Supplemental Data

Figure S1 (related to Figure 1): 5NT variants in the open and closed conformations labeled with MTSSL. Six double cysteine mutants were prepared: T124C/G398C, T124C/Q452C, T124C/K532C, K191C/G398C, K191C/Q452C and K191C/K532C. The line through the center of the C-terminal domain marks the rotation axis between the two states.

Figure S2 (related to Figure 2): CW-EPR spectra and DEER traces of MTSSL labeled 5NT variants in the apo (red) and ZnAMPCP-bound state (blue). A) CW-Spectra were collected on a Bruker EMX spectrometer using 10 mW microwave power level and a modulation amplitude of 1.6 G. B) DEER spectroscopy was performed on a Bruker 580 pulsed EPR spectrometer operating at Q-band frequency (33.9 GHz) with a standard four-pulse protocol at 83 K. Numbers indicate spin-labeled 5NT mutants T124C/G398C, T124C/Q452C, T124C/K532C, K191C/G398C, K191C/Q452C and K191C/K532C.

Figure S3 (related to Figure 2): Simulation of DEER distance distributions for 5NT variants with rotamer library from MMM. The program MMM was used to simulate the distance distributions of the six 5NT double mutants for seven open conformations (left). The "average" distance distribution of the seven open conformations is compared to the experimentally obtained DEER data (right).

Ensemble fit with crystal structures

Ensemble fit with MD models

P)

ensemble_size

sum

1× 1HPU_closed_A

40.0000

46.0000

ensemble: χ₁ (χ₂)

1×MD-27 93° (3.1°)

0.0007 0.0267

0.2696 0.2956 ensemble_size

sum

40.0000

46.0000 0.2672 0.3192

ensemble: $\chi_1(\chi_2)$

1× MD-54 78° (4.1°)

1× MD-280 7° (2.6°)

0.0013 0.0533

Ensemble fit with docked models

67° (6.4°) 1× o84 122° (21.6°) Figure S4 (related to Figure 3): Ensemble fit of 5NT EPR distance distributions with crystal structures, MD and docked models. The experimental data (red) and the fit with the given ensemble (green) are plotted for the apo and the ZnAMPCP data. Histograms are shown for ensemble fitting with a weight for the ensemble size (w_E) of 40. Statistics reflect the contribution of each mutant to the total score T ("sum") in ensemble fitting. The composition of each ensemble is given.

Figure S5 (related to Figure 5): Ensemble fitting based on the knowledge-based potential of the cone model (A-F) or with full-atom models of MTSSL attached to 5NT crystal structures (G-H). Given is the dependency of the Score (S), the free Score (S_{free}) and the number of models in the ensemble (N) on the weighting term for the ensemble size score (w_E). Distance distributions of 5NT in the apo and in the inhibitor-bound ZnAMPCP state were ensemble fitted with crystal structures, MD models or docked models for different w_E . Indicated values are the average of the best 10% of the fits with their standard deviations. For each weighting term the resulting S (- \blacksquare -), S_{free} (\cdots \Box -) and N (- \blacksquare -) is given.

Table S1 (Related to Figure 4): Classification of 300 models derived from targeted MD simulation of the 5NT domain motion. The classification is based on the χ_1 angle as defined by the linear path analysis of the closed-to-open-rotation of structures 1HPU_C to 1HP1_A.

Classification of MD-models	Range of MD-models	Rotational range χ_1	
open	MD-1 to MD-45, MD-47	$105.5 \le \chi_1 \le 80.0^\circ$	
int. 1	MD46, MD-48 to MD-66	$80.0^{\circ} < \chi_1 \le 65.0^{\circ}$	
int. 2	MD-67 to MD-90	$65.0^{\circ} < \chi_1 \le 50.0^{\circ}$	
int. 3	MD-91 to MD-141	$50.0^{\circ} < \chi_1 \le 35.0^{\circ}$	
int. 4	MD-142 to MD-167, MD-169, MD-172, MD-	$35.0^{\circ} < \chi_1 \le 20.0^{\circ}$	
	174, MD-175		
closed	MD-168, MD-170, MD-171, MD-173, MD-176	$20.0^{\circ} < \chi_1 \le 0.0^{\circ}$	
	to MD-300		

Table S2: Classification of 1000 models derived from docking of the N- and C-terminal domains of 5NT (Related to Figure 4). The classification is based on the χ_1 angle as defined by the linear path analysis of the closed-to-open-rotation of structures 1HPU_C to 1HP1_A.

	Classification of docked models	Rotational range χ_1
1	more-open	105° < χ ₁
2	Open	$105^\circ \le \chi_1 \le 80^\circ$
3	int. 1	80° < χ₁ ≤ 65°
4	int. 2	65° < χ ₁ ≤ 50°
5	int. 3	50° < χ ₁ ≤ 35°
6	int. 4	35° < χ₁ ≤ 20°
7	Closed	20° < χ₁ ≤ -5°
8	more-closed	-5° > χ ₁

crystal struct.	аро				ZnAMPCP				
	ensemble	Score	5	ensemble Score			ore		
all	10ID_B		0.29	1	1HPU_A 2USH_B		0.3	0.311	
124/398	10ID_B		0.033	38	1HPU_A		0.0	0.0195	
124/452	10ID_B		0.10	52	1HPU_A		0.0	0.0772	
124/532	10ID_B		0.03	15	1HPU_A		0.0	0.0594	
191/398	10ID_B		0.04	53	1HPU_A		0.0	0.0192	
191/452	10ID_B		0.020	65	1HPU_A		0.0	0.0476	
191/532	10ID_B		0.04	77	1HPU_A 2USH_B		0.0	0.0881	
MD models			anc	<u> </u>	7ηΔΜΦΟΡ				
NID HIOUCIS	ensemble	¥4	upc va	Score	ensemble			Score	
all	MD-27	93°	3.1°	0.2689	MD-280 MD-54	7° 78°	2.6°	0.2759	
124/398	MD-27	93°	3.1°	0.0250	MD-180 MD-54	15° 78°	6.5° 4.1°	0.0435	
124/452	MD-28	92°	4.0°	0.1076	MD-277 MD-54	7° 78°	2.2° 4.1°	0.0591	
124/532	MD-27	93°	3.1°	0.0268	MD-280	7° 90°	2.6°	0.0570	
191/398	MD-27	93°	3.1°	0.0678	MD-280 MD-54	7° 78°	2.6°	0.0423	
191/452	MD-27	93°	3.1°	0.0229	MD-173	18° 78°	9.0°	0.0873	
191/532	MD-37	89°	4.1°	0.0557	MD-295 MD-35	7° 90°	5.0°	0.0890	
docking models			ano		7nAMDCD				
uocking mouchs	ensemble			Score	ensemble			Score	
الد	0/37	<u>X1</u> 110°	X2 21.2°	0.2308	084	122°	X2 21.6°	0.208	
an	c19	60°	21.2 28.9°	0.2300	0331	67°	6.4°	0.200	
	010		2015		0375	38°	16.5°		
					c170	14°	8.0°		
124/398	0437	110°	21.2°	0.0429	0437	110°	21.2°	0.0232	
	c19	60°	28.9°		o331	67°	6.4°		
					c242	20°	13.4°		
					c65	19°	11.1°		
124/452	o429	147°	39.1°	0.1657	o473	144°	34.5°	0.1110	
	c19	60°	28.9°		o465	85°	7.6°		
					c340	20°	10.7°		
					c45	11°	17.3°		
124/532	0437	110°	21.2°	0.0402	o104	126°	42.6°	0.0131	
	c19	60°	28.9°		0465	85°	7.6°		
					c242	20°	13.4°		
101/202	107	44.00	24.29	0.0005	C65	19°	11.1°	0.0000	
191/398	0437	110	21.2	0.0995	c82	76	16.2	0.0803	
					0210	54°	33.3		
					L335	40	23.4		
101/452	-264	1228	22.02	0.0470	C182	-3 ⁻	8.7	0.1205	
191/452	0264	122	23.8	0.0478	084	122° 67°	21.0°	0.1365	
	(19	00	28.9		0531	07 16°	0.4 1.2°		
					0161	40 27°	4.2		
101/522	0427	1100	21.29	0.0220	0242	۲۷ 07°	12.4	0 1005	
191/032	0437 c10	110	21.2	0.0228	0342	31	1/ 00	0.1005	
	(13	00	20.9		c92	40 -7°	14.0 6.2°		

Table S3 (Related to Table 1): Detailed summary of the results of the best LOO-fit for crystal structures, MD models and models from docking of the domains at a weighting term $w_E = 40$.

Supplemental Experimental Procedures

Preparation of 5NT mutants used for EPR spin labeling

The specific enzymatic activity (U/mg) was determined by the release of phosphate after enzymatic turnover of AMP using a modified malachite green assay as detailed before (Krug et al., 2013).

Coupling of MTSSL to free cysteine residues

1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl methanethiosulfonate (MTSSL, purchased from Toronto Research Canada via LGC Standards GmbH, Wesel/Germany) was dissolved in anhydrous DMF and stored as 100 mM stock solution at -80°C. For labeling the protein buffer was changed to 9 mM Tris, 6 mM MES, 50 mM NaCl, 0.1 mM EDTA and 3 mM NaN₃ (pH 7.2) on a 5 mL HiTrap Desalting column (GE Healthcare) to remove DTT. Then a tenfold excess of MTSSL over protein was added, followed by two hours of incubation at room temperature and another addition of MTSSL (again a tenfold excess). The mixture was incubated at 4°C over night. Finally, unreacted spin label was removed by a 53 mL HiTrap Desalting column (GE Healthcare) with 20 mM Tris, 50 mM KCl and 0.5 mM EDTA (pH 8.5).

Data acquisition of EPR distance distributions

After labeling protein samples were frozen in liquid nitrogen and transferred to Nashville on dry ice within 3 days. Glycerol (30% w/w) was added as cryoprotectant. To provide samples in the inhibitorbound state 5 mM AMPCP (Sigma Aldrich/Germany) and 0.5 mM ZnCl₂ were added before freezing. Due to a K_i of 0.25 µM the concentration of AMPCP corresponds to a saturating amount of inhibitor. For CW-EPR, spin-labeled 5NT samples were loaded in capillaries and spectra were collected on a Bruker EMX spectrometer using a 10 mW microwave power level and a modulation amplitude of 1.6 G. DEER spectroscopy was performed on a Bruker 580 pulsed EPR spectrometer operating at Q-band frequency (33.9 GHz) with a standard four-pulse protocol at 83 K (Jeschke, 2002). Analysis of the DEER data to determine the distance distributions, P(r), was carried out in DeerAnalysis 2011 (Jeschke et al., 2006). The data were fitted with Tikhonov regularization and L-curve determination of the optimal regularization parameter (Chiang et al., 2005).

Supplemental References

Chiang, Y.W., Borbat, P.P., and Freed, J.H. (2005). Maximum entropy: a complement to Tikhonov regularization for determination of pair distance distributions by pulsed ESR. J.Magn Reson. *177*, 184-196.

Jeschke, G. (2002). Distance measurements in the nanometer range by pulse EPR. Chemphyschem. *3*, 927-932.

Jeschke, G., Chechik, V., Ionita, P., Godt, A., Zimmermann, H., Banham, J., Timmel, C.R., Hilger, D., and Jung, H. (2006). DeerAnalysis2006- a comprehensive software package for analyzing pulsed ELDOR data. Applied Magnetic Resonance *30*, 473-498.

Krug, U., Patzschke, R., Zebisch, M., Balbach, J., and Sträter, N. (2013). Contribution of the two domains of E. coli 5'-nucleotidase to substrate specificity and catalysis. FEBS Lett. *587*, 460-466.

Schultz-Heienbrok, R., Maier, T., and Sträter, N. (2004). Trapping a 96 degrees domain rotation in two distinct conformations by engineered disulfide bridges. Protein Sci. *13*, 1811-1822.