthroline within this cluster. Associations between iron and folate 
metabolism have been reported (Oppenheim et al., 2000) and folate metabolism is linked to DNA 
methylation, which is an important regulator of gene transcription (Crider et al., 2012). [this seems a 
tenuous thread to rationalize co-clustering. Many distinct biological processes are 'linked' to a 
similar extent but these linkages do not result in similar phenotypes. This is fine as a clearly-labeled 
post-hoc rationalization, but no suggestion should be made that this dataset in and of itself could 
"reveal" these connections] 
In these and other examples, it would also lend more support to discuss what phenotypes/genes/cell 
lines are shared where there is co-clustering or where there are differences in cases of lack of co-
clustering. 
 
 
-Drug-drug synergy is measured by Bliss independence, which is a terrible synergy measure by 
which a drug can be found to synergize with itself. Imagine two half-concentration doses of the 
same drug, where each half-concentration dose is just to the low-response end from the inflection 
point of a sigmoidal dose-response curve. Even if though these are (by definition) additive drugs, 
doubling the dose will more than double the response given the sigmoidal shape. Most drugs have 
non-linear dose-response curves so the possibility of this scenario is the rule rather than the 
exception. 
 
Minor concerns 
-Fig 1 D shows human-readable labels describing mathematically-derived combination phenotypes, 
but where did these labels come from? How does the reader know whether a cell number measure 
that is farther from the origin is an increase vs a decrease in cell number. Reference is made to 
phenoprints that show apoptotic behaviour. How should a non-cell-biologist reader (or cell biologist, 
for that matter), glean this from the phenoprint? 
 
-Might contrast with the "Rosetta compendium" or "Connectivity Map" expression studies as prior 
examples of useful high-content phenotyping/fingerprinting used for understanding drug 
mechanisms 
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-Should make clear which cell line "knockout" mutations are heterozygous and which are 
homozygous 
 
-PD98.059 and DMSO control are said to be "not completely similar". In what respect is there a 
significant (and therefore reportable) difference? 
 
-MEK1 KO having more interactions than MEK2 KO cells need not imply distinct functions. This 
might also be seen for two paralogs with identical function where one of them is more highly 
expressed 
 
-"we observed interactions between the PI3K inhibitor wortmannin and KRAS wt cells" What does 
it mean for a drug to interact with just one allele of a gene? I thought that interaction was always 
between a drug and an allele, with wt being the baseline used for making that judgment. There are 
other examples of this kind of statement. 
 
-No details are given on the "unsupervised clustering" method. It is apparently hierarchical, but what 
linkage method, what distance measure? 
 
-Some of the knockout mutations presumably have a profound effect on cell line growth rate. It 
would be of great interest to do analysis of variation and report how much of the variation in 
phenotypes between cell lines can be explained by cell growth rate, then how much of the residual 
variation by the known genotypic differences between pairs of cell lines, and how much of that 
residual variation is attributable to the unknown genotypic differences between cell lines. 
 
-The authors acknowledge that growth rate can cause major differences not just in phenotype but in 
gene-drug interactions. It would be good to know how many gene-drug interactions remain when 
gene-drug interactions are calculated not with phenotypes but instead by the residual phenotype after 
doing growth-based prediction of phenotypes. 
 
-The fact that some predictions of synergy were confirmed is nice, but a true demonstration that the 
dataset predicts synergy requires more tests of non-predicted drug-drug pairs (synergy is quite 
common, especially by Bliss independence!). A related earlier study in yeast (Cokol et al MSB 
2011) found that while genetic interactions among drug target genes predicted synergy, these 
predictions didn't perform any better than chance once the baseline drug-interaction rate of each 
drug was taken into account. I'm not suggesting that dozens to hundreds of new drug interactions 
need to be tested, just that this caveat needs to be given and the claims toned down. 
 
-Empty phrases like "of note" should be removed 
 
-No parameter settings are provided for threshold masking, segmentation masking, or variance-
stabilizing transformations 
 
-In the selection of non-redundant features, how was the initial starting feature chosen? 
 
-"In this iterative approach row and column median values are subtracted alternately until the 
proportional change of the absolute residuals falls below a defined threshold." [Not clear how this 
proportional change is defined] 
 
-What were the parameters for the regularized t-test 
 
-"We provide a re-usable computational analysis workflow" [This is not described sufficiently well 
to make this a selling point of the paper. Maybe take this comment out and save it for an 
applications note?] 
 
-The results of Benjamini-Hochberg analysis should be referred to as FDR estimates or q-values 
rather than adjusted p-values. The authors are not alone in this practice, but p-values should be 
reserved for the (less useful) practice of controlling Type I error rate. 
 
-What is "overplotting"? 
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-"cyctoscape" 
 
-Pg 20. "structural distance" between compounds is not defined 
 
-Not clear how normalization of proteasome assays by cell viability was performed. 
 
 
 
Reviewer #2: 
 
Breinig et al. report here the development of a chemical-genetic interaction map based on imaging 
features extracted through high-content screening in a set of isogentic HCT116 cells. Such a 
phenotypic profiling resource can be very valuable to examine compound mechanism of action, 
similarity to other compounds, and filtering out compounds with potential deleterious side effects. 
This manuscript is well-written and presented, but I feel that there are a number of points of 
clarification that should be made before the manuscript is suitable for publication. 
 
1. There have been other very similar efforts in this precise area, using more cellular stains (e.g. 
Gustafsdottir et al., PLOS ONE 2013). It is imperative that the authors discuss the differences and/or 
advantages of this method. 
 
2. I could not find a list of the total 395 features extracted from each well, which would be helpful. 
 
3. 80% of the features had correlation >0.7 between duplicates, which did not seem exceptionally 
high. Was there something about the other 85 features that contributed to the lack of correlation? 
 
4. Cells were treated for 2 days with 5uM of each compound, which seems long and high for many 
of these common bioactive compounds. I would imagine many toxic effects. Perhaps a shorter 
treatment would increase correlation? It might be worth discussing in the manuscript. For example, 
it is difficult to interpret the results of wortmannin used at 5uM, as it is hitting quite a number of 
targets at that concentration. 
 
5. How are the phenoprints compared quantitatively? The impression from the paper is that they are 
visually similar by eye, but that cannot be sustainable across so many compound treatments. 
 
6. It is mentioned in the methods that serial dilutions of each compound were made, but there is not 
discussion of the effects of dose on phenotypes. Were the compounds tested in dose? If not, that 
point needs to be clarified. 
 
7. Images need to be larger, or include some insets of higher magnification. It is impossible to see 
what the authors are trying to convey. 
 
8. Similarly, in Figure S2, it is not clear what the reader is supposed to see in this image. A control 
should be included for greater clarity. 
 
9. The lower number of chemical-genetic interactions based on cell number is confusing, as the 
other publications looking at chemical-genetic interactions using cell viability see quite a few 
interactions. Some discussion of the lower number here would be helpful. 
 
10. In the proteasome inhibition assay, what is the effect of DMSO alone? Is it pegged at zero? This 
would help interpret the graph shown in Figure 6. 
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1st Revision - Author's response                                                               5th October 2015 
 
We thank the reviewers for their effort spent on our paper and for their helpful comments. In 
the following we provide a point-by-point reply. We have revised the text and the figures 
accordingly. Changes in the text are highlighted in yellow. 
 
Reviewer #1:  
 
The manuscript "A chemical-genetic interaction map of small molecules using high-
throughput imaging in cancer cells" by Breinig et al. describes a new dataset with high-
content phenotyping of a compound library across a panel of cell lines which includes some 
isogenic pairs with specific known differences. The resulting phenotypic fingerprints appear 
useful in generating new hypotheses. The dataset and its analysis will undoubtedly be of 
high interest to readers. There are some issues in the rigor of the interpretation that are 
fixable. The use of Bliss independence for drug synergy measurements is a problem. There 
are many other addressable minor issues.  
 
We thank the reviewer for this positive feedback. 
 
Major concerns  
-The paper is unusually rich in the 20/20 hindsight that so frequently accompanies the 
analysis of a new large-scale dataset. This is expected to some degree, and actually quite 
valuable in supporting the idea that a dataset will be useful for hypothesis generation. Here 
the reader's credulity is stretched when it is suggested that remarkably specific conclusions 
about drug mechanism can be derived solely from this data, when it fact what is being 
noted is that the data is simply consistent with already-known mechanisms.  
Obviously the dataset will be useful, but the implications about what could have been 
learned from this dataset alone need to be toned down enormously.  
 
We fully agree regarding the logical difference between post-hoc rationalization and 
discovery of something new and unexpected. We thank the reviewer for pointing out the 
imprecise language of the previous manuscript. We have carefully gone over the whole 
manuscript and revised the language accordingly. 
 
A (non-exhaustive) list of examples follows:  
+"Of note, our resource further informed about different bioactivities for structurally highly 
related compounds (arrowheads, off-diagonal).5-azacytidine and ara-c did not directly 
cluster together (arrowhead 1). Mechanistically, this finding is explained by the fact that, 
while both compounds are cytosine analogues, only 5-azacytidine inhibits DNA 
methyltransferases (Christman, 2002).  
[this is a post-hoc rationalization, not something any user could have been "informed about" 
from the dataset alone]  
 
The wording is now: “There were also instances of structurally highly related compounds 
with different bioactivities (arrows, off-diagonal). For example, the two cytosine analogues 5-
azacytidine and ara-c did not directly cluster together (arrow 1), consistent with the fact that 
only 5-azacytidine inhibits DNA methyltransferases (Christman, 2002).“ (Page 10). 
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+"the anti-helmitic compound niclosamide, which uncouples oxidative phosphorylation 
(MacDonald et al., 2006; Weinbach and Garbus, 1969), clustered together with rottlerin, a 
compound thought to target PKC. Our data indicate that rottlerin's mode-of-action is in fact 
linked to uncoupling oxidative phosphorylation, which is in accordance with recent 
findings..." [post-hoc rationalization]  
 
We have revised the language. The wording is now: “The map further allowed us to infer 
primary mode-of-action and off-target effects of compounds (C17, C18 see below). For 
example, C17 clustered the anti-helmitic compound niclosamide, which uncouples oxidative 
phosphorylation (MacDonald et al., 2006; Weinbach and Garbus, 1969), and rottlerin, a 
compound thought to target PKC. This result is in accordance with the finding that rottlerin 
uncouples oxidative phosphorylation and supports the view that the classification of rottlerin 
as a PKCδ inhibitor is incorrect (Soltoff, 2001).“ (Page 11). 
 
+"Of note, our map revealed connected biological processes perturbed by compounds that 
target different effector molecules (C11-16). For instance, we observed a cluster including 
inhibitors of folate metabolism and the DNA methyltransferase inhibitor 5-azacytidine (C16). 
Additionally, we found the iron chelator phenanthroline within this cluster. Associations 
between iron and folate metabolism have been reported (Oppenheim et al., 2000) and folate 
metabolism is linked to DNA methylation, which is an important regulator of gene 
transcription (Crider et al., 2012).  
[this seems a tenuous thread to rationalize co-clustering. Many distinct biological processes 
are 'linked' to a similar extent but these linkages do not result in similar phenotypes. This is 
fine as a clearly-labeled post-hoc rationalization, but no suggestion should be made that 
this dataset in and of itself could "reveal" these connections]  
 
We have revised the language. The wording is now:  “The map further contained several 
instances of clusters of compounds that target different effector molecules in connected 
biological processes (C11-16). For example, C16 included inhibitors of folate metabolism, 
the DNA methyltransferase inhibitor 5-azacytidine and the iron chelator phenanthroline. 
Associations between iron and folate metabolism have been reported (Oppenheim et al., 
2000), and folate metabolism is linked to DNA methylation (Crider et al., 2012).“ (Page 11). 
 
To further address the reviewer’s concern, we have additionally revised the language on 
following pages: 
 
Page 4. The wording is now: “Exploring the PGPC, we could see instances of pathway 
crosstalk...“. 
 
Page 9. The wording is now: “In support of this interpretation, a link between...“. 
 
Page 9. The wording is now: “...to derive insights how drugs perturb genetic networks...“. 
 
Page 10. The wording is now: “…clusters could in some cases be explained by...“. 
 
Page 16. The wording is now: “…we predicted associations between drugs...“. 
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In these and other examples, it would also lend more support to discuss what 
phenotypes/genes/cell lines are shared where there is co-clustering or where there are 
differences in cases of lack of co-clustering.  
 
Thank you for this suggestion. We have extended the text to include several examples that 
respond to this question and we added a new supplementary figure (Supplementary Fig 12). 

The revised text is: ”While in some instances the correlation of drug profiles was a 
result of coordinated subtle covariation across multiple cell lines and phenotypes, in other 
cases it appeared to be driven by the similarity of distinctive phenotypes of individual 
isogenic cell lines. For example, and as already introduced above, the CK2 inhibitors DMAT 
and TBBz (Fig 5A, C5) affected nuclear shape features specifically in cells with only the 
wildtype copy of PI3KCA (HCT116 PI3KCA wt +/ mt -) (Supplementary Fig 12 and Fig 3), whereas 
the compounds ARP101 and YC-1 in C15 affected distinct phenotypic features in cells with 
only the wildtype copies of CTNNB1 (HCT116 CTNNB1 wt +/ mt -) and PI3KCA (HCT116 PI3KCA wt +/ mt -

) (Supplementary Fig 12). Further, compounds in C18 had distinctive interactions with MEK1 
KO cells (HCT116 MAP2K1 -/-) (Supplementary Fig 12 and Fig. 3).” (Page 11). 

We further included: “…the compounds we observed to impair proteasome function 
(Fig 5A C18 and Fig 6A) primarily interacted with MEK1 KO cells (Fig. 3), which might 
indicate that the combination of MEK inhibitors with compounds that impair proteasome 
activity could generally be effective.” (Page 15). 

We have also added: “There were instances in which drug-gene interactions using 
only a viability phenotype, i.e. cell number, grouped together related compounds, including 
microtubule inhibitors such as vinblastine and nocodazole (Supplementary Fig S13, 
genotypes). Likewise, there were instances in which phenotypic profiling of drugs using 
solely the parental HCT116 cell line grouped together related compounds, including the 
MEK inhibitors PD98059 and U0126 (Supplementary Fig S13, multiparametric phenotypes). 
However, associations between other compounds, including the structurally highly related 
glucocorticoids betamethasone and beclomethasone (Fig 5A, C4) were only revealed by the 
combined approach (Supplementary Fig S13, genotypes and multiparametric phenotypes).” 
(Page 12). 
 
 
-Drug-drug synergy is measured by Bliss independence, which is a terrible synergy measure 
by which a drug can be found to synergize with itself. Imagine two half-concentration doses 
of the same drug, where each half-concentration dose is just to the low-response end from 
the inflection point of a sigmoidal dose-response curve. Even if though these are (by 
definition) additive drugs, doubling the dose will more than double the response given the 
sigmoidal shape. Most drugs have non-linear dose-response curves so the possibility of this 
scenario is the rule rather than the exception.  
 
We agree with the reviewer and are equally concerned about this property of the Bliss 
independence (BI) model, which is indeed also shared by the highest single agent (HSA) 
model. Detecting and quantifying drug-drug interactions is a subtle problem in general, and 
we are aware of some of the extensive literature. Here, we do not aim to solve this problem 
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in generality, but only for two exemplary cases, in which a more qualitative approach is 
possible:  

• In the case of bendamustine and AKT inhibitors (AKTi VIII and MK-2206), the 
interaction data at 10 µM concentration are shown in Fig 4B. We draw confidence on 
the significance of this interaction by comparison with the data for the MEK inhibitor, 
shown in Fig S10A,B. Moreover, analogous results were observed in two different 
cell lines, HCT116 (shown in Figs 4B and S10A,B), and DLD1 (Fig S10C-F). For 
instance, in Fig S10D, MK-2206 alone even had a slightly pro-proliferative effect on 
the cells, while the same dose together with bendamustine more than doubles the 
effect on cell growth of bendamustine alone. See also Review Figure 1. 

• In the case of disulfiram and MEK inhibition (U0126 and PD98.059), Fig 4D shows 
that both of the MEK inhibitors have no (or if any, a pro-proliferative) effect on the 
cells, while together with disulfiram the effect is about twice as high as for disulfiram 
alone. 

 
In other words, we acknowledge that drug synergy is difficult to detect and quantify when 
both drugs individually already have comparably strong effects. However, in the cases 
discussed in our manuscript, one of the two drugs has no (or negligible) effect alone, but 
strongly amplifies the effect of the other drug when combined. 
 

Review Figure 1: The combination of bendamustine with AKT inhibitors is 
effective, whereas the combination of bendamustine with MEK inhibitors is not. 
Error bars show mean ± s.e.m, where n ≥ 3 with at least three independent 
experiments that determined cell viability using the CellTiterGlo assay in HCT116 
cells. BI significance is shown, asterisk (*) indicates p < 0.05.  

 
 
We have modified the text to better clarify the effect of single drug treatments to address 
the reviewer’s concern.  
 
Page 2: “...we demonstrate that MEK inhibitors amplify the viability effect of the clinically 
used anti-alcoholism drug disulfiram.“  
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Page 9: “We therefore tested the combination of bendamustine with small molecule AKT 
inhibitors and observed that while AKT inhibition alone had a negligible effect on viability of 
the parental HCT116 cells, in combination with bendamustine the effect was significantly 
stronger than the bendamustine single agent treatment.“ 
 
Page 10: „The combination of disulfiram and MEK inhibitors resulted in significantly stronger 
viability reduction compared to disulfiram alone, while MEK inhibitors alone had no 
detectable effect...“. 
 
 
Minor concerns  
-Fig 1 D shows human-readable labels describing mathematically-derived combination 
phenotypes, but where did these labels come from?  
How does the reader know whether a cell number measure that is farther from the origin is 
an increase vs a decrease in cell number. Reference is made to phenoprints that show 
apoptotic behaviour. How should a non-cell-biologist reader (or cell biologist, for that 
matter), glean this from the phenoprint?  
 
An explanation of the 20 numbers visualized in each of the radar charts of Fig 1 is given in 
Fig S3, and their interpretation by the human readable terms is based on the nature and 
input data of the mathematical formulae implementing them. Conventionally, in radar charts 
the radial distance is proportional to the variable shown, so higher distance from the origin 
represents higher cell number. Readers might also infer this convention by inspecting the 
given example images together with the radar charts.  
 
We have revised the text to clarify this question:  “The final set of 20 phenotypic features 
was grouped into 5 categories. The category ‘DNA texture/intensity’ includes intensity- and 
texture-related features computed from the Hoechst staining image, such as Haralick texture 
features. The ‘nuclear shape’ group includes size- and shape-related features computed 
from the Hoechst channel, including eccentricity and nuclear radius. The ‘cell shape’ group 
includes size- and shape-related features and the ‘actin texture/intensity’ group includes 
intensity- and texture-related features extracted from the actin channel. The 20 phenotypic 
features were visualized by radar charts, which we termed phenoprints. Here, the radial 
distance is proportional to the variable shown. Using cell number as an example, higher 
distance from the origin corresponds to higher cell number.“ (Page 20). 
 
Our intention for the phenoprints is not to replace the images, but to serve as a compact 
visualization of the 20 features that we use to measure image similarity.  In our experience, 
we have found them useful to get a rapid overview over trends and changes in our data 
without always needing to inspect a large number of microscopy images.  

We have now adjusted the text to avoid the (mis)understanding that we ask human 
readers to associate specific forms of phenoprints with specific processes such as 
apoptosis. The wording is now:  “…We visualized them by radar charts, which we term 
phenoprints (Fig 1D). We explored these charts together with the original images to assess 
their ability to report specific drug-induced morphological changes. Treatment of the 
parental HCT116 cells with microtubule-targeting compounds caused apoptosis (Fig 1F and 



 6 

G), and topoisomerase inhibitor treatment resulted in increased nuclear and cellular size as 
compared to DMSO treated cells (compare Fig 1 E with Fig 1H and I), a phenotype 
attributed to mitotic catastrophe (Maskey et al., 2013). Further examples of characteristic 
phenotypes included cell death with aberrantly shaped nuclei and locally enhanced actin 
intensity in the few remaining cells (Ouabain, Fig 1J) as well as elongated cells (Rottlerin, Fig 
1K). Overall, phenoprints served as compact visualizations of drug-induced phenotypes. 
Drugs sharing the same target resulted in similar phenotypes and had similar phenoprints, as 
demonstrated by microtubule-targeting compounds (Fig 1F and G), and topoisomerase 
inhibitors (Fig 1H and I).“ (Page 6). 

 
 
-Might contrast with the "Rosetta compendium" or "Connectivity Map" expression studies 
as prior examples of useful high-content phenotyping/fingerprinting used for understanding 
drug mechanisms  
 
We added a comment into the Discussion section: “...integration of emerging 
pharmacogenetic and phenotypic resources (Barretina et al., 2012; Basu et al., 2013; 
Garnett et al., 2012; Kleinstreuer et al., 2014; Young et al., 2008) and complementary 
strategies such as transcription profiling as a means to infer drug mode-of-action (Lamb et 
al., 2006) will accelerate the development of efficient genotype-stratified therapeutics and a 
better understanding of side-effects...“ (Page 17). 
 
- Should make clear which cell line "knockout" mutations are heterozygous and which are 
homozygous 
 
In the previous version of our manuscript, we provided an overview of the isogenic cell lines 
employed in our study in Supplementary Figure S1, showing their respective genotypes. 
To better clarify the genetic background of the isogenic cell lines, we have now extended 
the cell line names and provide this information in the Material and Methods section as well 
as the Results section and Figure legends where appropriate: Pages 6, 8, 9, 10, 18 and Fig 
2, 3, 4. 
 
Previous cell line name Extended cell line name 
parental HCT116 HCT116 CTNNB1 wt +/ mt + ; KRAS wt +/ mt +; PI3KCA wt +/ mt +  
CTNNB1 wt HCT116 CTNNB1 wt +/ mt -  
KRAS wt HCT116 KRAS wt +/ mt - 
PI3KCA wt  HCT116 PI3KCA wt +/ mt -  
PTEN KO HCT116 PTEN -/- 
AKT1 KO  HCT116 AKT1 -/- 
AKT1/2 KO  HCT116 AKT1 -/-; AKT2 -/-  
MEK1 KO HCT116 MAP2K1 -/- 
MEK2 KO  HCT116 MAP2K2 -/-  
P53 KO HCT116 TP53 -/-  
BAX KO HCT116 BAX -/- 
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For example, the isogenic cell line previously referred to as KRAS wt represents the HCT116 
cell line in which the mutant KRAS allele has been targeted leaving only the respective 
KRAS wt allele and as such is now also referred to as HCT116 KRAS wt +/ mt - . 
 

- PD98.059 and DMSO control are said to be "not completely similar". In what respect is 
there a significant (and therefore reportable) difference?  
 
We agree with the reviewer that the presentation of the image and phenoprint for PD98.059 
was unclear; indeed it is also not necessary for the message that we want to convey, and in 
the interest of brevity and clarity we have removed it.  
 

- MEK1 KO having more interactions than MEK2 KO cells need not imply distinct functions. 
This might also be seen for two paralogs with identical function where one of them is more 
highly expressed  
 
We thank the reviewer for pointing out this possibility. We have changed the text: “Possible 
reasons for this observation include different levels of expression of MEK1 and MEK2, and 
some degree of functional specialization between MEK1 and MEK2 (Catalanotti et al., 2009; 
Scholl et al., 2009).” (Page 8). 
 
-"we observed interactions between the PI3K inhibitor wortmannin and KRAS wt cells" 
What does it mean for a drug to interact with just one allele of a gene? I thought that 
interaction was always between a drug and an allele, with wt being the baseline used for 
making that judgment. There are other examples of this kind of statement.  
 
We assume that the nomenclature “KRAS wt” in the previous manuscript was misleading 
and led to the misunderstanding raised here. The cell line that we previously referred to as 
“KRAS wt” is a genetically engineered line derived from the parental HCT116 KRAS wt +/ mt + by 
knockout of the mutant (mt) allele, therefore retaining only a wildtype copy of KRAS. 
However it is not the baseline (parental) line that serves as the reference for calling 
interactions. We hope that the extended nomenclature for the isogenic cell lines (as 
discussed above) will clarify this point. 
 
- No details are given on the "unsupervised clustering" method. It is apparently hierarchical, 
but what linkage method, what distance measure? 
 
We apologise that this information was initially only in the computational workflow (vignette). 
We added the information to the Materials and Methods section: “To predict compound 
mode-of-action, we performed hierarchical clustering with the complete linkage rule (Fig 5A). 
As measure of dissimilarity we used 1- cor(x, y), where x and y are the interaction profiles for 
two compounds and cor is the Pearson correlation coefficient.” (Page 21). 
To further clarify our approach, we have additionally revised the Results part to read: “Next, 
we analyzed the similarity of interaction profiles by unsupervised clustering, using one minus 
the correlation coefficient of drug profiles as a measure of dissimilarity.“ (Page 10). 
 
-The authors acknowledge that growth rate can cause major differences not just in 
phenotype but in gene-drug interactions. It would be good to know how many gene-drug 
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interactions remain when gene-drug interactions are calculated not with phenotypes but 
instead by the residual phenotype after doing growth-based prediction of phenotypes.  
-Some of the knockout mutations presumably have a profound effect on cell line growth 
rate. It would be of great interest to do analysis of variation and report how much of the 
variation in phenotypes between cell lines can be explained by cell growth rate, then how 
much of the residual variation by the known genotypic differences between pairs of cell 
lines, and how much of that residual variation is attributable to the unknown genotypic 
differences between cell lines. 
 
The reviewer refers to the fact that (i) some of the gene knock-out mutations in the cell line 
panel investigated have an effect on growth rate, and (ii) that some of the drug-gene 
interactions that we report could be caused via this growth rate effect (and thus be relatively 
indirect), while others could rely on more direct mechanisms, e.g. the drug interfering 
directly with the signalling pathways supported by the gene product.  
The reviewer suggests that we could modify our analysis to somehow disentangle these two 
types of interactions (indirect via growth rate, or otherwise) by an Analysis of Variance 
(ANOVA) type technique. In response, we would like to make the following points:  

1. We have extended the manuscript to make the issue of direct and indirect 
mechanisms of gene-drug interactions more apparent to the readers. 

2. We are currently already performing an ANOVA analysis that regresses out the cell 
line effect (see Methods), and that addresses the problem to some extent. 

3. ANOVA however cannot fully disentangle direct and indirect effects, and 
4. a proper treatment of such a disentanglement is a research problem for which no 

reliable and generally applicable methods exist. We are aware of claims such as 
those made by B. Barzel & A.-L. Barabási, Network link prediction by global 
silencing of indirect correlations, Nature Biotechnology 31, 2013, p 720–725, and S. 
Feizi, D. Marbach, M. Médard & M. Kellis, Network deconvolution as a general 
method to distinguish direct dependencies in networks, Nature Biotechnology 31, 
2013, p 726–733, as well as of extensive discussions on merits and limitations of 
these and similar approaches. We consider such method development outside of 
the scope of this paper. 

 
Ad 1, the isogenic cell lines employed indeed have not only different morphologies (as 
shown in Supplementary Figure S4) but also different proliferation rates. To highlight the 
differential growth behaviour between isogenic cell lines, we have included a new plot into 
Supplementary Figure S7 and modified the relevant sentence to read: “We also noted a 
trend towards higher number of interactions involving cell lines in which the genotype itself 
had a pronounced phenotypic effect, including cell number (e.g. CTNNB1 wt cells; Fig 2E 
and Supplementary Fig 4 and 7A and B)“ (Page 7). 
 
Ad 2., we are indeed considering the differential growth of isogenic cell lines for our analysis 
of interactions by normalizing our data for the different proliferation rates (see Material and 
Methods). Moreover, a further containment of growth-rate mediated effects is achieved by 
the stepwise feature selection algorithm that we apply, which selects maximally non-
collinear phenotypic features; therefore the 19 phenotypic features other than cell number 
are by construction already less affected by growth-rate effects.  
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To better clarify our approach, we have further modified the text to read: “Briefly, the 
approach accounts for baseline genotype and drug effects with an ANOVA-type 
approach...“ (Page 7). 
 
 
- The fact that some predictions of synergy were confirmed is nice, but a true demonstration 
that the dataset predicts synergy requires more tests of non-predicted drug-drug pairs 
(synergy is quite common, especially by Bliss independence!). 
A related earlier study in yeast (Cokol et al MSB 2011) found that while genetic interactions 
among drug target genes predicted synergy, these predictions didn't perform any better 
than chance once the baseline drug-interaction rate of each drug was taken into account. 
I'm not suggesting that dozens to hundreds of new drug interactions need to be tested, just 
that this caveat needs to be given and the claims toned down 
 
We thank the reviewer for raising this issue and referring to the excellent Cokol et al. paper. 
It points out the prevalence of non-specific promiscuous synergy in the drug combinations 
that they studied, and hence that ‚predicting’ a drug-drug interaction may not always be 
terribly specific or interesting. Indeed, we also find in our dataset that certain tested 
compounds show interactions in a large fraction of the isogenic cell lines. However this is 
not the case for Bendamustine and Disulfiram, the drugs that we considered to test the 
prediction of effective drug combinations (see Figures 3 and 4, Supplementary Figure S6, 
and Review Figure 2). Hence, while the reviewers’ concern is very valid in general, we think 
that the specific cases described in this manuscript are still worth reporting.  
 
We have included a reference to the paper by Cokol et al. and point out in the Discussion 
section: “More research is needed for a fair assessment of prediction performance, since 
parameters such as prediction sensitivity and specificity need to be calibrated depending on 
a drug’s single-agent activity, polypharmacology and its interaction ‘promiscuity’ (Cokol et 
al., 2011).“ (Page 15). 
We have further addressed the reviewer’s concern by toning down the generalized 
“prediction of synergy” claim. The wording is now:  
 
Page 2: “...the generation of hypotheses on drug combinations and synergism...“ 
 
Page 2: “...MEK inhibitors amplify the viability effect of the clinically used anti-alcoholism 
drug disulfiram.“ 
 
Page 9 and 34: “Extrapolating drug-gene interactions to drug-drug combinations.” 
  
Page 9: “...predict effective drug-drug combinations.“ 
 
Page 22: “Analysis of drug combination data.”  

 
Page 23: “We quantified the unexpectedness of the effect of a compound pair...“ 
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Review Figure 2: “Specifically interacting” versus “promiscuously interacting” 
compounds. Example compound interaction spectra are shown (see also 
manuscript Figure 4 and Supplementary Figure S6). Bendamustine shows 
multiple-feature interactions primarily in AKT1/2 KO cells and Disulfiram shows 
multiple-feature interactions primarily in MEK1 KO cells. In contrast, 
Thapsigargin, Stattic and ß-Lapachone show multiple-feature interactions in 
almost all of the 12 cell lines investigated. These findings suggest that the 
interactions for Bendamustine and Disulfiram are relatively specific for one 
genetic background whereas the latter three compounds have a more 
promiscuous interaction pattern. 

 
 
- Empty phrases like "of note" should be removed  
 
We have removed empty phrases like “of note”, “indeed”, “in fact”. 
Pages: 6, 7, 8, 9, 10, 12.  
 
- No parameter settings are provided for threshold masking, segmentation masking, or 
variance-stabilizing transformations 
 
This information is provided fully, and in a computationally reproducible (by anyone with a 
computer) way, in the provided R vignette. We have considered adding this information also 
in natural language form to the Materials and Methods section, but have found that it was 
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not possible to present sufficient detail without essentially recapitulating the code, yet that 
such text still remains unsatisfactory due to remaining ambiguities. We therefore prefer the 
solution with the computer code, given that the code is relatively straightforward and 
assuming that readers interested in that aspect will be able to parse it.  
 
 
- In the selection of non-redundant features, how was the initial starting feature chosen?  
 
Here we followed C. Laufer, B. Fischer, W. Huber and M. Boutros, Measuring genetic 
interactions in human cells by RNAi and imaging. Nature Protocols, 9:2341 (2014). Briefly, 
cell number is selected as a starting feature due to its prominence and interpretability, and 
to make our data as comparable as possible with other assays that record solely cell 
viability or growth. We have added this information to the Materials and Methods section: 
“Starting with cell number as an initial feature, this iterative approach fits each feature by a 
linear model using the selected features as predictors.” (Page 20). 
 
 
- “In this iterative approach row and column median values are subtracted alternately until 
the proportional change of the absolute residuals falls below a defined threshold." [Not clear 
how this proportional change is defined]  
 
This is simply the change in the sum of absolute residuals divided by the previous sum; this 
quantity is used in many iterative fitting algorithms. We have rephrased: “In this iterative 
approach row and column medians are subtracted alternately until the change in S, the sum 
of absolute residuals, divided by S, falls below the defined threshold of  0.0001.” (Page 20). 
 
-  What were the parameters for the regularized t-test 
 
We apologise that this information was initially only in the computational workflow (vignette). 
We added the information to the Materials and Methods section: “To detect significant 
interactions, the values of replicates were used to perform a moderated t-test against the 
null hypothesis µ = 0 using the implementation of the lmFit and eBayes functions of the 
limma R package (Smyth, 2004) on the interaction matrix of each feature…” (Page 21). 
 
-  “We provide a re-usable computational analysis workflow" [This is not described 
sufficiently well to make this a selling point of the paper. Maybe take this comment out and 
save it for an applications note?]  
 
We deleted this comment.  
We nevertheless believe that the provision of an open-source software package that can be 
used to perform and recapitulate all analysis steps presented in the manuscript is of high 
importance in the context of large-data management and interpretation. We therefore state: 
“To foster reproducibility, we developed an R package named PGPC containing all data and 
a ‘vignette’, i.e. an open source software script that performs the complete analysis 
presented in this study starting from the extracted feature values and reproducing all figures, 
tables and other quantitative results.” (Page 19). 
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-  The results of Benjamini-Hochberg analysis should be referred to as FDR estimates or q-
values rather than adjusted p-values. The authors are not alone in this practice, but p-values 
should be reserved for the (less useful) practice of controlling Type I error rate. 
  
We have now used FDR instead of adjusted p-values. 
 
-  What is "overplotting"? 
  
We have deleted the word “overplotting”. 
 
-  “cyctoscape" 
  
Corrected. 
 
-  Pg 20. "structural distance" between compounds is not defined 
  
We define “structural distance" between compounds as the Tanimoto distance calculated 
via the R/Bioconductor ChemmineR package. In the previous manuscript version, this 
information was given only in the computational workflow (vignette). We have now added 
this information into the Materials and Methods section: “…structural distance as defined by 
the Tanimoto distance calculated by ChemmineR… “ (Page 22). 
 
-  Not clear how normalization of proteasome assays by cell viability was performed.  
 
We apologise for not previously describing this more directly. This information was initially 
only in the computational workflow (Vignette). Briefly, we anticipated that proteasome 
inhibition could impair cell viability (even for the rather short incubation time of 24h that we 
used in these experiments), which would confound the population-based measurement of 
intracellular proteasome activity in our assays, if not accounted for. In other words (using 
the extreme as an example), a drug that reduces cell viability by 100% will consequently 
also reduce intracellular proteasome activities by 100%, independent of its direct effect on 
the proteasome.  
Consequently, we investigated the effect of all tested drugs on cell viability in parallel to 
respective intracellular proteasome activities. In our CellTiterGlo-based cell viability assay, 
we saw that proteasome inhibitor treatment indeed reduced viability for Bortezomib and 
MG132 (see Review Figure 3). We therefore normalized the proteasome activity 
measurements by dividing them through the normalized cell viability measurements to 
account for the impact of loss-of-viability on the cell population. 
 



 13 

 
Review Figure 3:  Viability effect of proteasome inhibitors. 
Cell viability was measured using the CellTitreGlo (CTG) assay after 24h (y-axis). 
Along the x-axis, symbols are sorted by treatment, which is also indicated by 
symbol colour. Symbol shape indicates 5 experimental replicates (refered to as 
‘plateName’ in the plot). MG132 and Bortezomib impair HCT116 cell viability, and 
this needs to be accounted for when interpreting results of intracellular 
proteasome activity measurements. 

 
 
We added the following to the Materials and Methods section: “To account for compound 
effects on cell proliferation, cell viability was measured via the CellTiterGlo assay (Promega). 
The data is normalized to the viability control CTG-assay wells on each plate (CTG was set to 
1 on each plate). Based upon values corrected for cell viability, we calculated proteasome 
activity compared with the DMSO controls of the corresponding wells on each plate. The 
proteasome activity for DMSO was set to 1 for each assay. The inhibition was calculated 
relative to this value.  
Proteasome inhibition is then defined by 100*(1- (PT/PC) / (VT/VC)) where PT is the 
respective proteasome activity for each drug treatment, PC the respective proteasome 
activity for control (DMSO) treatment, VT is the respective cell viability for each drug 
treatment, and CV is the cell viability for control (DMSO) treatment. Consequently, DMSO 
control determines 0% normalized proteasome inhibition. We performed a t-test comparing 
values for the compounds against the null hypothesis of zero effect.” (Page 23). 
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Reviewer #2:  
 
Breinig et al. report here the development of a chemical-genetic interaction map based on 
imaging features extracted through high-content screening in a set of isogentic HCT116 
cells. Such a phenotypic profiling resource can be very valuable to examine compound 
mechanism of action, similarity to other compounds, and filtering out compounds with 
potential deleterious side effects. This manuscript is well-written and presented, but I feel 
that there are a number of points of clarification that should be made before the manuscript 
is suitable for publication  
 
We thank the reviewer for this positive feedback. 
 
1. There have been other very similar efforts in this precise area, using more cellular stains 
(e.g. Gustafsdottir et al., PLOS ONE 2013). It is imperative that the authors discuss the 
differences and/or advantages of this method. 
 
The approach described by Gustafsdottir et al. provides a framework to increase 
multiplexing capabilities for HC screens and we thank the reviewer for making us aware of 
this publication. Indeed, the experimental approach that we used for the present work could 
be extended in this way, it is likely that it would benefit, by having a greatly expanded 
phenotypic search space for interactions.  
We have now included a statement regarding the use of additional cellular stains and why 
comprehensive multiplexing approaches such as those described by Gustafsdottir et al. can 
be advantageous: “…Several extensions of the phenotypic pharmacogenetic screening 
assay presented here will be desirable. … Moreover, the use of additional markers of cellular 
components for high-content imaging could further increase the phenotypic search space 
for interactions relevant to an even broader range of biological processes. For example, 
Gustafsdottir et al. developed a multiplexing protocol that allows for the detection of seven 
distinct cell components using six stains and imaging five channels (Gustafsdottir et al., 
2013).“ (Page 16).  
 
2. I could not find a list of the total 395 features extracted from each well, which would be 
helpful. 
 
This information was initially only given in the computational workflow (vignette). We have 
now included a list of all features as Supplementary Table III. The list includes original 
feature names as obtained from our automated feature extraction using EBImage, as well as 
human-readable feature names for a subset of features that we present in the manuscript, 
alongside information about the correlation between replicates for all features (see below). 
In the process of making this addition, we noticed that we mistakenly had stated the 
number of features as 395 in the previous manuscript version, whereas it is actually 385. We 
apologise for this mistake and thank the reviewer for raising this issue. We revised the 
manuscript accordingly (Page 5: “385”).  
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3. 80% of the features had correlation >0.7 between duplicates, which did not seem 
exceptionally high. Was there something about the other 85 features that contributed to the 
lack of correlation? 
  
To address the reviewer’s question, the list of all 385 features that we now provide as an 
additional Supplementary Table (Supplementary Table III) also includes information for the 
correlation between biological replicates for of each of the features.  
Among the features that had a correlation <0.7, many were averages of cellular moment 
features such as centre of mass coordinates in pixels, the angle between fitted elliptical 
axes of the object and x- and y-axes of the image, and similar (for a more comprehensive 
explanation of additional features, please see the ‘computeFeatures’ manual page of the R 
package EBImage). For the data considered here, it is expected that such quantities are not 
correlated between replicates - indeed it is a signature of data quality, since such 
correlations would reflect problems such as cell-seeding biases.  
These features are computed as part of a comprehensive feature set calculation by the 
EBImage software; in other applications, the same features might indeed by informative 
(e.g. for single-cell or cell-cell interaction analyses). Here, instead of manually identifying 
them, we simply took the more objective, data-driven criterion of filtering them out via lack 
of replicate correlation. 
  
4. Cells were treated for 2 days with 5uM of each compound, which seems long and high 
for many of these common bioactive compounds. I would imagine many toxic effects. 
Perhaps a shorter treatment would increase correlation? It might be worth discussing in the 
manuscript. For example, it is difficult to interpret the results of wortmannin used at 5uM, as 
it is hitting quite a number of targets at that concentration. 
 
The reviewer is correct in that using a concentration of 5 µM for all compounds and a single 
time point of 48 h is not ideal. It is likely that different time-points or the use of multiple 
concentrations would provide additional insights for specific compounds. However, given 
that resources are finite, such considerations always imply a trade-off between ‘breadth’ 
and ‘depth’, i.e. between experimental throughput and detail. For instance, Perlman et al. 
(2004) performed high-content screens of phenotypic effects using 100 drugs at 13 different 
concentrations. In contrast, we employed 1280 compounds at a single concentration. Our 
choice of a relatively high concentration was influenced by the consideration that surprise 
effects of relatively specific, non-toxic drugs would be more interesting than modulation of 
very toxic drugs.  

We are aware of this limitation of our current experimental pipeline and have 
included a respective statement in the Discussion section: “Several extensions of the 
phenotypic pharmacogenetic screening assay presented here will be desirable. For example, 
the resolution of the data would benefit from using multiple doses of each drug (Perlman et 
al., 2004)….“ (Page 16). 
 
 
5. How are the phenoprints compared quantitatively? The impression from the paper is that 
they are visually similar by eye, but that cannot be sustainable across so many compound 
treatments. 
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We apologise that our previous text describing phenoprints might have been imprecise. 
Phenoprints themselves are not directly used to quantify (dis-)similarities between drug-
induced phenotypes. Our intention for the phenoprints is to serve as an easily discernable 
visualization of the 20 features that we use as phenotypic fingerprints. To clarify this we 
have now altered the text: “…phenoprints served as compact visualizations of drug-induced 
phenotypes.” (Page 6). 
To compare phenotypes quantitatively, correlations of feature vectors are used. This 
strategy has been employed to generate the plotted matrix shown in Supplementary Figure 
S12 and is conceptually similar to previously used approaches (Young et al, 2007, 
Gustafsdottir et al., 2013). 
 
6. It is mentioned in the methods that serial dilutions of each compound were made, but 
there is not discussion of the effects of dose on phenotypes. Were the compounds tested in 
dose? If not, that point needs to be clarified. 
 
For the analysis of drug combinations effects, we used concentration-kinetic 
measurements. For screening we solely tested a single concentration. A respective 
statement has now been included to clarify this point: “Prior to screening, we prepared 
serial dilutions of the LOPAC compound library (Sigma) in RPMI medium (Life Technologies) 
to provide a final stock concentration of 50 µM …For screening, a single drug concentration 
of 5 µM was used.” (Page 18). 
 
7. Images need to be larger, or include some insets of higher magnification. It is impossible 
to see what the authors are trying to convey. 
 
We thank the reviewer for this helpful suggestion. We have now included higher 
magnification images to improve visualization (see below). 
 

 
Revised Figure 2A.  
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8. Similarly, in Figure S2, it is not clear what the reader is supposed to see in this image. A 
control should be included for greater clarity. 
 
We have now included arrows to highlight the occurrence of artefacts in Figure S2. As 
suggested by the reviewer, we have also included a control image for greater clarity (see 
below). 
 

 
Revised Figure S2. 
 
9. The lower number of chemical-genetic interactions based on cell number is confusing, as 
the other publications looking at chemical-genetic interactions using cell viability see quite a 
few interactions. Some discussion of the lower number here would be helpful. 
 
The higher number of chemical-genetic interactions observed in other publications using 
cell viability as a readout is presumably based on 3 factors: 

i) Larger cell line panels have been screened. For example, Basu et al. employed 
ca. 250 cell lines and Barretina et al. used ca. 500 cell lines (Basu et al. 2013; 
Barretina et al., 2012).  

ii) These cell lines originated from different lineages and present very 
heterogeneous genetic backgrounds with multiple alterations thereby increasing 
the likelihood to observe gene-drug interactions (although it might be more 
difficult to pinpoint specific gene-drug interactions given the presence of 
potentially confounding co-alterations within the complex genetic backgrounds 
of cell lines).  

iii) Focused compound libraries that preferentially included drugs known to affect 
the viability of cancer cells were used in many published gene-drug interaction 
screens using human cell lines (e.g. Basu et al. 2013; Barretina et al., 2012), 
hence increasing the likelihood to observe chemical-genetic interactions that 
affect cell growth. 

In our screen, we employed 12 isogenic colon cancer cell lines with specific genetic 
alterations and used a compound library not exclusively restricted to FDA-approved or 
novel anti-cancer agents. We have already included a comment on this in the previous 
manuscript version: “We chose a drug library with 1280 pharmacologically active 
compounds affecting a broad spectrum of cellular processes and major drug target classes 
(Supplementary Table SI) in order to obtain a comprehensive view of phenotypic 
pharmacogenetic effects that should not exclusively be restricted to well-established anti-
cancer agents.“ 
We have now extended our previous comment in the Results section to read: “This design 
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choice contrasts with other studies that focused on oncology-related drugs.“ (Page 5).  
We have additionally extended our comment in the Discussion section to address the 
reviewer’s concern: “…Several extensions of the phenotypic pharmacogenetic screening 
assay presented here will be desirable. … a broader set of genetic backgrounds could be 
used, an aim that now appears quite tractable with isogenic cell lines through use of 
CRISRP/Cas9 technology (Sander and Joung, 2014).“ (Page 16). 
 
 
10. In the proteasome inhibition assay, what is the effect of DMSO alone? Is it pegged at 
zero? This would help interpret the graph shown in Figure 6. 
 
The reviewer is correct that DMSO control determines 0% proteasome inhibition. This is 
now stated in the legend to Fig 6: “DMSO control determines 0% normalized proteasome 
inhibition.” (Page 36). 
For clarification, we have additionally extended the Material and Methods section: 
“…Consequently, DMSO control determines 0% normalized proteasome inhibition.” (Page 
23). 
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2nd Editorial Decision 16 October 2015 

 
Thank you again for submitting your work to Molecular Systems Biology. We are now globally 
satisfied with the modifications made and we will be able to accept your paper for publication 
pending the following points: 
 
- We appreciate that you provide the Vignette of the PGPC package as PDF files. For long term 
archival purpose, it would also be good to include the source package including the vignette and the 
respective datasets as zip file ('Expanded View Computer Code'). Please confirm that the package 
will be made available on Bioconductor as soon as the paper is accepted (we could not yet find it 
with the search http://www.bioconductor.org/help/search/index.html?q=PGPC/). 
 
- It is a great idea to provide the resource at http://dedomena.embl.de/PGPC/ to browse through the 
data. It does not seem however that the site allows to access/dowload the full imaging dataset as 
such or the extracted features and statistics. The dataset should be made available to the community, 
either by depositing it to Dryad (datadryad.org) or a similar resource such as Biostudies 
(http://www.ebi.ac.uk/biostudies/). Please include a 'Data availability' section at the end of Materials 
& Methods to provide explicit links/identifiers to the software (PGPC package) and the datasets 
(raw imaging and extracted features). 
 
- As you may have noticed, we recently replaced Supplementary Information by Expanded View 
(EV, see examples in http://msb.embopress.org/content/11/6/812). In this format, a limited number 
of Supplementary Figures (maximum 5) can be integrated in the article as EV figures that are 
interactively collapsible/expandable and will be typeset by the publisher. In this case, the figures 
should be cited as 'Figure EV1, Figure EV2" etc... in the text and their respective legends should be 
added to the main text after the legends of regular figures. The illustrations should be provided as 
separate files. 
 
- For the figures that you do NOT wish to display as Expanded View figures items, they should be 
bundled together with their legends in a 'traditional' supplementary PDF, now called the 
*Appendix*. Appendix should start with a short Table of Content and the figures should be named 
and referred to in the main text as: "Appendix Figure S1, Appendix Figure S2" etc. See detailed 
instructions regarding expanded view here: http://msb.embopress.org/authorguide#expandedview>. 
 
- Additional Tables/Datasets should be labeled and referred to as Table (or Dataset) EV1 etc. 
Table/Dataset legends can be provided in a separate tab in case of .xls files. Alternatively, you can 
upload a .zip file containing the Table/Dataset file and a separate README .txt file with the 
legend/description. 
 
Thank you for submitting this paper to Molecular Systems Biology.  
 
 
2nd Revision - authors' response 30 October 2015 

 
We thank you for the positive comments on our revised manuscript and 
for accepting our paper for publication in Molecular Systems Biology. 
Following your instructions, we have added a Data Availability section to 
Material and Methods and provide detailed information how readers can 
access the analysis package PGPC. The R package is freely available to 
the scientific community at Bioconductor 
(http://bioconductor.org/packages/PGPC). Its vignette has been included 
in the Expanded View Computer Code section. Since the R package has 
a large size, one option may be to provide on your website only the 
vignette as PDF together with the above link to Bioconductor, instead of 
the whole file – but this is a decision the journal should make. 
We have initiated the storage of the complete image dataset (2 TB) in a 
public repository. There is no established database for such image-based 
screens, however, we are in contact with EMBL-EBI, who are currently 
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setting up. the EMBL-EBI / BBSRC Image Data Repository (http:/idrdemo. 
openmicroscopy.org). Due to the size of the data but more 
importantly their novel type and the experimental nature of the repository, 
the data transfer and repository-side quality control will likely take some 
more time. We suggest that this process should not delay the publication 
of this paper, since the images can be browsed at 
http://dedomena.embl.de/PGPC and we are happy to provide the data on 
hard disk drives to all interested readers in the meanwhile, until the 
EMBL-EBI repository is fully operational. 
 
We have now also included three Expanded View Figures as separate 
files, as well as an Appendix including all supplementary Figures and 
Information. The main text has been modified accordingly. 
We thank you again for considering our work for publication in Molecular 
Systems Biology. Do not hesitate to contact us for further information 
related to our manuscript. 
 
 
 
 
 
 
 
 
 
 


