
Additional file 1 — ERaBLE, in detail
In this additional file we show how ERaBLE computes the solution for problem (6). We start by

introducing some notation that allows us to rewrite the problem in matrix form.
Inputs and outputs. First, let α̂ = (α̂1, α̂2, . . . , α̂m)t and b̂ = (b̂1, b̂2, . . . , b̂τ)t designate the un-

knowns of the problem in column vector form, where τ = |E(T)| is the number of branches of the
topology T and the superscript t denotes the transpose operator. Let then δk be a vector listing all the
input distances δ(k)

ij for gene Gk in lexicographic order with respect to the taxon indices. For example, if
L1 = {1, 2, 4, 6}, then δ1 = (δ(1)

12 , δ
(1)
14 , δ

(1)
16 , δ

(1)
24 , δ

(1)
26 , δ

(1)
46)t. Similarly, let d̂ denote the vector containing the

additive distances d̂ij resulting from the branch lengths in b̂, again ordered lexicographically. Finally, let
d̂k be the vector that is obtained from d̂ by removing all the distances involving taxa not in Lk. Informally,
problem (6) requires the vectors α̂kδk and d̂k to be as close as possible, for all k ∈ {1, 2, . . . ,m}.

Topological matrices. Now, let A be the topological matrix representing T . This is a n(n−1)/2×τ
binary matrix, whose τ columns correspond to branches of T , and whose n(n− 1)/2 rows correspond to
pairs of taxa in L, in lexicographical order (see, e.g., [42]). A = (aij,e) is defined by setting aij,e = 1, if
e is on the path between i and j, and 0 otherwise. Moreover, let Ak be the |Lk|(|Lk| − 1)/2× τ binary
matrix that is obtained from A by removing all the rows corresponding to taxa not in Lk. Using these
notations, we can write d̂ = Ab̂, and d̂k = Ak b̂.

Weight matrices and vectors. LetWk be the square matrix of order |Lk|(|Lk|−1)/2 whose diagonal
entries are the weights w(k)

ij , and whose every other element is zero. Finally, let z = (Z1, Z2, . . . , Zm)t

and Z denote the sum of all Zk, for k = 1, 2, . . . ,m.
The problem and its resolution via Lagrange multipliers. Using the notation above, problem

(6) can be expressed as follows: minimizeα̂,b̂ Q(α̂, b̂) =
m∑
k=1

(α̂kδk −Ak b̂)tWk(α̂kδk −Ak b̂),

subject to ztα̂ = Z.

(8)

We solve problem (8) using the method of Lagrange multipliers [41]. This method relies on the
Lagrangian function, which here is given by L(α̂, b̂, λ) = Q(α̂, b̂) + λ(ztα̂−Z). A necessary condition for
(α̂, b̂) to be a solution of problem (8) is that all the partial derivatives of L be zero:

∇α̂,b̂,λL(α̂, b̂, λ) = 0. (9)

Although in general (9) is only a necessary condition for a minimum, here it is also sufficient, as
the function to minimize Q(α̂, b̂) is a sum of squares, thus convex, and the constraint is linear. Solving
problem (8) is thus equivalent to solving equation (9), which can be written as follows:

∂L
∂α̂k

= 0 ⇔ α̂kδ
t
kWkδk − δtkWkAk b̂+ Zkλ/2 = 0 m equations (k = 1, . . . ,m).

∇̂bL = 0 ⇔
m∑
k=1

(
AtkWkAk b̂− α̂kAtkWkδk

)
= 0 τ equations.

∂L
∂λ

= 0 ⇔ ztα̂ = Z 1 equation.

(10)

To simplify system (10) we define the following matrices: D is the m × m matrix whose diagonal
entries are the scalars δtkWkδk, and whose every other element is zero; B is the τ × m matrix whose
columns are the vectors −AtkWkδk; C is the τ ×τ matrix defined by C =

∑m
k=1 A

t
kWkAk. After dropping

the 1/2 coefficient for λ, as we are not interested in the value of the multiplier, system (10) can be written

1

as:
Dα̂+Btb̂+ λz = 0,

Bα̂+ Cb̂ = 0,
ztα̂ = Z.

(11)
(12)
(13)

Naïve matrix multiplication allows to calculate the coefficients of this system in O(mn4) time, as this is
dominated by the computation of C =

∑
k A

t
kWkAk, where each AtkWkAk can be obtained in O(τ2n2) =

O(n4) time (using the fact that Wk is diagonal). Adding to this the time taken by standard algorithms
for the resolution of this system in O(m + n) equations and unknowns, we get to a total complexity of
O(mn4 + (n+m)3) time for the naïve algorithm. For the data sets typical in phylogenomics this would
be unfeasible. Below, we show how to bring this down to O(mn2 + n3) time.

Efficient solution of the linear system. First isolate α̂ in (11):

α̂ = −D−1(Btb̂+ λz
)
. (14)

Then substitute α̂ in (13) and isolate λ:

λ = −Z + ztD−1Btb̂

ztD−1z
= −Z + utb̂

ω
,

where we define the vector u = BD−1z and the scalar ω = ztD−1z. Replace then λ in (14) with the
expression just obtained:

α̂ = D−1
(
−Btb̂+ z

(Z + utb̂

ω

))
= D−1

(zut
ω
−Bt

)
b̂+ Z

ω
D−1z. (15)

Then replace α̂ with expression (15) in equation (12):

0 = Bα̂+ Cb̂ =
(
C + uut

ω
−BD−1Bt

)
b̂+ Z

ω
u.

If we let
M =

(
C + uut

ω
−BD−1Bt

)
,

then b̂ can be found by solving the following system:

Mb̂ = −Z
ω
u. (16)

Finally α̂ can be obtained by using the value found for b̂ in (15).
Remark on the scale of the results. Equations (16) and (15) — whose right-hand-sides are

directly proportional to Z — show that the solutions α̂ and b̂ scale proportionally with Z, the right-hand
side of the constraint in our problem (8). Since ERaBLE subsequently resets the scale of α̂ and b̂, by
multiplying them by the correction factor in equation (7), this shows that the value of Z is irrelevant to
the end results.

Uniqueness of the solution. If M is not invertible, then our optimization problem has multiple
solutions. This happens when the sequence coverage is insufficient, with pairs of taxa i, j in crucial
positions within T , such that δ(k)

ij is undefined for all k ∈ {1, 2, . . . ,m}. We note however that for the
data sets that we consider here — with at least hundreds of genes — it is very unlikely to encounter
this problem, unless the sequence coverage is extremely low. For example, the solution is unique for all
the data sets we used in our experiments (simulated or real, and whose matrices cover from 4 to 40
taxa). A precise mathematical characterisation of the data sets guaranteeing the uniqueness of solutions
is possible, but beyond the scope of this paper.

Computational complexity. M is a square matrix of order τ = O(n). The resolution of the linear
system in equation (16) can be carried out using standard algorithms in O(n3) time and O(n2) memory.

2

Taking into account all the other operations involved — most notably calculating all the coefficients of
this linear system — the total complexity of ERaBLE is then of O(n3 + mn2) time and O(n2 + mn)
memory (in addition to that used to store the inputs). This is dominated by the computation of the
entries in the matrices B,C,D, as we now show.

Computing matrix B. Bryant and Waddell [42] showed that it is possible to calculate the product
Atv, where A is a topological matrix for a tree with n leaves, and v is any vector with n(n−1)/2 entries,
with a time complexity of O(n2). This algorithm is trivially generalized to a partial topological matrix
Ak, meaning that we can calculate each column of B, that is −Atk(Wkδk), in O(n2) time, leading to a
total time complexity of O(mn2) for calculating B. Note that storing B requires O(mn) memory.

Computing matrix C. Recall that C =
∑m
k=1 A

t
kWkAk. We show that each each AtkWkAk can be

computed in O(n2) time, leading to a time complexity of O(mn2) for calculating C.
AtkWkAk is a τ × τ square matrix where each entry corresponds to a pair of branches e, f in T . It is

easy to see that the entries of this matrix can be expressed as follows:

(AtkWkAk)ef =
∑

i∈X∩Lk
j∈Y ∩Lk

w
(k)
ij , (17)

where X and Y denote the disjoint sets of taxa separated by both e and f , as shown in Fig. 6. (Formally,
X and Y are the disjoint sets of taxa such that any path from an element of X to an element of Y must
pass via both e and f .)

Figure 6 – X and Y are the disjoint sets of taxa separated by both e and f .

Now let C(k)
XY denote the right-hand side of Eqn. (17). We can calculate all the C(k)

XY values recursively:
– If X and Y are singletons with X = {i} and Y = {j}, then :

C
(k)
XY = C

(k)
ij =

{
w

(k)
ij if {i, j} ⊂ Lk,

0 otherwise.

– Otherwise, one of the two taxon sets, say, Y can be decomposed in a number of disjoint subsets
Y =

⋃d
i=1 Yi, corresponding to the subtrees of the tree rooted in f and having Y as leaf set. Then:

C
(k)
XY =

d∑
i=1

C
(k)
XYi

.

Since there are O(n2) C(k)
XY values to calculate, the entire matrix AtkWkAk can be filled in O(n2) time

and requires O(n2) memory to be stored.
Computing matrix D. Since D is a diagonal matrix, we only need to calculate and store the

elements on its diagonal, each of which can be trivially obtained in O(n2) time, leading to a total of
O(mn2) time and O(m) memory.

Other computations. All the remaining calculations can be done within complexities that are of
the same order as, or inferior to those detailed above. Thus b̂ and α̂ can be obtained in O(n3 + mn2)
time and O(n2 +mn) (auxiliary) memory.

3

