Additional file 2 – The choice of Z_k in the constraint

While testing ERaBLE we have realised that setting $Z_k = 1$ or $Z_k = N_k$, for all $k \in \{1, 2, \ldots, m\}$ can cause important overestimations of the scale factors $\hat{\alpha}_k$ for genes only present in a small group of closely related taxa. This phenomenon is strictly linked to the strong underestimation of a minority of gene rates — and the slight overestimation of the majority of gene rates — observed for SDM-based methods, which also use the constraint with $Z_k = 1$. In our experiments we have set $Z_k = N_k \sum_{i,j \in L_k} \delta_{ij}^{(k)}$, which largely solves this problem, despite being rather heuristic. In this additional file, we show the importance of the constraint used by ERaBLE with a very simple example.

We construct a small data set consisting of just two nucleotide alignments, those of exons ENSG000000 66654_THUMPD1_000 and ENSG00000127423_AUNIP_000 obtained from OrthoMaM after trimAl filtering. We call them G_1 and G_2 , respectively. For simplicity we only keep the sequences of six species, those in the set $L = \{Gorilla, Homo, Pan, Bos, Erinaceus, Sorex\}$. Since G_1 is only sampled in primates, we have $L_1 = \{ Gorilla, Homo, Pan\}$, and $L_2 = L$. Alignment lengths are $N_1 = 489$ for G_1 , and $N_2 = 855$ for *G*2. Figure [7](#page-0-0) shows a phylogenetic tree for these data.

Figure 7 – Maximum likelihood tree (PhyML with model $TN93+\Gamma_8$) obtained on the concatenation of the two alignments in the example.

Fig. [8](#page-1-0) shows the distance matrices estimated for *G*¹ and *G*² (left column), and the different behaviours of ERaBLE with $Z_k = 1$ and $Z_k = N_k \sum_{i,j \in L_k} \delta_{ij}^{(k)}$ (middle and right column, respectively). The behaviour for $Z_k = N_k$ is similar to that for $Z_k = 1$, and not shown here for brevity. A quick comparison of Δ_1 and Δ_2 suggests that the rate of G_1 is higher than that of G_2 (note that, in two cases out of three, $\delta_{ij}^{(1)}$ is more than the double than $\delta_{ij}^{(2)}$). We then expect that $\hat{\alpha}_1 < \hat{\alpha}_2$. However, when $Z_k = 1$, the opposite happens: solving problem [\(6\)](#page--1-0) leads to $\hat{\alpha}_1 = 1.73$ and $\hat{\alpha}_2 = 0.274$.

The key observation to understand why this happens is that Δ_1 only contains very closely related species (all great apes, see also Fig. [7\)](#page-0-0), so its distances are very small relative to many of those in Δ_2 , which can be up to about 30 times larger. As a consequence, if $\hat{\alpha}_1 \leq \hat{\alpha}_2$ the value of the objective function $Q(\hat{\alpha}, \hat{b})$ is dominated by the differences $\hat{\alpha}_2 \delta_{ij}^{(2)} - \hat{d}_{ij}$, that is, the difference between $\hat{\alpha}_2 \Delta_2$ and $\hat{D} = (\hat{d}_{ij})$. It is then intuitive that a way to reduce $Q(\hat{\alpha}, \hat{b})$ is to simultaneously reduce the scale of $\hat{\alpha}_2\Delta_2$ and $\hat{D} = (\hat{d}_{ij})$, which can be achieved by decreasing the value of $\hat{\alpha}_2$ (and consequently increasing that of $\hat{\alpha}_1$, given that for $Z_k = 1$ their mean is constrained to be 1).

This is precisely what is happening when setting $Z_k = 1$ in our example (middle column in Fig. [8\)](#page-1-0): instead of having $\hat{\alpha}_1 < \hat{\alpha}_2$, ERaBLE produces a small $\hat{\alpha}_2 = 0.274$ and a large $\hat{\alpha}_1 = 1.73$. Compared to the alternative constraint (right column), where we have $\hat{\alpha}_1 < \hat{\alpha}_2$ as expected, it is clear that this results

	<i>Input distances</i>						Trivial constraint $Z_k = 1$						Our constraint $Z_k = N_k$ $\sum_{i} \delta_{ij}^{(k)}$					
								$\hat{\alpha}_1$	$\hat{\alpha}_2$					$\hat{\alpha}_1$	$\hat{\alpha}_2$	$i,j \in L_k$		
								1.73	.274					0.538 1.00				
	Homo	Pan		Bos Erinac. Sorex			Homo	Pan	Bos	Erinac. Sorex			Homo	Pan	Bos	Erinac. Sorex		
Gorilla	.0203	.0135	Δ_1			Gorilla	.0351	.0233	$\hat{\alpha}_1 \Delta_1$			Gorilla	.0109	.0073	$\hat{\alpha}_1 \Delta_1$			
Homo		.0148				Homo		.0256				Homo		.0080				
Gorilla	.0087	.0099	.278	.354	.432	Gorilla	.0024	.0028	.0763	.0970	.118	Gorilla	.0087	.0099	.278	.354	.432	
Homo		.0062	.279	.342	.432	Homo		.0017	.0766	.0937	.118	Homo		.0062	.279	.342	.432	
Pan			.286	.345	.429	Pan			.0783	.0945	.118	Pan			.286	.345	.429	
Bos				.419	.422	Bos				.115	.116	Bos				.419	.422	
Erinac.	Δ_2				.446	Erinac.	$\hat{\alpha}_2 \Delta_2$.122	Erinac.	$\hat{\alpha}_2 \Delta_2$.446	
						Gorilla	.0127	.0117	.0777	.0985	.116	Gorilla	.0087	.0099	.284	.360	.424	
						Homo		.0104	.0774	.0983	.116	Homo		.0069	.280	.357	.420	
						Pan			.0764	.0973	.115	Pan			.282	.358	.422	
						Bos				.107	.124	Bos				.390	.454	
						Erinac.	\overline{D}				.122	Erinac.	\overline{D}				.447	

Figure 8 – **Changing behaviour of ERaBLE with different contraints.** In this example, ERaBLE is run on the two distance matrices Δ_1 and Δ_2 on the left. Setting $Z_k = 1$ results in the $\hat{\alpha}_k$ values and matrices $\hat{\alpha}_1 \Delta_1, \hat{\alpha}_2 \Delta_2$ and $D = (\hat{d}_{ij})$ in the middle column. Our chosen setting for Z_k results in more reasonable values for these quantities (right column), as explained in the text.

in significantly smaller differences $\hat{\alpha}_2 \delta_{ij}^{(2)} - \hat{d}_{ij}$ for most distances, the only exceptions being the three distances between primates. Note that the scale of $\hat{\alpha}_2\Delta_2$ cannot be reduced indefinitely, as then the scale of $\hat{\alpha}_1\Delta_1$ becomes too large, and the fit of \hat{D} with the distances between primates in the two rescaled distance matrices becomes too loose (note that for $Z_k = 1$ the distances between primates in $\hat{\alpha}_1 \Delta_1$ and $\hat{\alpha}_2\Delta_2$ already differ by an order of magnitude and the fit with \hat{D} is very poor).

The, admittedly heuristic, approach that we have adopted in our experiments, that is, setting $Z_k =$ $N_k \sum_{i,j \in L_k} \delta_{ij}^{(k)}$, essentially prevents the genes only appearing in few and closely related taxa from having an influence on the constraint. Thus, it is the $\hat{\alpha}_k$ for the remaining genes that are constrained to have a weighted average of 1 (where the weight depends on the length of their sequence, as in equation [\(5\)](#page--1-1)). As a consequence, these $\hat{\alpha}_k$ cannot be reduced together with \hat{D} , as we showed for $Z_k = 1$. In our example, the new constraint is $24 \cdot \hat{\alpha}_1 + 3838 \cdot \hat{\alpha}_2 = 3862$, which is roughly equivalent to imposing $\hat{\alpha}_2 = 1$. The results are then much more realistic than with $Z_k = 1$: for example the rescaled matrices $\hat{\alpha}_1 \Delta_1$ and $\hat{\alpha}_2 \Delta_2$ are now much closer on their common entries (right column in Fig. [8\)](#page-1-0).