#### **Supporting Information**

### Acute Exposure to Tris(1,3-dichloro-2-propyl) Phosphate (TDCIPP) Causes

#### Hepatic Inflammation and Leads to Hepatotoxicity

in Zebrafish

# Chunsheng Liu<sup>1,2,3,\*</sup>, Guanyong Su<sup>4,5</sup>, John P. Giesy<sup>5,6,7</sup>, Robert J. Letcher<sup>4</sup>,

Guangyu Li<sup>1</sup>, Ira Agrawal<sup>3</sup>, Jing Li<sup>1</sup>, Liqin Yu<sup>1</sup>,

Jianghua Wang<sup>1</sup>, Zhiyuan Gong<sup>3,\*</sup>

<sup>1</sup>College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China <sup>2</sup>Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province

<sup>3</sup>Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore

<sup>4</sup>Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada <sup>5</sup>State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

<sup>6</sup>Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatchewan S7N 5B3, Canada

<sup>7</sup>Department of Zoology and Centre for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States

#### \*Authors for correspondence:

| Prof. Chunsheng Liu,              | Prof. Zhiyuan Gong,                |
|-----------------------------------|------------------------------------|
| College of Fisheries,             | Department of Biological Sciences, |
| Huazhong Agricultural University, | National University of Singapore,  |
| Wuhan 430070, China               | Singapore 117543, Singapore        |
| Tel: 86 27 87282113               | Tel: 65162860                      |
| Fax: 86 27 87282114               | Fax: 67792486                      |
| Email: liuchunshengidid@126.com   | Email: <u>dbsgzy@nus.edu.sg</u>    |

| Gene Name | Sequence of the primers (5'-3')                                 | Amplicon size | Accession number |
|-----------|-----------------------------------------------------------------|---------------|------------------|
| tlr18     | Forward: ctagagtggcctcagcaacc<br>Reverse: ctcttcatctgggccttcag  | 183 bp        | NM_001089350.1   |
| tlr8a     | Forward: tgaggacgtgattgttctgc<br>Reverse: gcctggttgtcgactcgtat  | 171 bp        | AY389452.1       |
| tlr8b     | Forward: tgaagagggtgtgggatgtga<br>Reverse: caaacctaaccgcgtttctc | 170 bp        | AY389453.1       |
| tlr20a    | Forward: tttcgagaggctttgcgtat<br>Reverse: tgtcgtgtcccaactgaaag  | 178 bp        | AY389457.1       |
| tlr9      | Forward: atgcccaaacaaccagtctc<br>Reverse: gtaaaaggtgccgttttgga  | 196 bp        | NM_001130594.1   |
| fos       | Forward: gctccatctcagtcccagag<br>Reverse: agagtgggctccagatcaga  | 160 bp        | NM_205569.1      |
| stat1b    | Forward: ctccaggcactttccttctg<br>Reverse: cattggagcagcaagtgtgt  | 185 bp        | NM_200091.2      |
| irf7      | Forward: gcttcagtccagcaatcaca<br>Reverse: cgtatttgctcccctctcag  | 167 bp        | NM_200677.1      |
| gclc      | Forward: aaaatgtccggaactgatcg<br>Reverse: aacgtttccattttcgttgc  | 157 bp        | NM_199277.2      |
| gsr       | Forward: caaccttgaaaagggcaaaa<br>Reverse: aaactggatcctggcacatc  | 171 bp        | NM_001020554.1   |
| nqol      | Forward: ctcaaggatttgccttcagc<br>Reverse: cgcagcactccattctgtaa  | 169 bp        | NM_001204272.1   |
| chop      | Forward: atatactgggctccgacacg<br>Reverse: ttcgttcttcttgccttggt  | 198 bp        | NM_001082825.1   |
| grp78     | Forward: caagaagaagacgggcaaag<br>Reverse: ctcctcaaacttggctctgg  | 178 bp        | NM_213058.1      |
| il1b      | Forward: cgctccacatctcgtactca<br>Reverse: atacgcggtgctgataaacc  | 166 bp        | NM_212844.2      |
| il4       | Forward: gtgaatgggatcctgaatgg<br>Reverse: ttccagtcccggtatatgct  | 190 bp        | NM_001170740.1   |
| il6       | Forward: tcctggtgaacgacatcaaa<br>Reverse: tcatcacgctggagaagttg  | 177 bp        | NM_001261449.1   |
| il10      | Forward: atttgtggagggctttcctt<br>Reverse: agagctgttggcagaatggt  | 198 bp        | NM_001020785.2   |
| il22      | Forward: cttggaatcagacgagcaca<br>Reverse: ggccaaatccataattgcac  | 175 bp        | NM_001020792.1   |

Table S1 Sequences of primers for selected genes

# Table S1-Continued

| Gene Name | Sequence of the primers (5'-3') | Amplicon size   | Accession number  |
|-----------|---------------------------------|-----------------|-------------------|
| il13      | Forward: tcgggttttacgttgaaagg   | 107 bp          | NM_001199905.1    |
|           | Reverse: atctcctcctcagcctgaca   | 197 Up          |                   |
| il15      | Forward: ccagaacagggactggaaga   | 10 <b>2</b> h.c | NM_001039565.1    |
|           | Reverse: ccctggtgagtcttctcctg   | 192 bp          |                   |
| il12a     | Forward: gaactcctacaagcccagca   | 195 hr          | NM_001007107.1    |
|           | Reverse: cggatgtgaaacccttcagt   | 185 bp          |                   |
| il26      | Forward: aatgcagaactgtgcgactg   | 156 hn          | NM_001020799.1    |
|           | Reverse: cctgaactgatccacagcaa   | 150 bp          |                   |
| il34      | Forward: gaacatccacacgcatgaac   | 160 hm          | NM_001082955.1    |
|           | Reverse: aaaatgaaggagctggctga   | 100 bp          |                   |
| gapdh     | Forward: gatacacggagcaccaggtt   | 162 hn          | NIM 001115114 1   |
|           | Reverse: gccatcaggtcacatacacg   | 105 Up          | INIVI_001113114.1 |

|              | Control-1  | Control-2  | TDCPP-1    | TDCPP-2    |
|--------------|------------|------------|------------|------------|
| Clean reads  | 52,451,294 | 52,208,818 | 55,223,302 | 54,749,504 |
| Mapped reads | 35,069,242 | 35,194,969 | 37,665,881 | 37,621,973 |
| Percentage   | 66.86%     | 67.41%     | 62.21%     | 68.72%     |

Table S2 Number of clean reads and mapped reads, and their percentage (clean reads/clean reads) in control and TDCPP treatment groups.



**Figure S1:** Actual cycle threshold (Ct) values for glyceraldehyde-3-phosphate dehydrogenase (*gapdh*) in response to different concentrations of TDCIPP. Values represent mean  $\pm$  SEM. There were 3 replicated tanks for each concentration, and three fish from each tank were used and thus totally 9 fish were involved in each treatment.





Figure S2: Positions where membrane strips were obtained according to molecular weights of marker.



Figure S3: Measured concentrations of TDCIPP in exposure solutions at the last day of treatment. Value represent mean  $\pm$  SE (n=3).

Figure S4



**Figure S4:** Representative images for the composition of bases. T and C curves were in accordance with A and G curves, respectively in all the samples tested, therefore, our results showed satisfactory base composition.



**Figure S5:** Representative images for quality distribution of bases. The percentage of the bases with low quality (<20) was very low in all the samples tested, therefore, the sequencing quality was good in the present study.



**Figure S6:** Volcano plot showing the distribution of transcripts over different fold change and *P*-value between control and treatment groups. Green plots indicate down-regulated genes, with fold change <0.5 and P-value <0.05; Red plots indicate up-regulated genes, with fold change >2 and P-value <0.05.



**Figure S7:** Regression analysis between two different RNA-Seq groups based on the relative (log2) RPKM value of identified 583 genes.