
Supplementary Information
Model-based analysis of cell cycle responses to dynamically changing

environments

DD Seaton, J Krishnan

Contents

1 Supplementary Figures 2

2 Model equations 9

3 Model parameters of particular interest 17

4 Sensitivity analysis 18

4.1 Computing sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Characterising monotonic and nonmonotonic sensitivity responses . . . . . . 19

5 Combining parameter perturbations to produce the same change in macro-

scopic behaviour 19

6 Analysis of phenomenological model of the cell cycle under perturbations 21

6.1 Relationship between the durations of the G1 and S/G2/M phases . . . . . . 21

6.2 Phase responses and fraction of mass donated to daughter cells . . . . . . . 22

6.3 Inferring the correspondence between cell cycle characteristics of populations

and single cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1



1 Supplementary Figures
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Figure S1: Simulating the dynamic response of the cell cycle of a step-change in parame-
ters. The parameter ks,bS in the Barik model undergoes a step-change (A), which
changes the volume at division (Vdiv) and cell cycle duration (Tdiv) in subsequent
generations (B).
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Figure S2: Qualitative assessment of approximation of model behaviour by extrapolation of
local sensitivity in the case of the Barik model. Eight different parameters were
increased by 20% at different times during the simulation, with the Vdiv in the first
generation compared to an estimate based on the sensitivity analysis.
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Figure S3: Model sensitivity to changes in the growth rate parameter, µ. In all three models,
increasing growth rate leads to larger daughter cells and a reduced duration of
G1 (upper panels), consistent with experimental observations. In addition, the
models consistently predict that increasing growth rate will monotonically increase
the size of daughter cells in subsequent generations until they reach their final size,
irrespective of the time at which growth rate is increased (lower panels), with some
minor deviations.
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Figure S4: Correlation between Vdau and TG1 for a range of mutants. Data from [1], after
filtering out mutants which displayed changes in growth rate (as described in [1]).
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Figure S5: Mode-locking of the Pfeuty model to periodic forcing. (A) shows the predicted
change in cell cycle phase in response to a 2.15 minute, 10% increase in the pa-
rameter sx,2 (denoted ∆φ(t), red line). This perturbation is repeatedly applied
at a period 5 minutes less than the unforced cell cycle period (dashed line). The
predicted phase of entrainment is given by the point of intersection of these lines
where ∆φ′(t) < 0 (red circle). (B) shows the simulated results evaluating the
prediction made in (A). The shaded area represents the time at which the per-
turbation is applied. The dashed vertical line represents the prediction made in
(A). The stability of the mode-locking is demonstrated by the consistent phase
relationship between the perturbation and the timing of cell division.
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Figure S6: Linear fit of Vdau and TG1 at constant growth rate and different glucose levels.
Data from [2]. This quantifies the negative correlation between Vdau and TG1

observed as glucose levels change.
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Figure S7: Examples of how different parameter combinations can produce the same eventual
change in behaviour, but with different dynamic responses. Responses to changes
in two pairs of parameters are analysed: kdcmp and ksmbM (A, B, C); and kdcm and
ksn3 (D, E, F). In each case, the different responses of the individual parameters
are combined to give the same eventual change in Vdiv and Tdiv (A, D). However,
each case has a distinct dynamic response (compare B,C to E,F).
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2 Model equations

All three models share the basic pattern of growth, budding and division, with cell size (V )

growing exponentially, as given by:

dV

dt
= µV (1)

The link between growth in cell volume and and the macroscopic observables characterising

the cell cycle is then given by (as in the Main Text):

Vdiv = Vdaue
µTdiv

Vbud = Vdaue
µTbud

f = Vdau/Vdiv (2)

This description is coupled to models of the molecular mechanisms of cell cycle progression

through thresholds in the concentrations of key components. In each model, a component

controls the initiation of S-phase and budding, and this event occurs when the concentration

of this component increases through a given threshold. In the case of the Barik model,

this threshold is as specified in the original paper [3], while for the Pfeuty and Chen models

a threshold was chosen such that the daughter cell volume is an appropriate fraction of

the mother cell volume. Similarly, each model includes a component controls the initiation

of cytokinesis, and this event occurs when the concentration of this component decreases

through a given threshold. All three models already specify such a threshold, and we use

these as specified in the original papers. All three models were run with the same basal

growth rate (µ = 0.007 min−1). Parameters determining how cell size (V ) modulates cell

cycle dynamics were rescaled in the Pfeuty and Chen models to make Vdiv the same for all
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three models (and therefore in common units, of fL), with details described below.

Pfeuty model

The Pfeuty model was described in [4], and provides a minimal pseud-biochemical description

of cell cycle dynamics. The model equations are:

d[X]

dt
= sx1 + sx2V − (dx + cxy[Y ])[X] + ax[X]2

d[Y ]

dt
= sy[X]2 − dy[Y ] (3)

In this model, budding occurs when [X] increases above 0.2. Division occurs when [Y ]

decreases below 2.

All parameters were rescaled by dividing by a factor of 2.86 to maintain the dynamics of

the model at the common growth rate (µ = 0.007 min−1). We note that this does not

change the behaviour of the model, but merely amounts to a rescaling of the time coordinate.

The parameter sx,2 was additionally rescaled by dividing by a factor of 20 to put cell size in

common units with the Barik model.

Chen model

The Chen model was originally described in [5]. A modified version of this was analysed in

[6], and it is this version that we use here. The model equations are:

d[Cln2]

dt
= V

(
k

′

s,n2 + k
′′

s,n2[SBF ]
)
− kd,n2[Cln2]

d[Clb2]T
dt

= V
(
k

′

s,b2 + k
′′

s,b2[Mcm1]
)
−
(
k

′

d,b2 +
(
k

′′

d,b2 − k
′

d,b2

)
[Hct1]

+k
′′′

d,b2[Cdc20]

)
[Clb2]T
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d[Hct1]

dt
=

(
k

′
a,t1 + k

′′
a,t1[Cdc20]

)
(1− [Hct1])

Ja,t1 + 1− [Hct1]
− Vi,t1[Hct1]

[Ji,t1 + [Hct1]

d[Cdc20]T
dt

=
(
k

′

s,20 + k
′′

s,20[Clb2]
)
− kd,20[Cdc20]T

d[Cdc20]

dt
= ka,20 ([Cdc20]T − [Cdc20])− (Vi,20 − kd,20) [Cdc20]

d[Clb5]T
dt

= V
(
k

′

s,b5 + k
′′

s,b5[MBF ]
)
−
(
k

′

d,b5 + k
′′

d,b5[Cdc20]
)

[Clb5]T

d[Sic1]T
dt

= k
′

s,c1 + k
′′

s,c1[Swi5]−
(
kd1,c1 +

Vd2c1
Jd2,c1 + [Sic1]T

)
[Sic1]T

d[Clb5|Sic1]

dt
= kas,b5[Clb5][Sic1]−

(
kdi,b5 + k

′

d,b5 + k
′′

d,b5[Cdc20] + kd1,c1

+
Vd2c1

Jd2,c1 + [Sic1]T

)
[Clb5|Sic1]

d[Clb2|Sic1]

dt
= kas,b2[Clb2][Sic1]−

(
kdi,b2 + k

′

d,b2 +

(
k

′′

d,b2 − k
′

d,b2

)
[Hct1]

+k
′′′

d,b2[Cdc20] + kd1,c1 +
Vd2c1

Jd2,c1 + [Sic1]T

)
[Clb2|Sic1]

Vd2,c1 = kd2,c1 (εc1,n3[Cln3]∗ + εc1,k2[Bck2] + [Cln2] + εc1,b5[Clb5] + εc1,b2[Clb2])

[Mcm1] = G (ka,mcm[Clb2], ki,mcm, Ja,mcm, Ji,mcm)

[Swi5] = G
(
ka,swi[Cdc20], k

′

i,swi + k
′′

i,swi[Clb2], Ja,swi, Ji,swi

)
[SBF ] = [MBF ] = G

(
Va,sbf , k

′

i,sbf + k
′′

i,sbf [Clb2], Ja,sbf , Ji,sbf

)
Va,sbf = ka,sbf ([Cln2] + εsbf,n3 ([Cln3]∗ + [Bck2]) + εsbf,b5[Clb5])

Vi,t1 = k
′

i,t1 + k
′′

i,t1 ([Cln3]∗ + εi,t1,n2[Cln2] + εi,t1,b5[Clb5] + εi,t1,b2[Clb2])

[Clb2]T = [Clb2] + [Clb2|Sic1]

[Clb5]T = [Clb5] + [Clb5|Sic1]

[Sic1]T = [Sic1] + [Clb2|Sic1] + [Clb5|Sic1]

[Bck2] = V [Bck2]0

[Cln3]∗ = [Cln3]max
V Dn3

Jn3 + V Dn3

(4)
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Goldbeter Koshland function:

G(a, b, c, d) =
2ad

b− a+ bc+ ad+
√

(b− a+ bc+ ad)2 − 4ad(b− a)
(5)

In this model, budding occurs when [Cln2] increases above 0.03. Division occurs when

[Clb2]T decreases below 0.05.

The parameters k
′
s,n2, k

′′
s,n2, k

′

s,b2, k
′′

s,b2, k
′

s,b5, k
′′

s,b5, [Bck]0, and Dn3 were rescaled by

dividing by a factor of 33.3 to put cell size in common units with the Barik model.

Barik model

The Barik model was described in [3], and provides a detailed description of cell cycle dynamics

in the form of mass-action kinetics. The model equations are:

12



d[Cln3]

dt
= ks,n3

(
V 2

P 2

)
[Mn3]− γn3[Cln3]

d[ClbM ]

dt
= ks,bM

(
V

P

)
[MbM ]− kd,bMa

V
[Cdh1][ClbM ]− kd,bMi

V
[Cdh1PT ][ClbM ]− γbM [ClbM ]

d[ClbS]

dt
= ks,bS

(
V

P

)
[MbS]γbS[ClbS]

d[Cdc14]

dt
= ks,c14

(
V

P

)
+ (kd,r + γt1) [RENTT ]− ka,r

V
[Net1RT ][Cdc14]γc14[Cdc14]

d[SBF ]

dt
= ks,bfV + (kd,c + γi5) ([Cmp] + [CmpP1] + [CmpP2])

+

(
kd,bf
V

[Hbf ] +
k

′

d,bf

V
[Cdc14]

)
[SBFP1]

−
(
ka,c
V

([Whi5] + [Whi5P1] + [Whi5P2]) +
kp,bf
V

[ClbM ] + γbf

)
[SBF ]

d[SBFPi]

dt
=

kp,bf
V

[ClbM ][SBFPi−1] +

(
kd,bf
V

[Hbf ] +
k

′

d,bf

V
[Cdc14]

)
[SBFPi+1]

−

(
kp,bf
V

[ClbM ] +
kd,bf
V

[Hbf ] +
k

′

d,bf

V
[Cdc14] + γbf

)
[SBFPi]; 1 ≤ i ≤ 3

d[SBFP4]

dt
=

kp,bf
V

[ClbM ][SBFP3]−

(
kd,bf
V

[Hbf ] +
k

′

d,bf

V
[Cdc14] + γbf

)
[SBFP4]

d[Hbf ]

dt
= ks,hbf

(
V

P

)
[Mhbf ]− γhbf [Hbf ]

d[Whi5]

dt
= ks,i5

(
V

P

)
[Mi5] + (kd,c + γb,f ) [Cmp] +

(
kd,i5
V

[Hi5] +
k

′

d,i5

V
[Cdc14]

)
[Whi5P1]

−

(
ka,c
V

[SBF ] +
kp,i5
V

[Cln3] +
k

′
p,i5

V
[ClbS] + γi5

)
[Whi5]

13



d[Whi5Pi]

dt
= (kd,c + γb,f ) [CmpPi] +

(
kp,i5
V

[Cln3] +
k

′
p,i5

V
[ClbS]

)
[Whi5Pi−1]

+

(
kd,i5
V

[Hi5] +
k

′

d,i5

V
[Cdc14]

)
[Whi5Pi+1]

−

(
ka,c
V

[SBF ] +
kp,i5
V

[Cln3] +
k

′
p,i5

V
[ClbS] +

kd,i5
V

[Hi5] +
k

′

d,i5

V
[Cdc14] + γi5

)
[Whi5Pi]

1 ≤ i ≤ 2

d[Whi5Pi]

dt
=

(
kp,i5
V

[Cln3] +
k

′
p,i5

V
[ClbS]

)
[Whi5Pi−1] +

(
kd,i5
V

[Hi5] +
k

′

d,i5

V
[Cdc14]

)
[Whi5Pi+1]

−

(
ka,c
V

[SBF ] +
kp,i5
V

[Cln3] +
k

′
p,i5

V
[ClbS] +

kd,i5
V

[Hi5] +
k

′

d,i5

V
[Cdc14] + γi5

)
[Whi5Pi]

3 ≤ i ≤ 5

d[Whi5P6]

dt
=

(
kp,i5
V

[Cln3] +
k

′
p,i5

V
[ClbS]

)
[Whi5P5]−

(
kd,i5
V

[Hi5] +
k

′

d,i5

V
[Cdc14] + γi5

)
[Whi5P6]

d[Hi5]

dt
= ks,hi5

(
V

P

)
[Mhi5]− γhi5[Hi5]

d[Net1]

dt
= ks,t1

(
V

P

)
[Mt1] + (kd,r + γc14) [RENT ] +

kd,t1V

[
Ht1][NetP1]

−
(
ka,r
V

[Cdc14] +
kp,t1
V

[ClbM ] + γt1

)
[Net1]

d[Net1Pi]

dt
= (kd,r + γc14) [RENTPi] +

kp,t1
V

[ClbM ][Net1Pi−1] +
kd,t1
V

[Ht1][NetPi+1]

−
(
ka,r
V

[Cdc14] +
kp,t1
V

[ClbM ] +
kd,t1
V

[Ht1] + γt1

)
[Net1Pi]; 2 ≤ i ≤ 5

d[Net1Pi]

dt
=

kp,t1
V

[ClbM ][Net1Pi−1] +
kd,t1
V

[Ht1][NetPi+1]

−
(
kp,t1
V

[ClbM ] +
kd,t1
V

[Ht1] + γt1

)
[Net1Pi]; 6 ≤ i ≤ 7

d[Net1P8]

dt
=

kp,t1
V

[ClbM ][Net1P7]−
(
kd,t1
V

[Ht1] + γt1

)
[Net1P8]

d[RENT ]

dt
=

ka,r
V

[Cdc14][Net1] +
kd,nt
V

[Ht1][RENTP1]

−
(
kd,r +

kp,nt
V

[ClbM ] + γt1 + γc14

)
[RENT ]

14



d[RENTPi]

dt
=

ka,r
V

[Cdc14][Net1Pi] +
kp,nt
V

[ClbM ][RENTPi−1] +
kd,nt
V

[Ht1][RENTPi+1]

−
(
kd,r +

kp,nt
V

[ClbM ] +
kd,nt
V

[Ht1] + γt1 + γc14

)
[RENTPi]; 2 ≤ i ≤ 4

d[RENTP5]

dt
=

ka,r
V

[Cdc14][Net1P5] +
kp,nt
V

[ClbM ][RENTP4]

−
(
kd,r +

kd,nt
V

[Ht1] + γt1 + γc14

)
[RENTP5]

d[Ht1]

dt
= ks,ht1

(
V

P

)
[Mht1]− γht1[Ht1]

d[Cmp]

dt
=

(
ka,c
V

)
[SBF ][Whi5] +

(
kd,cm
V

[Hi5] +
k

′

d,cm

V
[Cdc14]

)
[CmpP1]

−

(
kd,c +

kp,cm
V

[Cln3] +
k

′
p,cm

V
[ClbS] + γb,f + γi5

)
[Cmp]

d[CmpP1]

dt
=

(
ka,c
V

)
[SBF ][Whi5P1] +

(
kp,cm
V

[Cln3] +
k

′
p,cm

V
[ClbS]

)
[Cmp]

+

(
kd,cm
V

[Hi5] +
k

′

d,cm

V
[Cdc14]

)
[CmpP2]−

(
kd,c +

kd,cm
V

[Hi5]

+
k

′

d,cm

V
[Cdc14] +

kp,cm
V

[Cln3] +
k

′
p,cm

V
[ClbS] + γb,f + γi5

)
[CmpP1]

d[CmpP2]

dt
=

(
ka,c
V

)
[SBF ][Whi5P2] +

(
kp,cm
V

[Cln3] +
k

′
p,cm

V
[ClbS]

)
[CmpP1]

−

(
kd,c +

kd,cm
V

[Hi5] +
k

′

d,cm

V
[Cdc14] + γb,f + γi5

)
[CmpP2]

d[Cdh1]

dt
= ks,h1

(
V

P

)
[Mh1] +

(
kd,h1
V

[Cdc14] +
k

′

d,h1

V

)
[Cdh1P1]

−

(
kp,h1
V

[ClbS] +
k

′

p,h1

V
[ClbM ] + γh1

)
[Cdh1]
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d[Cdh1Pi]

dt
=

(
kp,h1
V

[ClbS] +
k

′

p,h1

V
[ClbM ]

)
[Cdh1Pi−1] +

(
kd,h1
V

[Cdc14] +
k

′

d,h1

V

)
[Cdh1Pi+1]

−

(
kp,h1
V

[ClbS] +
k

′

p,h1

V
[ClbM ] +

kd,h1
V

[Cdc14] +
k

′

d,h1

V
+ γh1

)
[Cdh1Pi]; 2 ≤ i ≤ 9

d[Cdh1P10]

dt
=

(
kp,h1
V

[ClbS] +
k

′

p,h1

V
[ClbM ]

)
[Cdh1P9]−

(
kd,h1
V

[Cdc14] +
k

′

d,h1

V
+ γh1

)
[Cdh1P10]

d[Mn3]

dt
= ks,mn3P − γmn3[Mn3]

d[MbM ]

dt
= ks,mbMP − γmbM [MbM ]

d[Ga]

dt
=

ka,g
V

[SBF ] (P − [Ga])− kd,g[Ga]

d[MbS]

dt
= ks,mbSP − γmbS[MbS]

d[Mc14]

dt
= ks,mc14P − γmc14[Mc14]

d[Mhbf ]

dt
= ks,mhbfP − γmhbf [Mhbf ]

d[Mi5]

dt
= ks,mi5P − γmi5[Mi5]

d[Mhi5]

dt
= ks,mhi5P − γmhi5[Mhi5]

d[Mt1]

dt
= ks,mt1P − γmt1[Mt1]

d[Mht1]

dt
= ks,mht1P − γmht1[Mht1]

d[Mh1]

dt
= ks,mh1P − γmh1[Mh1]

[Net1RT ] =
5∑
i=0

[Net1Pi]

[RENTT ] =
5∑
i=0

[RENTPi]

[Cdh1PT ] =
10∑
i=1

[Cdh1Pi]

In this model, budding occurs when [ClbS] increases above 37.5nM. Division occurs when

[ClbM ] decreases below 12.5nM.
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3 Model parameters of particular interest

While there is not, in general, a straightforward mapping between parameters in different

models, there are sets of analogous parameters that represent similar molecular mechanisms.

These include parameters involved in cyclin synthesis and degradation (through the APC), as

discussed in the Main Text. Here, we detail which sets of parameters we consider to represent

these processes in each model.

Cln3 synthesis

The synthesis of the G1 cyclin Cln3 is represented in both the Chen and Barik models, and is

represented by the parameters Dn3 and ks,n3, respectively. The component X in the Pfeuty

model plays the role of initiating Start in this model, and its rate of synthesis is controlled by

the parameter sx,2.

Mitotic cyclin synthesis

The synthesis of mitotic cyclin is represented in both the Chen and Barik models, and is

represented by the parameters k
′

s,b2 and ks,bM , respectively.

APC synthesis

The APC subunit Cdc20 is represented in the Chen model, and its synthesis is represented

by the parameter k
′
s,20. The APC subunit Cdh1 is represented in the Barik model, and its

synthesis is represented by the parameter ks,h1.
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4 Sensitivity analysis

4.1 Computing sensitivities

In order to perform sensitivity analysis for a sustained change in parameters, the models are

first simulated from given initial conditions over multiple cycles until the state of the cell at

the beginning of the cell cycle had converged. At this point, the parameter is changed in a

step-wise fashion and the simulation continued, again until convergence of the state at the

beginning of one cycle. For the step change, the parameter under consideration was multiplied

by a factor of 1.001, corresponding to a 0.1% change in the parameter. This was found to be

a large enough change to make the sensitivity measurements unaffected by numerical errors

in the ODE solver, but small enough to give an accurate measure of the first-derivative of the

observables to changes in the parameter. The solver used was ode15s, in MATLAB, run with

absolute and relative tolerances of 10−10. Repeating the analysis with tolerances of 10−13 had

no significant effect on the results.

Having simulated cell cycle behaviour with the basal and perturbed sets of parameters, it is

possible to calculate the sensitivity of the observables to changes in the parameter in question

according to:

CQ
ki
≈ ki

∆Q

∆ki
(6)

Where ∆Q = Qperturbed−Qbasal and ∆ki/ki = 0.001. For a given parameter perturbation,

this sensitivity gives a first-order estimate of the change in behaviour:

∆Q1st =
∆ki
ki

.CQ
ki

(7)

An analogous calculation was performed for calculating the dynamic sensitivities, SQi

k , by

performing step changes in parameters at different times during the cell cycle and tracking

changes in behaviour down subsequent generations. An illustration of a similar simulation
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(though with larger changes in parameters) is shown in Supplementary Figure S1.

4.2 Characterising monotonic and nonmonotonic sensitivity

responses

In the Main Text, the pervasiveness of nonmonotonic changes in TG1 down generations in

response to a step-change in parameters is discussed (Figure 4). For a perturbation of a

parameter k at time t, the sensitivity of TG1 down generations is characterised by the sequence:

S
TG1,1

k (t), S
TG1,2

k (t), ..., S
TG1,n

k (t) (8)

In order to quantify montonicity, the sequence of S
TG1,i

k (t), i = 1, 2, 3 was evaluated for

monotonicity for each of the 60 timepoints for which sensitivity functions were computed. The

presented fractions of monotonic and nonmonotonic responses are thus the fraction of time

for which the function S
TG1,i

k (t) gives a monotonic or nonmonotonic response, respectively,

averaged across all parameters.

5 Combining parameter perturbations to produce the

same change in macroscopic behaviour

Different parameter perturbations may result in a wide range of different behaviours, both

in dynamic response and under constant conditions. In this context, it is useful to be able

to compare the dynamic responses of different parameter perturbations. This allows for

assessment of whether a parameter perturbation produces an especially fast or slow response

in cell cycle behaviour, for example. Since different parameter perturbations result in different

eventual cell cycle behaviours, it is not clear how comparisons of the dynamics of different

perturbations can be evaluated. In order to make such comparisons, it is possible to exploit

the linearity in the neighbourhood of the basal parameter set to find parameter perturbations

19



which result in identical changes in the eventual macroscopic cell cycle behaviour. In particular,

changes in behaviour are given by (following [7, 8]):

δVdiv
δTdiv

 =

CVdiv
ki

CVdiv
kj

CTdiv
ki

CTdiv
kj


δki/ki
δkj/kj

 (9)

Therefore, for two parameters with linearly independent sensitivity vectors (CVdiv
k , CTdiv

k )T ,

the parameter perturbation required to obtain the eventual change in behaviour (δVdiv, δTdiv)
T

is given by:

δη =

δki/ki
δkj/kj

 =

CVdiv
ki

CVdiv
kj

CTdiv
ki

CTdiv
kj


−1δVdiv

δTdiv

 (10)

The significance of this is illustrated in Supplementary Figure S7.

From the preceding analysis, it is clear that the cell cycle models considered are capable

of a multitude of different dynamic responses. One straightforward way of simplifying and

comparing these results is to consider what the average response is to a particular perturba-

tion, and how variable that response is. This is sensible in the context of perturbations of

populations of cells, where the timing of an external perturbation relative to the cell cycle

phase of a particular cell is essentially random. The average change in daughter cell size in

generation i is denoted by ¯δV dau,i and given by:

¯δV dau,i =
1

Tdiv

∫ Tdiv

t=0

δVdau,i(t)dt (11)

The distribution of daughter cell sizes around this average is characterised by the standard

deviation, given by σVdau,i :

σVdau,i =

√
1

Tdiv

∫ Tdiv

t=0

(
δVdau,i(t)− ¯δV dau,i

)2
dt (12)

Supplementary Figures S7C,E can be compared to assess how these values differ for the
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two example combinations of parameters considered here.

This analysis is useful for comparing the dynamics of cell cycle response to different param-

eter perturbations while avoiding artefacts resulting from differences in the eventual change

in behaviour elicited by these perturbations. In the case of the glucose signalling case study

(see Main Text), this allows assessment of the role of Net1 dephosphorylation in speeding up

the response to changes in glucose levels (Figure 6).

6 Analysis of phenomenological model of the cell cycle

under perturbations

6.1 Relationship between the durations of the G1 and S/G2/M

phases

In this section, we use the phenomenological model of the cell cycle to derive a strict rela-

tionship between the sensitivities of the G1 and S/G2/M phases to perturbations (Equation

11 in the Main Text).

Under constant conditions, the volumes of a cell at budding and division are given by:

Vdiv = Vbude
µTS/G2/M

Vdau = Vbude
−µTG1 (13)

These are related to the volume of the daughter cell at birth:

Vdiv − Vbud = Vdau (14)

Substituting, we get:
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Vbude
µTS/G2/M − Vbud = Vbude

−µTG1

=⇒ eµTS/G2/M − 1 = e−µTG1 (15)

Differentiating with respect to a generic parameter, k, fixing dµ/dk = 0, and noting

TG1 + TS/G2/M = Tdiv:

dTS/G2/M

dk
= −dTG1

dk
e−µTdiv (16)

Noting that the fraction of mother cell volume donated to the daughter cell at division, f ,

is given by:

f =
Vdau
Vdiv

=
Vdau

VdaueµTdiv

= e−µTdiv (17)

we obtain:

dTS/G2/M

dk
= −f dTG1

dk
(18)

6.2 Phase responses and fraction of mass donated to daughter cells

In this section, we use the phenomenological model to relate changes in cell cycle phase (i.e.

changes in the timing of cell cycle events relative to a reference case) to changes in cell volume

at budding and division at constant growth rate.

We consider a cell cycle which initially has a period T0, a size at division Vdiv,0, and

a daughter size Vdau,0, meaning the resulting fraction of volume given to the daughter
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cell is f0 = Vdau,0/Vdiv,0. Two perturbations are applied which result in changes in these

characteristics down generations. The first set of characteristics are labelled T1, T2, T3, ...,

Vdiv,1, Vdiv,2, Vdiv,3, ..., Vdau,1, Vdau,2, Vdau,3, ..., giving daughter fractions f1, f2, f3, ..., while

the second are labelled τ1, τ2, τ3, ..., νdiv,1, νdiv,2, νdiv,3, ..., and νdau,1, νdau,2, νdau,3, ..., giving

daughter fractions ρ1, ρ2, ρ3, .... Initially the cells are equally sized:

Vdau,0 = νdau,0 (19)

For subsequent generations, we have:

Vdau,i =
Vdau,i+1e

−Ti+1µ

fi+1

νdau,i =
νdau,i+1e

−τi+1µ

ρi+1

(20)

Thus after n generations, using the equality from Equation 19:

Vdau,n
n∏
i=1

e−Tiµ

n∏
i=1

fi

=

νdau,n
n∏
i=1

e−τiµ

n∏
i=1

ρi

(21)

Taking logarithms and rearranging:

n∑
i=1

(τi − Ti) =
1

µ
ln

(
νdau,n
Vdau,n

n∏
i=1

fi
ρi

)
(22)

Since the perturbations applied are, by assumption, temporary, we can take the limit as

n→∞, so that Vdau,n → νdau,n, and
n∑
i=1

(τi − Ti)→ ∆φ, where ∆φ is the phase difference,

as defined in Equation 12 (Main Text). This gives:

∆φ =
1

µ
ln

(
∞∏
i=1

fi
ρi

)
(23)
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This converges, since fn → ρn as n→∞. In practice, for parameter changes that last less

than a cell cycle period, this limit converges very rapidly (within a few generations). When the

comparison case is simply the eventual behaviour of the cell cycle under the basal parameter

set, we have ρi = f0, and fi = f0 + ∆fi, giving Equation 14 (Main Text), i.e.:

∆φ =
1

µ
ln

(
∞∏
i=1

f0 + ∆fi
f0

)
(24)

This demonstrates that, within the framework of this phenomenological model, there is a

strict relationship between changes in the timing of cell cycle events and the fraction of mass

donated to the daughter cell upon division.

6.3 Inferring the correspondence between cell cycle characteristics

of populations and single cells

In [9], cells were grown under 6 different nutrient limitations, each at 6 different growth

rates, and cell cycle characteristics were measured, and presented in the form of population

averages. These include the fraction of cells in G1 (denoted FG1), and the average cell size in

the population (denoted V̄ ). As discussed in the Main Text, the models consistently predicted

that, at constant growth rate, changes in Vdau and TG1 should be negatively correlated with

one another. This prediction was validated under a range of nutrient and genetic perturbations

using data from [2], as presented in Figure 2. However, in order to use averaged population

data from [9] to provide further validation, a correspondence between the population properties

(FG1 and V̄ ) and single-cell properties (TG1 and Vdau) must be found. We begin by relating

FG1 to TG1. FG1 is given by:

FG1 =
TG1,dau

Tdiv,dau
Fdau +

TG1,moth

Tdiv,moth
Fmoth (25)

Here, TG1,dau, Tdiv,dau, TG1,moth, and Tdiv,moth denote the durations of the G1 phases,

and the durations of the entire cell cycle, in daughter and mother cells, respectively. In

24



addition, Fdau and Fmoth denote the fractions of daughter and mother cells in the population,

respectively (Fdau + Fmoth = 1). Noting that mother cells spend little time in G1, we can

approximate FG1 as:

FG1 =
TG1,dau

Tdiv,dau
Fdau (26)

This demonstrates the expected proportional relationship between TG1,dau and FG1 (as has

been noted previously [10]).

In the case of the V̄ , we have:

V̄ = V̄dauFdau + V̄mothFmoth (27)

The average daughter cell size is given by:

V̄dau =
1

Tdiv

∫ Tdiv

0

Vdaue
µtdt

=
Vdau
µTdiv

(
eµTdiv − 1

)
(28)

For a mother cell, we assume that they are born at size Vbud and produce daughter cells

at intervals of TS/G2/M (i.e. their G1 phases are of negligible duration). Furthermore, we

approximate these values by their values in daughter cells. Thus, the averaged mother cell

size is given by:
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V̄moth =
1

TS/G2/M

∫ TS/G2/M

0

Vbude
µtdt

=
Vbud

µTS/G2/M

(
eµTS/G2/M − 1

)
=

Vdau
µTS/G2/M

(29)
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