
Supplementary Information

Figure S1: Relationship between cp and non-cp peroxisomal behaviour in the optical trap.

Direct comparisons between cp (red) and non-cp (blue) peroxisome behaviour in the optical trap

as a function of optical laser trap power; trapped (A), not trapped (B) and escaped the trap (C).

Significant differences between chloroplast associated versus non associated at certain laser powers

are denoted (Welchs T-test, p< 0.05∗). Weighted average S.E. are plotted; samples sizes are given

in the materials and methods.
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Supplementary Note. Spring Model of Peroxisome Motion

Model Overview: Our conceptual simplified model of peroxisome motion is based on the motion

of a mass on a spring damped by viscous drag. First, we estimate the the Reynolds number of

the flow and conclude that a laminar flow regime exists around the peroxisome. Second, we de-

velop a model for the observed peroxisome motion using the force balance between inertial forces

(Newton’s second law), viscous drag forces (Stokes’ law), and tether tension forces (Hooke’s law).

Finally, we fit the unknown model parameters: the viscosity-scaled spring constant k/µ and the

recovery displacement b. These model parameters are well constrained by the experimental data.

However, determination of the absolute sub-cellular forces and tether spring constants require the

use of viscosity µ estimates from the literature, which contain considerable uncertainties when

extrapolated to our experimental system. Details of the model and fitting technique are expanded

upon below.

Model Setup: The model assumes that we can approximate the system using a spherical peroxi-

some moving in a Newtonian viscous fluid tethered to a base (anchor point) with a linear spring:

the assumption of a Newtonian fluid is consistent with the linear trend observed in Figure S2 to

within the experimental errors, allowing simple approximation of the viscous forces; and a spher-

ical peroxisome shape is broadly consistent with our experimental observations (Figure 1). The

base of the tether is assumed to be able to move during stage translation, but is then assumed to

remain in a fixed position once stage translation has stopped. This is consistent with the limited

amount of movement of the peroxule tip observed during recovery. When the trap is released, the

peroxisome’s recovery motion is driven by the net force due to the extended spring/tether and vis-

cous drag. A schematic of the model is shown in Figure S3. This is the simplest possible model,

with the fewest free parameters, that can be used to model the peroxisome recovery. A more ad-

vanced treatment incorporating non-linear tether properties or more complex cytoplasm properties

(e.g. viscoelasticity or anisotropy) would require much more detailed constraints on cell properties

than are currently available.

To determine the viscous drag force we must first determine if laminar or turbulent flow is

occurring. Consider a spherical peroxisome of radius r moving in a viscous medium with dynamic
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viscosity µ and density ρ f at a representative velocity v. The flow regime can be estimated using

the Reynolds number (Faber, 1995), which gives a measure of the ratio of inertial to viscous forces:

Re =
vLρ f

µ
(1)

where L is a characteristic length scale of the flow, which can be approximated by the peroxisome

diameter (2r). For our experiment: the cytoplasm density is ≈1000 Kg m−3, the peroxisome

radius was measured to be in the range 0.9–3.0 µm, and typical velocities were of order 1 µms−1.

Unfortunately, the cytoplasm viscosity in tobacco leaf epidermal cells has not been measured and

is currently unknown. However, for our experimental scales (micron-sized spheres) a viscosity of

0.06 Pa s is reasonable based on measurements close to the nucleus and vacuole in chara (Scherp

and Hasenstein, 2007), although extrapolation of this value to tobacco leaves is likely to introduce

an order of magnitude uncertainty. Including the large uncertainty in viscosity and the full range

of measured radii, our experimental regime has extremely small Reynolds numbers of Re = 10−9–

10−6.

This is well within the Re � 1 criteria for a Stokes (or creeping) laminar flow. Therefore, the

viscous drag on a peroxisome of radius r and velocity ẋ = dx/dt can be estimated using Stokes’

law:

Fdrag =−6πµrẋ (2)

The negative sign is because the drag force is in the opposite direction to displacement x. The force

due to the tether can be estimated using Hooke’s law:

Ftether =+k(b− x) (3)

where k is the spring constant (or stiffness) of the tether and b− x is its extension (Figure S3).

Derivation of Peroxisome Equation of Motion: Assuming that the tether acts as a linear spring

that obeys Hooke’s law (tension force proportional to extension) and that the viscous drag is given

by Stokes’ law, Newton’s second law (Force=mass×acceleration) can be used to relate the accel-
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eration of the peroxisome (ẍ = d2x/dt) to the net force (Ftether+Fdrag):

mẍ = k(b− x)−6πµrẋ (4)

Where m is the effective mass of the peroxisome, which is equal to the mass of the peroxisome plus

half the mass of the displaced fluid. The additional mass is necessary to account for acceleration of

the displaced fluid during recovery (Faber, 1995). However, for extremely low Reynolds numbers,

as in our case, the inertial term (mẍ) is negligible compared to the viscous drag and tension forces.

This simplifies the model considerably and gives a force balance of:

0 = k(b− x)−6πµrẋ (5)

This first order differential equation can be solved by integration, using the boundary condition

x = 0 at t = 0, to give the peroxisome equation of motion:

x(t) = b(1− e−
kt

6πµr ) (6)

This model for the peroxisome motion has two free parameters: b the recovery displacement; and

k/µ the ratio of the spring constant to the dynamic viscosity.

To find the best fitting parameters we perform a grid search over a wide range of b and k/µ in

order to minimise the misfit χ2 (Bevington and Robinson, 1992) between the model x(ti) and the

data points xobs(ti) defined at n time points ti where i = 1 . . .n:

χ
2 =

n

∑
i=1

(x(ti)− xobs(ti))
2 (7)

The optimal solution is given by the values of b and k/µ that minimise χ2, where this minimum

value is referred to as χ2
0 . To place estimated statistical limits on the solution, we derive effective

uncertainties on the datapoints by requiring that χ2
0/n = 1 for the optimum solution (i.e. that the

model is capable of fitting the data to within the errors). The inferred error-bars σ on the measured

displacements are then given by σ =
√

χ2
0/n. For a two parameter (i.e. two degrees of freedom)
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model the 3-σ (99.7% confidence) range of solutions is bounded by χ2/σ2 < χ2
0/σ2+11.8 (Press

et al., 1992). This criteria can be used to ensure that the solutions are well constrained. Example

fits of the model to the data are shown in Figure S4.

Note that while k/µ is well determined, the order of magnitude uncertainty in the viscosity µ

means that absolute values for the spring constant and forces also contain an order of magnitude

uncertainty.

Model Fitting Results: The motion of all 243 trapped peroxisomes (cp and non-cp combined)

that could be tracked during the recovery period were fitted using the model. The model fits to

each dataset were visually inspected to ensure that: (1) the simple motion predicted by the model

adequately described the peroxisome motion; (2) the model fitted the measured data well; and (3)

there were no discontinuities in the data caused by pixel-noise in the automated tracking process.

Only those fits that passed this quality control process were considered suitable for further analysis.

We found that 32% of the data were fitted well by the model (n=25 chloroplast associated

and n=52 non associated measurements). The remaining 68%, while having the gross recovery

profile fitted by the model, had additional features that were not fitted by the model, such as

intermittent changes in direction (eg Fig S4d) or an initial slow phase. This suggests that for

these data peroxisome recovery was affected by unlabelled (i.e. non fluorescent) structures within

the cell which physically impede motion or imaging problems (see above). In addition, several

data were discarded due to peroxisomal signal saturation affecting the measurement of the radius

(n=4 cp and n=9 non-cp). Even though the model grossly simplifies the system it can accurately

reproduce the recovery motion in over 30% of cases. Figure 4 shows cumulative distribution

functions of the model parameters for fits that passed the quality control criteria.
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Figure S2: Laser power required for trapping peroxisomes and polystyrene beads at different

stage velocities.

The drag force was determined from the stage velocity, particle radius, and viscosity using Stokes’

law. For both 1 µm diameter polystyrene beads in water and ≈2 µm diameter peroxisomes in

cytoplasm, there is a linear relation between viscous drag force and laser power, with a gradient

of 1.36 mW/pN for beads and 1.72 mW/pN for peroxisomes. For peroxisomes, the error bars

relate to the range of laser powers required to trap 30-80 separate peroxisomes of varying size.

For polystyrene beads in water the intercept on the laser power axis is approximately zero as

the beads were untethered. However, for peroxisomes a minimum laser power of ≈15 mW is

required to overcome the tethering forces, resulting in a vertical offset of the datapoints. The linear

force-power relation for peroxisomes implies that the viscous drag is linearly related to velocity

and therefore that viscous forces can be adequately estimated assuming a Newtonian viscosity to

within experimental errors.
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Figure S3: Spring model definition.

(A) At the end of translation, the peroxisome (black circle) is trapped such that the tether is ex-

tended relative to its unstressed length by an initial amount b. The tether is assumed to be attached

to a base (grey rectangle) and is assumed to obey Hooke’s law with a spring constant of k. The

initial recovery force (Fi) exerted by the spring in this steady state from Hooke’s law is Fi=kb and

is counteracted by the laser trapping force Ftrap. (B) When the trap is turned off, the recovery

phase begins, where the peroxisome moves back toward its equilibrium/rest position. The position

of the peroxisome x(t) at time t is defined relative to the position of the trap centre (cross) for con-

sistency with the experimental displacement measurements. During this motion the peroxisome

experiences a tension force from the tether Ftether = k(b− x) towards the base and a viscous drag

force Fdrag = 6πµrv in the opposite direction, where v is peroxisome velocity (dx/dt). (C) Finally

the tether has contracted to its unstressed length and the peroxisome has moved to its equilibrium

position. The displacement at this equilibrium position is equal to b; the recovery displacement.
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Figure S4: Example fits to the data using the simple spring model.

(A,B) Show a result where the simple spring model provides a good fit to the measured peroxi-

some recovery, whereas (C,D) show a result where the spring model does not adequately fit the

peroxisome recovery. For each track a grid search over values of b from 0–10 µm and k/µ from

10−8–10−2 ms−1 was performed to find the optimum fitting model parameters, which correspond

to the minimum value of the χ2 misfit. (A) and (C) show χ2 contours around the region of best

fit; the thick contour represents the 3-σ confidence interval on the model parameters, which is

well defined and very compact in (A), indicating a good fit, and extended in (C), indicating a poor

fit. The example in (A,B) has fit parameters of k/µ=1.25±0.04×10−5 ms−1, which assuming a

viscosity of 0.06 Pa s implies k=0.8 pN/µm and Fi=3 pN (both with uncertainties of up to an order

of magnitude). The example in (C,D) was rejected by the quality control procedure as the model

does not fit the recovery curve well and the confidence interval on the optimum fit parameters is

too large. These examples are for non-chloroplast associated peroxisomes.
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Optical trapping power (mW) 76 63 50 37 24 13
Total

(%)

CP

Total number of trapped

peroxisomes

(%)

28

(100)

34

(100)

28

(100)

29

(100)

26

(100)

25

(100)

170

(100)

Total number of peroxisomes

which produced peroxules

(%)

8

(28.6)

11

(32.4)

14

(50)

13

(44.8)

12

(46.2)

6

(24.0)

64

(37.6)

Number of peroxisomes which

produce peroxules;

-before peroxisome translation (%)
0

(0)

0

(0)

2

(7.1)

3

(10.3)

0

(0)

0

(0)

5

(2.9)

-during peroxisome translation (%)
8

(28.6)

7

(20.6)

6

(21.4)

9

(31.0)

12

(46.2)

6

(24.0)

48

(28.2)

-ambiguous (%) 0

(0)

4

(11.8)

6

(21.4)

1

(3.4)

0

(0)

0

(0)

11

(6.5)

NON-CP

Total number of trapped

peroxisomes

(%)

31

(100)

31

(100)

29

(100)

30

(100)

32

(100)

30

(100)

183

(100)

Total number of peroxisomes

which produced peroxules

(%)

9

(29.0)

11

(35.5)

13

(44.8)

18

(60.0)

11

(34.4)

6

(20.0)

68

(37.2)

Number of peroxisomes which

produce peroxules;

-before peroxisome translation (%)
0

(0)

1

(3.2)

8

(27.6)

7

(23.3)

5

(15.6)

1

(3.3)

22

(12.0)

-during peroxisome translation (%)
2

(6.5)

6

(19.4)

2

(6.9)

9

(30)

4

(12.5)

5

(16.7)

28

(15.3)

- ambiguous (%) 7

(22.6)

4

(12.9)

3

(10.3)

2

(6.7)

2

(6.3)

0

(1.1)

18

(9.8)

Table S1: Relationship between optical laser trap power and peroxule formation character-

istics from cp and non-cp peroxisomes.

Peroxules were defined as a narrow tubular protrusion whose length was at least the same diam-

eter as the trapped peroxisome. Potential problems with classifying peroxule formation were as

follows; upon trapping and moving a peroxisome occasionally it appeared as though potentially

two peroxisomes may have been closely associated resulting in a “beaded” appearance of the per-

9



oxule. Similar observations have been made from studies of peroxule formation from peroxisomes

in Arabidopsis (Sinclair et al., 2009). In addition, peroxules also appeared to form sometime after

the translation, which could have been a result of movement of the peroxule into the TIRF focal

plane towards the end of the video, or diffusion, and subsequent detection, of the soluble luminal

marker into the peroxule. Note, very occasionally, multiple peroxules emanated from the trapped

organelle. Peroxisomes which were either trapped or escaped the trap were observed and those

which displayed peroxules were categorised into either (1) formation upon trapping prior to the

translation event (and therefore could be due to exposure to the trapping laser), (2) formation upon

/ during the 6 µm translation movement event, or (3) an ambiguous grouping. The latter includes

peroxule formation sometime after the translation, or generation of beaded / two peroxisomes in

the trap, and so could not be accurately used to determine whether peroxule formation was a direct

result of exposure to the trapping laser or through subsequent micromanipulation and movement.

Here, we used the fully automated dataset used to generate the data for Figure 2 where variable

trapping laser strength was implemented. Numbers are absolute with percentages in brackets.

Movie S1. Peroxisome association with chloroplasts.

Time lapse images were taken of peroxisomes (green), Golgi (cyan) and chloroplasts (magenta)

in tobacco leaf epidermal cells. Organelles were visualised through transient expression of flu-

orescent fusions (YFPSKL for peroxisomes and STCFP for Golgi bodies) or autofluorescence

(chloroplasts). Compared to Golgi, peroxisomes spend longer periods of time associated with

chloroplasts. The peroxisome appears tethered to a fixed zone on the surface of the chloroplast

as the chloroplast moves (A), and in some cases the peroxisomes can also move laterally over the

surface (B). Scale bar 5 µm.

Movie S2. Peroxisomes can be trapped and moved laterally within tobacco leaf epidermal

cells.

Peroxisomes were trapped (arrowhead) and the stage moved 6 µm horizontally. During the trans-

lation peroxisomes either escaped the trap (A,C) or were moved 6 µm (B,D). Upon turning the trap

off the peroxisomes moved back towards their original position (B,D). Peroxisomes juxtaposed to
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chloroplasts (C,D) behaved similarly to peroxisomes which were not (A,B). In both cases, perox-

ules were observed (B,D) Scale bar 6 µm.

Movie S3. Peroxisome behaviour in the optical trap under actin depolymerisation.

A trapped non-cp (A) and cp (B) peroxisome undergoes the 6 µm translation resulting in peroxule

formation. Upon turning the trap off the peroxisome moves back along the length of the peroxule.

Movies highlighting examples of non-cp peroxisomes in tobacco leaf epidermal cells which are

either (C) trapped, (D) not trapped (E) or escape the trap over the translation period. The samples

were treated with latrunculin B and so any subsequent motion upon turning the trap off is indepen-

dent of acto-myosin. Scale Bar 6 µm. Arrow head denotes peroxisome undergoing the trapping

routine.
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