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original MYC analysis (Example I, default POI) and four simulations with
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ample I, default POI) after replacing certain percentage (0%, 25%, 50%,
75%, 90%) of the 51 MYC target genes with noise (i.e., randomly chosen
genes). A: The number of significant contexts reported by GSCA at its
default cutoff. B: FDR. C: Sensitivity for detecting the 16 gold standard
MYC contexts. For each noise percentage, the noise replacement process
was repeated 5 times independently. The plots show the mean and range
of the five runs.

• Supplementary Figure 6: GSCA analysis of the SHH gene set with the
default POI using two different weighting schemes. A: Simple weighting
scheme where all genes have equal weights. B: Complex weighting scheme
where genes’ weights depend on their moderated t-statistics.

• Supplementary Figure 7: GSCA analysis of Oct4 and its target genes. A:
In the POI selected samples, Oct4 and its target gene activities are both
high. B: Oct4 and its target gene activities are both at medium level.
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Plots on the left show the POIs. Tables on the right show the enriched
biological contexts.

• Supplementary Figure 8: GSCA analysis of Gli1 and Nanog. A: Gli1 and
Nanog are both highly expressed. B: Gli1 is highly expressed and Nanog
is expressed at medium level. C: Gli1 is highly expressed and Nanog is
lowly expressed.

• Supplementary Figure 9: GSCA for one gene set illustrated using Oct4. A:
Complex POI can be defined as the union of multiple intervals, specified
interactively using multiple slider bars. B: The top 10 enriched biological
contexts associated with the chosen POI.

• Supplementary Figure 10: GSCA for multiple gene sets. A: High MYC,
high mitochondria, low fatty acid, and low glycolysis. B: High MYC, low
mitochondria, high fatty acid, and low glycolysis.

• Supplementary Figure 11: Using formula to define POI in the analysis of
MYC and three metabolic pathways (Example IV). The analysis in Figure
7A is similar to using formula-defined POI “MYC < quantile(MYC, 0.1) &Mitochondria >
quantile(Mitochondria, 0.9) &Glycolysis > quantile(Glycolysis, 0.9) & Fattyacid >
quantile(Fattyacid, 0.9)”. Here quantile() is the R function for comput-
ing quantiles. For example, quantile(s, 0.9) means 90th percentile of the
activity of gene set s in all samples. A: Screenshot for the GUI when
specifying POI using formula. B: Text box for inputting the formula. C:
The enriched biological contexts.

• Supplementary Figure 12: Illustration of permuting genes. A: Original
gene set activities of glycolysis and fatty acid gene sets. B-D: Gene set
activities after permuting genes. Three independent permutations are
shown.
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1 Sample Annotation

1.1 Annotation of biological contexts

The annotations of biological contexts used by GSCA is based on the sample
annotations provided by BARCODE [1]. The detailed annotation procedure
has been described previously in [1, 2]. Briefly, in order to annotate the biolog-
ical context associated with a sample, the metadata text annotation files (i.e.,
files named as GSM* and GSE*) linked to the sample were downloaded from
GEO. These text documents were read by an expert biologist. Based on infor-
mation extracted from multiple fields in these files, including “Title”, “Source
name”, “Characteristics”, “Description” and “Protocol”, the expert determined
the cell or tissue type of each sample, and the treatment or disease conditions
under which the sample was collected. The biological context of the sample is
then defined and annotated as the sample’s cell or tissue type and its associated
treatment or disease condition. For example, if a sample is obtained by treating
MCF7 cells with E2, then the biological context of the sample would be anno-
tated as “MCF7 cells: treated with E2”. Here the colon, “:”, separates the cell
or tissue type from the treatment or disease condition.

In our current annotation system, all biological contexts are disjoint. In
other words, each sample is only annotated with one biological context. Al-
though not currently available in GSCA, one could in principle annotate each
sample with multiple keywords, treating each keyword as a biological context.
For example, a sample can be annotated with “stem cell”, “embryonic stem
cell” and “undifferentiated” simultaneously, and each of these keywords defines
a biological context. In this way, each sample can belong to multiple biological
contexts. The keywords can be grouped into different categories (e.g., “male”
and “female” are two keywords for “gender”; “stem cell” and “neuron” are two
keywords for “cell type”), and there may be internal structures among keywords
(e.g., “embryonic stem cell” belongs to “stem cell”). If such a keyword-based
annotation is available, one can generalize the current GSCA to test the asso-
ciation of a POI with each keyword. This may make the analysis more flexible.
Unfortunately, a structured annotation system based on keywords is still not
available for the BARCODE data. Creating such annotations is non-trivial. It
requires one to compile and curate an ontology of keywords and analyze GEO
annotation documents by text mining. Because the GEO annotation texts are
very noisy (e.g., there are many typos and non-standard use of terminology), a
sample annotation with good quality also requires one to combine text mining
with machine learning and human expert curation. Currently, we are working
on building such a system. However, it will take time before this system is fully
tested and becomes mature. For this reason, GSCA currently does not provide
such an annotation system which we plan to incorporate in the future when it
matures and is systematically evaluated.
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1.2 Annotation comprehensiveness

To see whether the major tissues and cell types are covered by our annotations,
we compiled a list of 30 major tissue types and a list of 167 major cell types by
manually integrating information from the TiGER database [3], ENCODE [4]
and human expert knowledge (Supplementary Table 1). We checked whether
these contexts were covered by our sample annotations. It turns out that the
majority of these tissues and cell types was found in our annotations (Supple-
mentary Table 1). Specifically, among the 30 tissue types, 28 (93.3%) were
covered by our human PED annotations, 28 (93.3%) were covered by our mouse
PED annotations, and 29 (96.7%) were covered by either the human or mouse
annotations. Among the 167 cell types, 119 (71.3%) were covered by our human
PED annotations, 113 (67.7%) were covered by our mouse PED annotations,
and 137 (82.0%) were covered by either human or mouse. These results indi-
cate that the annotations used by GSCA provide a good coverage of the major
tissues and cell types.

For tissues and cell types that were not found in our annotations, we asked
why they were missing. In particular, we were interested to know whether they
were missing because of the lack of corresponding samples in our PED com-
pendium, or whether they were missing only because our sample annotation
was not comprehensive enough to cover these terms even though samples from
these tissues and cell types were available in our PED compendium. To an-
swer this question, we downloaded GEO metadata for all samples in our PED
compendium. The metadata contained detailed text descriptions about each
sample (i.e., texts in GEO GSE* and GSM* files that describe sample ori-
gins, experimental procedures, etc.). The information in these text documents
is more comprehensive than the BARCODE annotation, because the original
BARCODE annotation was extracted from these raw texts by a human expert.
Using these text documents, we evaluated whether the BARCODE annotation
was able to capture the key information in the raw metadata. To do this, we
searched the tissue and cell type names in the downloaded text documents. The
results are summarized in Supplementary Table 1. It turns out that all 30 tissue
types were found in the raw human metadata, and 28 (93.3% of 30) of them
were covered by the BARCODE annotation. For mouse, 28 (93.3%) of the 30
tissue names were found in the raw metadata, and all these 28 (100% of 28) were
covered by the BARCODE annotation. For the 167 cell types, 120 (71.9% of
167) were found in the raw human metadata. Among them, 119 (99.2% of 120)
were covered by the BARCODE annotation. Similarly, 114 (68.3% of 167) cell
type names were found in the raw mouse metadata. Among them, 113 (99.1%
of 114) were covered by the BARCODE annotation. Thus, most tissue and
cell type names present in the raw metadata were captured by the BARCODE
annotation. These results indicate that the tissues and cell types not found in
the BARCODE annotation were missing mainly because relevant samples were
not available in our PED compendium, and the annotation procedure itself was
of good quality and was able to capture key context information available in the
raw GEO metadata.
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We note that in principle gene expression data for each tissue or cell type
could be collected under many different conditions (e.g., at different time points,
under different treatments, etc.). The combinations of different factors such as
tissue/cell type, time, and treatment, etc. can easily create an unlimited number
of biological contexts. It is unrealistic to expect our PED compendium and an-
notation to cover all of these contexts since not all of them have been studied by
the scientific community. On the other hand, GSCA is under continuous devel-
opment. As new data become available, we expect that our PED compendium
and annotation will become more comprehensive. Importantly, even though our
current PED compendium and annotation may not cover all biological contexts,
they do cover a broad spectrum of tissues and cell types which can provide a
reasonably good view of the global gene expression landscape in human and
mouse. As demonstrated by the original BARCODE study [1], samples from
these diverse contexts span both ends of the expression spectrum (i.e., high
and low expression) for most genes, and therefore one can reliably tell whether
a gene’s expression in a particular sample is high or low by comparing it to
the gene’s expression in all other samples. Our examples in this article further
demonstrate that GSCA is capable of recovering known relationships between
gene sets and biological contexts (e.g., Oct4 – embryonic stem cell, MYC – B
cell lymphoma). These results confirm that, given the diversity of the currently
available samples, incompleteness of our PED compendium and annotation is
not a major concern for users to determine the relative high or low activity of
a gene set, define POI accordingly, and subsequently identify contexts available
in our PED compendium that are associated with the POI.

Clearly, GSCA will not be able to report any biological context that is not
present in our PED compendium. Therefore, interpreting GSCA results as
“all” biological contexts associated with a POI will be incorrect and misleading.
Users should avoid interpreting data in such a way. However, for the purpose of
exploring available data and using them to discover new relationships between
gene set activities and biological contexts (rather than finding all such relation-
ships), GSCA provides a valuable tool for the community. Our examples (e.g.,
MYC – Ewing tumor relationship discussed in Example I) show that even with
the data and annotation currently available in our compendium, one can make
new discoveries and learn many new things. Without GSCA, using PED to do
a similar analysis would be difficult.

2 Positive and Negative Weights for Defining
Gene Set Activity

We use a simple example to illustrate the use of positive and negative weights
to integrate anti-correlated genes. Consider the problem of using target genes
of a transcription factor (TF) to study the TF regulatory activity. E2f7 and
Pink1 are two target genes of transcription factor MYC. It is known that E2f7
is activated whereas Pink1 is repressed by MYC in murine T-lymphoma cell
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[5]. The scatter plot in Supplementary Figure 1A shows that the expression
of E2f7 is positively correlated with Myc expression in our Affymetrix Mouse
Genome 430 2.0 Array (GPL1261) compendium (Pearson correlation = 0.487).
In the scatter plot, each dot represents a sample in the compendium. Similarly,
Supplementary Figure 1B shows that the expression of Pink1 is negatively cor-
related with Myc expression (Pearson correlation = −0.440). When we combine
E2f7 and Pink1 to create a target gene set of MYC and assign weight wg = 1
to E2f7 and wg = −1 to Pink1, the gene set activity computed using formula
(1) in the main article has higher correlation with the Myc expression (Pearson
correlation = 0.527) and hence better predicts MYC transcription factor activ-
ity than each individual target gene (Supplementary Figure 1C). By contrast,
if we use wg = 1 for both E2f7 and Pink1, the resulting gene set activity (i.e.,
the mean expression of E2f7 and Pink1 ) does not correlate with Myc expres-
sion very well (Supplementary Figure 1D, Pearson correlation = 0.088). This
shows how the positive and negative weights provide a natural way to integrate
information from anti-correlated genes into a single consolidated measure that
may be used to conveniently study certain biological questions of interest, such
as comparing TF regulatory activities across samples.

3 Installation of GSCA software

GSCA and its supporting data packages are distributed through GitHub [6] and
Bioconductor [7]. The best way to use GSCA is to install and run it on users’
own computers. To do so, users have to first download and install R from [8].
They also need to install at least one of the four PED compendia from Bio-
conductor [9, 10, 11, 12]. For instance, the compendium of Affymetrix Human
Genome U133A Array can be installed by typing the following commands in R:

> source("http://bioconductor.org/biocLite.R")

> biocLite("Affyhgu133aExpr")

Next, users can install the latest GSCA from GitHub by typing the following
commands in R:

> source("http://bioconductor.org/biocLite.R")

> biocLite("rhdf5")

> if (!require("devtools"))

+ install.packages("devtools")

> devtools::install_github("GSCA","zji90")

Alternatively, one can also install GSCA from Bioconductor following the
instructions in [13]. However, since the Bioconductor only updates its packages
twice per year, GSCA installed from Bioconductor may not be the most up-to-
date version.

After installation, one can start the GUI by typing the following commands
in R:
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> library(GSCA)

> GSCAui()

Users are referred to a demonstration video at [14] to learn how to use
GSCA. Users who are familiar with R programming can also run GSCA using
command-line mode. The instructions for using GSCA as R commands are
included in the GSCA package documentations.

For users who only want to do a one-time analysis, we also created an online
web service to help them run GSCA directly online without the need to install
R, GSCA or PED compendia on their own computers. The link to the web
service is provided on the GSCA homepage at GitHub [6]. The online version,
however, can be slow depending on the job load of the web server.

4 Defining POI Using Formulas

In GSCA, the POI can also be defined using formulas such as “Gene set A
< ((Gene set B + Gene set C)/2)”. The formulas can be defined using the
arithmetic and logical operators in R following the grammar of R programming
language. For example, one can use arithmetic operators such as +, −, ∗, /
and logical operators such as ‘<’, ‘<=’, ‘>’, ‘>=’, ‘&’ (AND), ‘|’ (OR), ‘!’
(NOT), etc. To demonstrate, Supplementary Figure 2A shows an analysis of
MYC and its 51 core target genes as an example. In this example, we used
the following formula to define POI: (MYC + 2)2 + (MYC TG− 2)2 ∗ 10 < 4.
This POI defines an ellipse and is similar to the POI interactively specified
in Figure 3E. Supplementary Figure 2A shows the samples selected by this
formula-defined POI. The enriched biological contexts are shown in Supple-
mentary Figure 2B,C. Once again, Wilms tumor was found in the enriched
contexts, similar to the results from the interactive POI analysis in Figure
3E,G. Supplementary Figure 2D shows another example in which we analyzed
two metabolic gene sets, glycolysis and fatty acid oxidation, used in Exam-
ple II and Figure 5. Here, we defined the POI using formula “Glycolysis <
Fattyacid & Fattyacid > 4”. The POI defined by this formula is very similar
to the POI interactively defined in Figure 5B. Supplementary Figure 2D shows
the selected samples, and Supplementary Figure 2E,F shows that these samples
were enriched in liver, consistent with the interactive POI analysis in Figure
5B. When users define POI using formulas, they can also use R functions in the
formula. This is demonstrated in Example IV and Supplementary Figure 11,
where the POI is defined by “MYC < quantile(MYC, 0.1) & Mitochondria >
quantile(Mitochondria, 0.9) &Glycolysis > quantile(Glycolysis, 0.9) & Fattyacid >
quantile(Fattyacid, 0.9)”. Here quantile() is a function in R to determine quan-
tiles.
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5 Analysis of Sensitivity

Generally speaking, evaluating sensitivity for GSCA is not easy. Unlike FDR
which can be estimated by performing a targeted literature search based on
the GSCA reported biological contexts (which is tedious but still feasible), ob-
jectively evaluating sensitivity requires one to have a comprehensive or large
enough list of true relationships between biological contexts and a POI which is
seldom available. With this practical constraint, we used the MYC analysis (i.e.,
Example I) to obtain a rough idea of sensitivity because MYC is relatively well-
studied in the literature. Even for this well-studied TF, its functional contexts
with direct experimental proof has not been systematically cataloged before. For
evaluation purpose, we instead obtained a list of 16 biological contexts reviewed
by [15] that are MYC-related based on previously documented MYC overex-
pression or amplification. MYC TF is likely (but not guaranteed) to play a
functional role in these contexts. These 16 contexts were compiled independent
of our GSCA analysis. We used them as “gold standard” to study sensitivity
by evaluating what proportion of them was discovered by GSCA in our MYC
analysis using the default POI (i.e., high MYC and high MYC target gene set
activity in Example I). It turns out that 14 of the 16 gold standard contexts
were present in our PED compendium, and 2 contexts were not covered by our
PED compendium (Supplementary Table 3). In the GSCA analysis, a total of
127 biological contexts appeared in the default POI region (i.e., these contexts
had at least one sample showing the POI). These 127 contexts covered 13 gold
standard contexts, representing 92.86% of the 14 gold standard contexts avail-
able in our PED compendium and 81.25% of all 16 gold standard contexts. Not
all of the 127 contexts appearing in the POI region passed the default signifi-
cance cutoff defined by adjusted p-value < 0.05 and fold change > 1.5. Among
these 127 contexts, 30 contexts passed the cutoff and were reported by GSCA.
These 30 contexts covered 7 gold standard contexts, translating into a sensitiv-
ity of 50% (7/14) for recovering the 14 gold standard contexts available in our
PED compendium and a sensitivity of 43.75% (7/16) for recovering all 16 gold
standard contexts. When interpreting these sensitivities, it is important to keep
several things in mind.

First, besides the 7 significant contexts, 6 other gold standard contexts ap-
peared in the POI region but they did not pass the default reporting cutoff.
A careful examination shows that these contexts had large fold change but
they did not pass Fisher’s exact test because of small sample size. Here the
sample size refers to the total number of samples a context has in the PED
compendium. Supplementary Figure 3A shows the sample size distribution for
five different types of biological contexts: (1) contexts with at least one sample
in the POI region that passed the default significance cutoff and hence reported
by GSCA (“Contexts with POI, Significant”), (2) contexts with at least one
sample in the POI region that did not pass the default significance cutoff and
hence not reported by GSCA (“Contexts with POI, Not Significant”), (3) the
7 gold standard MYC contexts with at least one sample in the POI region that
were reported by GSCA (“Known MYC contexts with POI, Significant”), (4)
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the 6 gold standard MYC contexts with at least one sample in the POI region
that were not reported by GSCA (“Known MYC contexts with POI, Not Signif-
icant”), (5) all contexts in the PED compendium (“All contexts”). This figure
shows that the 6 gold standard MYC contexts appearing in the POI region but
not passing the significance cutoff had smaller sample size (median sample size
= 3) compared to the significant contexts reported by GSCA. The small sam-
ple size has limited the statistical power for detecting these contexts because
one cannot get sufficiently small p-values. These 6 contexts, however, had rela-
tively large fold change (Supplementary Figure 3B, median = 11.2, min = 3.7,
max = 13.4). As our PED compendium continues to grow, the sample size of
each context is expected to grow. This can potentially increase the statistical
power for detecting the contexts that are currently missed by GSCA. To pro-
vide a better picture, we performed the following simulation study based on the
MYC example. For each biological context c in our Affymetrix Human Genome
U133A compendium, we multiplied the total number of samples (nc) as well as
the number of samples with POI (kc) by a factor α (α= 1.5 or 2) to mimic the
sample size increase, and we rounded αnc and αkc to their closest integers. As
sample size increases, one also expects the number of contexts in the PED com-
pendium to increase. Therefore, we also simulated a number of new contexts
and added them to the compendium so that the total number of contexts in the
compendium became βC after adding the new contexts. Here C is the original
number of contexts in the compendium, and β = α or 2α. This yields four
(α, β) combinations (1.5, 1.5), (1.5, 3), (2, 2), (2, 4). To keep the sensitivity
and FDR calculation conservative, the newly generated contexts were assumed
to be unrelated to MYC (i.e., we assume that when PED expands, all newly
added contexts are noise). Accordingly, in order to generate these new con-
texts, we first excluded all MYC-related contexts from our PED compendium.
The excluded contexts include all the literature supported MYC contexts in
Supplementary Table 3 and the 16 pre-compiled gold standard MYC contexts
used for sensitivity calculation. After excluding these MYC-related contexts,
we randomly sampled the remaining contexts with replacement and used their
updated sample sizes and POI sample counts (αnc, αkc) to serve as the sam-
ple sizes and POI sample counts for the new contexts. After adding the new
contexts to the existing PED compendium, the total number of samples in the
PED compendium was increased from N to approximately αβN . For example,
if the sample size of each context is increased from nc to 1.5nc and the number
of contexts is increased from C to 1.5C, then the total sample number will be
increased to approximately 1.5 ∗ 1.5N = 2.25N (i.e., approximately doubled).
For each combination of α and β, the whole simulation process was repeated 5
times. For each simulation, we recalculated the sensitivity based on the 16 gold
standard MYC contexts. The FDR was recomputed following the same proce-
dure described previously based on the MYC-context relationships supported
by the literature listed in Supplementary Table 3. Here we treated all simulated
new contexts as false discoveries. Supplementary Figure 4 shows the sensitivity
and FDR for each (α, β) combination. For all combinations of α and β, the
sensitivity increased to 81.25% (i.e., all 13 gold standard contexts appearing in
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the POI region became significant) and the FDR stayed around 30% to 35%.
This simulation shows that with the continual growth of PED compendium, the
sensitivity of GSCA can be greatly increased.

Second, although the data currently available in GSCA may not provide
the power to discover everything through Fisher’s tests, our examples in the
article such as the MYC - Ewing tumor relationship demonstrate that one can
still make many new predictions and discoveries using the current GSCA. These
new findings can greatly expand people’s current knowledge about genes and
pathways. Without a tool like this, large amounts of valuable information in
PED will remain unutilized. Compared to not using these data at all, being able
to use them to make new discoveries already represents a significant progress
even if one may only partially reconstruct the truth. Clearly, it is important
to continually expand our data collection and increase the power of GSCA.
However, data collection is a continual effort. It is not necessary to wait until
enough data from all contexts are collected (which may take many years of time)
before making this tool available to allow people benefit from it.

Third, Fisher’s test is mainly used to screen for biological contexts whose
association with POI cannot be trivially explained by chance. As shown above,
biological contexts truly associated with the POI but without sufficient support
from the PED (e.g., due to small sample size) may be filtered out by such tests.
If users only want to use GSCA to explore the data (e.g., screen for “possible
hypotheses” rather than “hypotheses that are unlikely to occur by chance”),
or if they have other types of data to further screen or validate the biological
contexts reported by GSCA, they may ignore the Fisher’s test. For instance,
in the MYC example, one may ask GSCA to return all contexts appearing in
the POI region and then use other data sources to determine which biological
contexts are most relevant. In this way, 13 (81.25%) of the 16 gold standard
MYC contexts would pass the initial GSCA screen.

6 Impact of Noisy Gene Set

A question of interest is what will happen if one uses a gene set that is not
well studied and contains some noise. In general, for a poorly studied gene
set, it is difficult to compute the sensitivity and FDR since the true relevant
biological contexts are largely unknown. Thus, in order to answer this question,
we again took the advantage of the relatively well-studied MYC example. We
replaced x percent (x = 25%, 50%, 75%, 90%) of genes in the MYC target gene
set with genes randomly drawn from the microarray. We then reran GSCA
(default POI) using MYC and the new target gene set. We computed sensitivity
using the 16 pre-complied MYC contexts as described above in the “Analysis of
sensitivity” section, and computed FDR based on the support from literature
listed in Supplementary Table 3. For each x, Supplementary Figure 5 shows
the number of biological contexts reported at the Bonferroni adjusted p-value
cutoff of 0.05, and the corresponding sensitivity and FDR. The simulation was
repeated 5 times for each x. The figure shows the mean and range of the five
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runs. These results show that replacing ≤ 50% of the MYC target genes by noise
only resulted in small changes in the number of reported contexts, sensitivity and
FDR. The performance decrease was obvious only when > 75% of MYC target
genes were replaced by noise. When the noise percentage was bigger than 75%,
increasing the noise level decreased the number of significant contexts reported
by GSCA. At the same time, the sensitivity also decreased, while the empirical
FDR increased. This analysis indicates that GSCA is relatively robust to noises
in the gene sets.

7 Demonstration of Non-integer weights

While +1 and −1 are the most commonly used weights in GSCA, weights other
than ±1 can sometimes help users to obtain more accurate results. To demon-
strate, we used GSCA to analyze a gene set derived from a study of sonic hedge-
hog (SHH) signaling pathway in mouse developing forelimbs [16]. SHH signaling
is known to play an important role in the limb bud development. The SHH pro-
tein has a higher concentration in posterior portion of the forelimbs compared to
their anterior portion. Previously, we have generated gene expression data for
both anterior and posterior portions of mouse forelimbs using Affymetrix Mouse
Exon 1.0ST Arrays. These data are stored in GEO (accession no.: GSE11063).
Using these data, one can derive SHH target genes by searching for genes that
have significantly higher expression in posterior forelimbs compared to anterior
forelimbs. To demonstrate GSCA, we downloaded the GeneBASE [17] normal-
ized gene expression profiles for this study from GEO. We then applied limma
[18] to the normalized and log-transformed data to detect genes up-regulated in
the posterior forelimbs. 18 up-regulated genes were obtained at the 10% FDR
cutoff. The number of differentially expressed genes was small because this
dataset has relatively low signal-to-noise ratio. The data contained high techni-
cal noise because developing limb buds are tiny and precisely cutting forelimbs
into an anterior part and a posterior part according to a fixed ratio of area is
difficult. The 18 genes found above are expected to contain SHH target genes.
Treating these genes as one gene set, we performed GSCA analysis using two
different weighting schemes.

1. Simple weighting: +1 were used as weights for all genes since they are all
up-regulated in posterior forelimbs.

2. Complex weighting: weights were computed based on the 18 moderated
t-statistics reported by limma. The moderated t-statistics were linearly
scaled to the [0,1] interval such that after scaling, the minimum and max-
imum values of the 18 moderated t-statistics became 0 and 1 respectively.
These scaled statistics were then used as weights.

For both weighting schemes, GSCA was run in the one gene set mode using
the default POI (i.e., gene set activity ≥ mean + 1*SD). The results are shown
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in Supplementary Figure 6 and Supplementary Table 4. While these two differ-
ent weighting schemes reported a number of common biological contexts, there
were also clear differences. In particular, medulloblastoma, a known context of
SHH function [19, 20], was identified by the complex weighting scheme as the
top significant context (Supplementary Table 4, the context ranked no.1 in the
complex weighting sheet), whereas the simple weighting scheme did not find it.
The complex weighting scheme also discovered cerebellar tumor from Olig2-tva-
cre:SmoM2 mice (rank no.10) which was not reported by the simple weighting
approach. The SMO protein is a core component in the SHH pathway that
relays the SHH signal. SmoM2 is a gain-of-function mutant of Smo gene that
turns on the SHH pathway constitutively [16]. Therefore, SHH target genes are
expected to be turned on in this context. SHH is also known to play important
roles in embryonic head development [21]. While the complex weighting scheme
found embryonic head tissues to be significant, they were not reported by the
simple weighting scheme. The contexts found by the simple weighting scheme
but not by the complex weighting scheme include adult liver, tail epidermis and
cervix. Currently the SHH signaling is not known to have significant functions
in these contexts. This example illustrates that a complex weighting scheme
can be useful in certain applications by producing more accurate results.

8 GSCA Analysis of Gli1 and Nanog

Like Oct4, Nanog is a critical pluripotency marker that is expressed in embry-
onic stem cells [22]. Neural stem cells also express Nanog, and require secreted
Hedgehog signaling to maintain proliferation and to regulate differentiation [23].
While the mechanisms of this regulation are likely to be complex, two recent
studies have shown that Hedgehog signaling helps regulate NANOG by activat-
ing GLI transcription factors [24, 25]. Given the widespread expression of Nanog
in pluripotent cell populations, we asked if Nanog and the Hedgehog target gene
Gli1 might be co-expressed in other biological contexts using GSCA. Samples
with high Gli1 and low Nanog expression were enriched in medulloblastoma
(Supplementary Figure 8C), consistent with the known role of Hedgehog signal-
ing in a major subset of this tumor type [20]. Samples with high Gli1 and high
Nanog expression were enriched in various types of stem cells, including embry-
onic stem cells where they had not been previously associated (Supplementary
Figure 8A). Intriguingly, there is also a group of samples with high Gli1 and
medium level of Nanog expression. These samples, which cannot be analyzed
using ChIP-PED, were enriched in fetal mouse testes (Figure 4B, Supplemen-
tary Figure 8B). This points to a new biological context to potentially study
GLI1 and NANOG interactions.
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9 GSCA Analysis of Oct4

Supplementary Figure 9 shows an analysis of Oct4 in the compendium of
Affymetrix Mouse Genome 430 2.0 Array. Here the POI is defined interactively
based on setting sliders on a plot that sorts the samples according to the gene
set activity (Supplementary Figure 9A). One may add multiple sliders to define
multiple intervals and then use their union as the POI. Samples whose gene set
activity falls within these intervals will be selected for enrichment analysis. The
samples chosen in Supplementary Figure 9A had either high or medium Oct4
expressions. The enriched biological contexts mainly included undifferentiated
or differentiating embryonic stem cells (Supplementary Figure 9B), consistent
with the master regulator role of Oct4 in stem cells.

10 Caveats in Statistical Inference

10.1 Interpretation of statistical significance in interactive
analysis

In GSCA, the interactive POI function is mainly provided to help users con-
veniently explore the data and generate hypotheses. Users have to be careful
when interpreting the adjusted p-values from the interactive analysis. The in-
terpretation depends on how the analysis is carried out.

In one common scenario (scenario 1), a group of samples shows an interesting
expression pattern (e.g., the POI in Figure 5B) but the pattern cannot be easily
defined using a few simple cutoffs like “gene set activity > 1.0”. In such a
scenario, defining POI interactively (e.g., by drawing a polygon) allows one to
conveniently select those samples. Here, one has a rough idea of what expression
pattern is of interest based on looking at the histogram, scatter plot or heat map.
One also has a specific question in mind, that is, “what biological contexts
are associated with these samples that show this interesting pattern”. The
interactive POI is primarily used to help one formalize the question, and the
POI is defined before one looks at the GSCA results (i.e., before knowing what
biological contexts are enriched). For applications of this type, the adjusted
p-value reported by GSCA can be used as a statistical significance measure as
long as one does not repeatedly tune the POI based on the GSCA results to
make the findings “more significant”.

In another scenario (scenario 2), one does not have a clear idea of what
expression patterns are interesting, and one wants to repeatedly try different
POIs until something “significant” is found. For example, one may tune the
POI after looking at GSCA results to make the reported p-values smaller. In
such a scenario, the adjusted p-values reported by GSCA no longer reflect the
true error rates because of data snooping, and therefore they can no longer be
interpreted as a formal statistical significance measure. Large adjusted p-values
may still be used by users to filter out biological contexts that lack sufficient data
support for their association with the POI. However, small adjusted p-values do
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not necessarily imply that the discoveries are statistically significant, and users
should use other independent sources of information to help with determining
whether they are real signals or just noise.

Measuring statistical significance of a data snooping procedure that involves
human-machine interactions is still an open problem in statistics. Moreover, in
practice when users perform the analyses, the GSCA software does not know
which scenario users are in. Therefore, the software will always report the
adjusted p-values which will be useful for users in scenario 1. However, these
p-values should not be interpreted as a formal statistical significance measure in
scenario 2. It is important that users are aware of the differences between these
two scenarios and their implications in order to avoid misusing or misinterpreting
the adjusted p-values.

10.2 Correlations among samples

GSCA currently uses Fisher’s exact test to filter out biological contexts for which
the available data are not enough to support that their occurrence in the POI
region is nonrandom. Users should bear in mind that p-values from hypothesis
testing are always based on assumptions made in the null hypotheses, and p-
values should be interpreted with respect to these assumptions. Fisher’s exact
test assumes that samples are independent. Therefore, the adjusted p-values
reported by GSCA characterize statistical significance under this assumption.
Since samples may not be perfectly independent in real data, we always recom-
mend users to use other independent sources of information to further validate
biological contexts with small adjusted p-values whenever possible. At the same
time, users may still use large adjusted p-values to help them filter out contexts
without strong data support.

We also explored the possibility to evaluate statistical significance without
assuming sample independence. Statistical significance can be evaluated using
permutations. There are two basic ways to do permutations: permuting samples
or permuting genes. Permuting samples retains the correlation structure among
genes, but it can break the correlation among samples. Permuting genes retains
the correlation structure among samples, but it can break the correlation among
genes. Conceptually, Fisher’s test is based on permuting samples’ biological
context labels. Permuting data in this way does not change the gene expression
landscape, that is, histograms such as Figure 6A, scatter plots such as Figure
3D and E, or heat maps such as Figure 7A will remain unchanged after the
permutation. However, the permutation changes how the samples are labeled
and hence the distribution of each biological context in the expression landscape.
This is the approach currently used by GSCA.

Instead of permuting samples, we tried to permute genes in order to keep
the inter-sample correlation. In this approach, genes’ labels are permuted, but
we keep samples’ biological context labels unchanged. The approach retains
the correlation structure among samples, but it breaks the correlation among
genes. Permuting genes is equivalent to replacing the test gene sets by random
gene sets. In other words, consider a POI defined using one or multiple gene
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sets. Suppose there are n samples in the PED compendium annotated with
biological context c, and among them k samples have the POI. In order to
test whether these k samples represent a significant enrichment of context c
in the POI, we replace each original gene set with a random gene set having
the same number of randomly selected genes. This is done by permuting all
gene labels in our microarray compendium. After permutation, the gene set
activities are recalculated. Suppose a total of J permutations are carried out,
and kj represents the number of samples from the biological context c whose
gene set activities in permutation j show the original POI. The raw p-value
for testing the association between context c and the POI is then calculated as∑

j
δ(kj≥k)
J , where δ(.) is an indicator function. When testing this approach,

we found that it has a problem, that is, the gene expression landscape of the
random gene sets usually is very different from the gene expression landscape
of the original gene sets. As a result, the original POI used to analyze the test
gene sets is no longer meaningful after permutation. Supplementary Figure 12
provides an example of permuting genes for glycolysis and fatty acid gene sets
in Example II, Figure 5B. Supplementary Figure 12A shows the original gene
set activities. The POI was defined by a polygon interactively drawn to select
a group of samples with high fatty acid pathway activity but medium level of
glycolysis activity. One is interested in these samples since they are separated
from the main cloud of other samples. This POI region contained samples from
17 different contexts. Supplementary Figure 12B-D shows gene set activities
obtained from three different gene permutations. In all three cases, the gene
set activity landscape was substantially different from the original landscape,
and the original POI region did no longer contain any sample. In fact, when
we repeated the gene permutation procedure, this phenomenon occurred in all
permutations. As a result, the Bonferroni corrected p-values based on permuting
genes were 0 for all 17 contexts appearing in the original POI region, including
contexts with only one or two samples in the PED compendium. By contrast, in
Fisher’s test, only 9 of the 17 contexts passed the adjusted p-value < 0.05 cutoff.
Thus, permuting genes has led to much smaller p-values and more optimistic
conclusions than permuting samples. This was simply because permuting genes
changed the expression landscape and made the original POI irrelevant in the
new landscape. This phenomenon is very common and we observed it for almost
all other gene sets we have analyzed. Thus, even though permuting genes may
allow one to retain the inter-sample correlation, it is empirically less stringent
than Fisher’s exact test, likely because the gene independence assumption is
more unrealistic than the sample independence assumption. For this reason, we
adopted the more stringent Fisher’s exact test in GSCA.

An alternative way to handle correlation among samples is to directly model
the correlation and incorporate the samples’ variance-covariance structure into
the analysis. For example, one may borrow the idea used by ROAST [26] where
the sample variance-covariance is accounted for through a sample weight ma-
trix, or the idea of CAMERA [27] that directly estimates the variance inflation
caused by correlation. In order to use these approaches, however, one needs
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to know how samples are correlated. More precisely, if one uses a samplewise
statistic zi to indicate whether sample i shows the POI (zi = 1) or not (zi = 0),
then one needs to know the variance-covariance structure of zi among different
samples. There are a number of challenges here. First, zi is a function of genes’
expression values (denoted as yi) of sample i. The function is determined by
the POI. This function is usually non-linear and can be very complex since POI
can be arbitrary. The correlation structure of zi is not equivalent to the corre-
lation structure of yi. In other words, the correlation between two samplewise
statistics zi and zj from two samples i and j cannot be simply estimated us-
ing the correlation between the two gene expression vectors yi and yj . These
two correlations can be very different, and there is no known method with the-
oretical guarantee that can convert the correlation between yis to correlation
between zis. Moreover, since each sample only has one observed value of zi
for a given PED compendium and a given POI, directly estimating the corre-
lation among zis is difficult due to the lack of degree of freedom. Second, the
variance-covariance matrix of the PED samples is a high-dimensional matrix
due to the size of the PED compendium. Even if one can use the correlation
structure of yis to infer the correlation structure of zis, estimating such a high-
dimensional variance-covariance matrix is known to be challenging in statistics.
Third, for exploratory analysis, it is important that the computation is fast and
does not take hours to run. Unfortunately, efficiently estimating and operating
on a high-dimensional variance-covariance matrix is difficult, and currently we
have not yet found a statistically and computationally efficient solution that
is suitable for the application settings of GSCA. For these reasons, methods
such as ROAST and CAMERA currently cannot be directly adapted to GSCA.
Whether one can develop similar methods suitable for GSCA that can appropri-
ately and efficiently handle both the inter-sample correlation and the inter-gene
correlation is an important topic for future investigation.
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Supplementary Figure 1: Illustration of using positive and negative weights in
computing gene set activity. A: The expression of E2f7 (y-axis) is positively
correlated with Myc expression (x-axis). The Pearson correlation coefficient is
shown above the plot. B: Pink1 is negatively correlated with Myc. C: When
the weight for E2f7 is 1 and the weight for Pink1 is −1, the gene set activity
defined using the weighted average of E2f7 and Pink1 expression is positively
correlated with Myc, and the correlation is stronger than (A) and (B). D: When
the weights for E2f7 and Pink1 are both equal to 1, the gene set activity is
equal to the average expression of E2f7 and Pink1. It is not strongly correlated
with Myc.
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Rank Active Total FoldChange Adj.Pvalue SampleType ExperimentID

1 33 90 13.823 6.31*E-27 favorable_histology_wilms_tumor:nonrelapseGSE10320

2 18 53 12.715 3.7*E-13 favorable_histology_wilms_tumor:relapse GSE10320

3 10 24 15.275 1.26*E-07 mammary_gland:tumor GSE6596

4 9 18 18.094 1.38*E-07 yolk_sac_tumor:tumor GSE10615

5 9 44 7.64 0.00111 b_cell_precursor:acute_lymphoblastic_leukemiaGSE13280

6 60 1266 1.804 0.00164 breast:tumor GSE12093;GSE1456;GSE4922;GSE5462;GSE7390;GSE11121

7 3 3 28.816 0.0122 hematopoeitic_stem_cell_cb_+:normal GSE3823

8 3 3 28.816 0.0122 hematopoeitic_stem_cell_cb_++:normal GSE3823

9 4 9 15.335 0.0359 cd14+_cells:normal GSE11943

F Rank Active Total FoldChange Adj.Pvalue SampleType ExperimentID

1 8 9 129.212 8.09*E-15 liver:hcvassociated_hepatocellular_carcinomaGSE14323

2 10 21 73.404 8.53*E-15 kidney:normal GSE781;GSE6344

3 6 9 96.934 2.46*E-09 liver:normal GSE2004;GSE2361

4 5 5 134.658 5.23*E-09 liver:hepatocellular_adenoma GSE7473

5 4 4 129.312 9.05*E-07 liver:ihca GSE11819

6 4 4 129.312 9.05*E-07 liver:non_tumoral GSE7473

7 4 4 129.312 9.05*E-07 liver:tumor GSE9536

8 4 6 92.366 1.35*E-05 small_intestine:normal GSE13083

9 3 3 121.292 0.000154 lncap_cells:rti6413018,_24hr GSE4636

Supplementary Figure 2: Illustration of defining POI using formulas. A: Analy-
sis of MYC and its 51 core target genes in Example I. The POI is defined using
formula “(MYC + 2)2 + (MYC TG− 2)2 ∗ 10 < 4”. Samples in the POI region
are highlighted by dark black. B: Top enriched biological contexts in (A) and all
their samples are shown in color. C: The top two enriched biological contexts in
(A) are both related to Wilms tumor. D: Analysis of glycolysis and fatty acid
oxidation gene sets in Example II. The POI is defined using formula “Glycolysis
< Fattyacid & Fattyacid > 4”. Samples in the POI region are highlighted by
dark black. E: Top enriched biological contexts in (D) and all their samples are
shown in color. F: The top enriched biological contexts in (D) are liver.
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Supplementary Figure 3: Sample size and fold change distribution of five dif-
ferent types of biological contexts. A: Violin plots showing the distribution of
log2(sample size) (i.e., log2(nc)). B: Violin plots showing the distribution of
log2(fold change) (i.e., log2(fc)). From left to right, the five biological context
types are (1) contexts appearing in the POI region that passed the significance
cutoff of GSCA, (2) contexts appearing in the POI region that did not pass the
GSCA significance cutoff, (3) the 7 gold standard MYC contexts appearing in
the POI region that passed the GSCA significance cutoff, (4) the 6 gold stan-
dard MYC contexts appearing in the POI region that did not pass the GSCA
significance cutoff, (5) all contexts in the PED compendium.
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Supplementary Figure 4: Sensitivity and FDR of GSCA in simulations with
increasing sample size. In the simulation study, the sample size per context
is increased by multiplying a factor α, and the number of context is increased
by multiplying another factor β. The total sample count in the compendium is
approximately αβN after simulation where N is the original total sample count.
For each (α, β), the simulation was run five times, and the average performance
of these five runs is shown. A: Sensitivities for detecting the 16 gold standard
MYC contexts in the original MYC analysis (Example I, default POI) and four
simulations with different (α, β). B: FDR.
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Supplementary Figure 5: GSCA performance in the MYC analysis (Example
I, default POI) after replacing certain percentage (0%, 25%, 50%, 75%, 90%)
of the 51 MYC target genes with noise (i.e., randomly chosen genes). A: The
number of significant contexts reported by GSCA at its default cutoff. B: FDR.
C: Sensitivity for detecting the 16 gold standard MYC contexts. For each noise
percentage, the noise replacement process was repeated 5 times independently.
The plots show the mean and range of the five runs.
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Supplementary Figure 6: GSCA analysis of the SHH gene set with the default
POI using two different weighting schemes. A: Simple weighting scheme where
all genes have equal weights. B: Complex weighting scheme where genes’ weights
depend on their moderated t-statistics.
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Rank Active 
kc

Total 
nc

FoldChange 
(Nkc+K)/(Knc+K)

Adj.Pvalue SampleType ExperimentID

1 8 8 118.259 7.1*E-15 e14tg2a_cells:normal GSE4308;GSE4309

2 4 4 106.533 3.6*E-06 es_cell_control:es_cell_control GSE14012

3 4 4 106.533 3.6*E-06 es_cells:ctr9_esirna_day4 GSE12078

4 4 4 106.533 3.6*E-06 es_cells:luc_esirna_day4 GSE12078

5 4 4 106.533 3.6*E-06 ips_clone:ips_clone GSE14012

6 5 12 51.199 1.89*E-05 embryonic_stem_cells:r1,_undifferentiated_mouse_embryonic_stem_cells;_fractionated_polysomal_rnaGSE9563

7 5 13 47.542 3.06*E-05 embryonic_stem_cells:normal GSE10476;GSE10573;GSE10553;GSE10806

8 3 3 99.938 0.00051 embryonic_stem_cell:es_cells_heterozygous_for_dicer_date_of_analysis_16082006GSE7141

9 3 3 99.938 0.00051 induced_pluripotent_cells:ips_cells_2_factorsGSE10806

10 3 3 99.938 0.00051 v65_embryonic_stem_cells:normal GSE8024

A

Rank Active 
kc

Total 
nc

FoldChange 
(Nkc+K)/(Knc+K)

Adj.Pvalue SampleType ExperimentID

1 5 5 61.988 5.05*E-07 embyoid_body_e14:normal GSE8128

2 4 4 59.549 3.93*E-05 embryoid_bodies:neuralized_embryoid_bodies_treated_with_500nm_retinoic_acidGSE4936

3 4 4 59.549 3.93*E-05 embryoid_bodies:neuralized_embryoid_bodies_treated_with_500nm_retinoic_acid_and_1m_of_hh_agonist_(hhag)GSE4936

4 4 4 59.549 3.93*E-05 oocyte:gv_oocyte_from_old_mice_(66_weeks)GSE11667

5 4 4 59.549 3.93*E-05 oocyte:gv_oocyte_from_young_mice_(6_weeks)GSE11667

6 4 4 59.549 3.93*E-05 oocyte:mii_oocyte_from_old_mice_(66_weeks)GSE11667

7 4 4 59.549 3.93*E-05 oocyte:mii_oocyte_from_young_mice_(6_weeks)GSE11667

8 4 8 33.083 0.00264 embryo:b6d2_2cell_scnt_embryos GSE6595

9 4 8 33.083 0.00264 mef:neo(r)_mefs_derived_from_chimeric_mice_generated_from_nanoggfp_ips_cells_with_inducible_lentivirus_expressing_oct4,_klf4,_sox2_and_cmycGSE10871

10 3 3 55.89 0.00302 embryonic_stem_cells:cag_150_embryonic_stem_cells_following_six_days_of_neuronal_differentiation,_replicate_oneGSE9760

B

Supplementary Figure 7: GSCA analysis of Oct4 and its target genes. A: In
the POI selected samples, Oct4 and its target gene activities are both high. B:
Oct4 and its target gene activities are both at medium level. Plots on the left
show the POIs. Tables on the right show the enriched biological contexts.
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Rank Active 
kc

Total 
nc

FoldChange 
(Nkc+K)/(Knc+K)

Adj.Pvalue SampleType ExperimentID

1 8 8 81.127 1.78*E-13 e14tg2a_cells:normal GSE4308;GSE4309

2 9 12 63.176 3.71*E-13 embryonic_stem_cells:r1,_undifferentiated_mouse_embryonic_stem_cells;_fractionated_polysomal_rnaGSE9563

3 6 6 78.265 1.79*E-09 es_cells:ezh2null_es_cells_at_day_0_(undifferentiated)GSE12982

4 6 13 39.133 2.89*E-06 embryonic_stem_cells:normal GSE10476;GSE10573;GSE10553;GSE10610;GSE10806

5 4 4 73.114 1.7*E-05 es_cell_control:es_cell_control GSE14012

6 4 4 73.114 1.7*E-05 es_cells:ctr9_esirna_day4 GSE12078

7 4 4 73.114 1.7*E-05 es_cells:luc_esirna_day4 GSE12078

8 3 3 68.607 0.00161 embryonic_stem_cell:es_cells_heterozygous_for_dicer_date_of_analysis_16082006GSE7141

9 3 3 68.607 0.00161 embryonic_stem_cells:embryonic_stem_cell_transfected_with_mir290_clusterGSE8503

10 3 3 68.607 0.00161 embryonic_stem_cells:embryonic_stem_cell_transfected_with_sirlGSE8503

Rank Active 
kc

Total 
nc

FoldChange 
(Nkc+K)/(Knc+K)

Adj.Pvalue SampleType ExperimentID

1 3 3 239.5 3.36*E-05 testes:strain:_cd1;pool_size:_5;sex: 
_m;developmental_stage:_gd_12; 
theiler_stage20;somite_count:_na; 
developmental_landmark:_na

GSE4818

2 3 3 239.5 3.36*E-05 testes:strain:_cd1;pool_size:_na;sex: 
_m;developmental_stage:_gd_14; 
theiler_stage:22;somite_count:_na; 
developmental_landmark:_na

GSE4818

3 3 5 159.667 0.000335 testes:strain:_cd1;pool_size:_2;sex: 
_m;developmental_stage:_gd_11; 
theiler_stage:18;somite_count:_na; 
developmental_landmark:_na

GSE4818

B

Rank Active 
kc

Total 
nc

FoldChange 
(Nkc+K)/(Knc+K)

Adj.Pvalue SampleType ExperimentID

1 20 21 23.719 5.85*E-25 cerebellum:primary_tumor_cells_ 
isolated_from_conventional_patched 
_medulloblastomas

GSE12430

2 7 7 22.911 1.45*E-07 cerebellum:cerebellar_tumor_from_olig2tvacre:smom2_miceGSE11859

3 7 7 22.911 1.45*E-07 frontonasal_prominence_tissue_e120:normalGSE7759

4 7 7 22.911 1.45*E-07 frontonasal_prominence_tissue_e125:normalGSE7759

5 7 7 22.911 1.45*E-07 mandibular_prominence_tissue_e100:normalGSE7759

6 7 7 22.911 1.45*E-07 mandibular_prominence_tissue_e110:normalGSE7759

7 7 7 22.911 1.45*E-07 mandibular_prominence_tissue_e120:normalGSE7759

8 7 7 22.911 1.45*E-07 mandibular_prominence_tissue_e125:normalGSE7759

9 7 7 22.911 1.45*E-07 maxillary_prominence_tissue_e115:normalGSE7759

10 7 7 22.911 1.45*E-07 maxillary_prominence_tissue_e120:normalGSE7759

C

A

Supplementary Figure 8: GSCA analysis of Gli1 and Nanog. A: Gli1 and Nanog
are both highly expressed. B: Gli1 is highly expressed and Nanog is expressed
at medium level. C: Gli1 is highly expressed and Nanog is lowly expressed.
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Rank Active 
kc

Total 
nc

FoldChange 
(Nkc+K)/(Knc+K)

Adj.Pvalue SampleType ExperimentID

1 20 20 11.666 1.71*E-19 inner_cell_mass_cell:gene_expression_data_from_ 
single_icm_cells_(e35)

GSE4307;GSE4309

2 19 20 11.085 3.99*E-17 single_cell_from_blimpko_blimp1nulltranscrippositive,_oct4+_cells_at_ls0b:gene_expression_data_from_blimpko_blimp1nulltranscrippositive_cell_(ls0b)GSE11128

3 17 17 11.577 3.42*E-16 single_cell_from_lineagerestricted_pgc_precursors_at_latestreak0bud_stage(blimp1+,_oct4+):gene_expression_data_from_single_lineagerestricted_pgc_precursors_(latestreak0bud_stage)GSE11128

4 13 13 11.399 8.39*E-12 embryonic_stem_cells:normal GSE9954;GSE10476;GSE10573;GSE10776;GSE10610;GSE10806;GSE10553

5 12 12 11.337 1.05*E-10 embryoid_bodies:r1,_differentiated_day5_embryoid_bodies_from_mouse_escs;_fractionated_polysomal_rnaGSE9563

6 12 12 11.337 1.05*E-10 embryonic_stem_cells:r1,_undifferentiated_mouse_embryonic_stem_cells;_fractionated_polysomal_rnaGSE9563

7 15 23 7.666 1.41*E-08 testis:normal GSE10744;GSE10246;GSE9954

8 10 10 11.181 1.61*E-08 single_cell_from_posterior_mesoderm_cells_at_base_of_allantois_at_emb_(blimp1,_oct4+,_hoxb1+):gene_expression_data_from_posterior_mesoderm_cell_(emb)GSE11128

9 8 8 10.955 2.48*E-06 e14tg2a_cells:10_pg_amplified GSE4308;GSE4309

10 8 8 10.955 2.48*E-06 e14tg2a_cells:normal GSE4308;GSE4309
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O
ct

4 

A

B

Supplementary Figure 9: GSCA for one gene set illustrated using Oct4. A:
Complex POI can be defined as the union of multiple intervals, specified inter-
actively using multiple slider bars. B: The top 10 enriched biological contexts
associated with the chosen POI.
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A Rank Active 
kc

Total 
nc

FoldChange 
(Nkc+K)/(Knc+K)

Adj.Pvalue SampleType ExperimentID

1 5 15 270.574 1.44*E-09 293_hek_cells:6070%_confluent_human_embryonic_kidney_cell_were_split_into_suspension_overagarose_to_form_spheroids_and_grown_for_an_additional_4_days_insuspension_over_agarose_prepared_with_10%_fbs_supplemented_dmem;following_growth,_media_was_removed_and_the_spheroids_were_stored_on_thesurface_of_the_agarose_in_vacuum_sealed_flasks_for_a_2_week_interval_at_roomtemperature_in_the_dark;the_samples_were_compared_against_unstored_controls_of_both_spheroids_andmonolayer_(at_6070%_confluence)samples_all_samples_were_conducted_intriplicate;rehydration_was_conducted_with_dmem_(invitrogen)_containing_10%fbs_up_tothe_final_72hr_rehydration_timepointGSE1455

B Rank Active 
kc

Total 
nc

FoldChange 
(Nkc+K)/(Knc+K)

Adj.Pvalue SampleType ExperimentID

1 36 286 12.576 4.92*E-28 blasts_and_mononuclear_cells:leukemiaGSE1159

2 5 14 33.477 0.000113 whole_blood:grp GSE2888

3 5 19 25.108 0.00063 liposarcoma_culture:gene_expression_data_from_primary_liposarcom_cultures_incubated_with_pbs_as_control_for_24_hGSE12972

4 4 19 20.096 0.0219 liposarcoma_culture:gene_expression_data_from_primary_liposarcom_cultures_incubated_with_doxorubicin_(05_gml)_for_24_hGSE12972

Supplementary Figure 10: GSCA for multiple gene sets. A: High MYC, high mi-
tochondria, low fatty acid, and low glycolysis. B: High MYC, low mitochondria,
high fatty acid, and low glycolysis.
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A

B

Rank Active Total FoldChange Adj.Pvalue SampleType ExperimentID

1 12 12 79.982 2.08*E-21 vastus_lateralis:needle_biopsies_were_obtained_from_the_vastus_lateralis_muscle_of_6_copd_patients,722_yearold_males_before_and_after_3_months_of_training__rna_was_extracted_using_trizol_targets_were_produced_using_standard_affymetrix_procedures_from_about_4ug_of_total_rna;keywords_=_copd,_microarray,_exercise,_skeletal_muscle,_training_effectGSE1786

2 21 98 18.372 1.19*E-18 vastus_lateralis:normal GSE1786;GSE9105;GSE9676

3 11 20 45.39 3.08*E-14 left_ventricle:aos GSE10161

4 5 12 33.371 9.5*E-05 vastus_lateralis:gene_expression_data_from_skeletal_muscle_following_30_minutes_of_a_insulin_infusion_(80_mu_clamp)GSE9105

5 4 6 49.608 0.000169 vastus_lateralis:adequate_protein,_femaleGSE8441

6 4 7 43.407 0.000391 left_ventricle:control GSE10161

7 5 19 21.691 0.00131 vastus_lateralis:vastus_lateralis_muscle,_after_(s2)_antibody_enhancement,_fshd,_u133aGSE10760

8 3 4 52.138 0.00405 heart:sample_was_taken_immediately_after_cardiac_arrest_following_administration_of_standard_hyperkalemic,_cold_blood_cardioplegia_(30mlkg),_which_was_repeated_(20mlkg)_every_20_minutes;all_myocardial_samples_were_taken_from_the_rvot_through_the_tricuspid_valveGSE6381

9 3 5 43.448 0.01 vastus_lateralis:inadequate_protein,_maleGSE8441

10 3 6 37.242 0.0199 skeletal_muscle:24_hours GSE1295

C

Supplementary Figure 11: Using formula to define POI in the analysis of MYC
and three metabolic pathways (Example IV). The analysis in Figure 7A is similar
to using formula-defined POI “MYC < quantile(MYC, 0.1) &Mitochondria >
quantile(Mitochondria, 0.9) & Glycolysis >
quantile(Glycolysis, 0.9) & Fattyacid > quantile(Fattyacid, 0.9)”. Here
quantile() is the R function for computing quantiles. For example,
quantile(s, 0.9) means 90th percentile of the activity of gene set s in all
samples. A: Screenshot for the GUI when specifying POI using formula. B:
Text box for inputting the formula. C: The enriched biological contexts.

31



0 1 2 3 4 5 6

0
2

4
6

8

Fattyacid

G
ly

co
ly

si
s

●

●
●

●

●

●
●●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●
●

●
●

●

●●● ●●
●

●

●

●
●

●

●

●

●

liver:hcvassociated_hepat
kidney:normal
liver:normal
liver:hepatocellular_aden
small_intestine:normal
Selected Samples
Not Selected Samples

0 2 4 6

0
2

4
6

8

Fattyacid

G
ly

co
ly

si
s

● Selected Samples
Not Selected Samples

0 2 4 6

0
2

4
6

8

Fattyacid

G
ly

co
ly

si
s

● Selected Samples
Not Selected Samples

0 2 4 6

0
2

4
6

8

Fattyacid

G
ly

co
ly

si
s

● Selected Samples
Not Selected Samples

A B

C D

Supplementary Figure 12: Illustration of permuting genes. A: Original gene set
activities of glycolysis and fatty acid gene sets. B-D: Gene set activities after
permuting genes. Three independent permutations are shown.
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