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This supplemental material addresses a few points of the main text in more detail.

THE EFFECTIVE HAMILTONIAN WITH A MODULATING GRADIENT MAGNETIC FIELD

We first discuss how a one dimensional (1D) gradient magnetic field (GMF) is created. The ef-

fective Hamiltonian with synthesized spin-orbit coupling (SOC) is then derived for atoms moving

in a modulating GMF [1].

As demonstrated in the main text, the key element for synthesizing SOC is the spin rotation

transformation Uz = exp{−iksozFz}, which can be realized by a 1D GMF and the corresponding

rotation angle scales linearly with z-coordinate. According to Maxwell’s equations, both the di-

vergence and curl of a static magnetic field vanish in free space. Hence a 1D GMF B′zẑ cannot

exist alone. However, as we show below, this can be approximately produced by a combina-

tion of a pulsed 3D quadruple field B′(t)(−xx̂/2 − yŷ/2 + zẑ) with a constant strong bias field

B0ẑ. Neglecting quadratic Zeeman shift (QZS), the interaction between atomic spin and magnetic

field is described by H(0)
B = gFµBF · B = gFµBF · n|B| where n is the magnetic field direction. If

B0 ≫ B′(t)y/2, B′(t)x/2, the magnetic field direction is approximately slaved to the z-axis or n ≈ ẑ.

The magnetic field strength

|B|=
√

[B0 + B′(t)z]2 + [B′(t)x/2]2 + [B′(t)y/2]2

≈ B0 + B′(t)z +
B′2(t)
8B0

(x2 + y2)

≈ B0 + B′(t)z, (1)

then gains a term linearly proportional to z-coordinate, or approximately H(0)
B ≈ gFµB[B0 +

B′(t)z]Fz.

The strong bias field induces spin precession at the Larmor frequency ω0 = gFµBB0/~, which

can be transformed away in a frame rotating around z-axis at a frequency ω = ω0. The transformed

Hamiltonian HB in the rotating frame corresponds to

HB= RtH
(0)
B R†t − i~Rt∂tR

†
t

= gFµBB′(t)zFz, (2)

where Rt = exp (iωtFz). Thus we generate an effective 1D GMF B′(t)zẑ.

Now consider an atom moving in a periodically modulating 1D GMF B(t) = β(t)(~kso/gFµB)zẑ

where β(t + T ) = β(t),
∫ T

0
β(t)dt = 0, and ~kso is generalized to the oscillation amplitude of atomic
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momentum during modulation. The dynamics for an atom is described by the Hamiltonian

H(t) =
~2k2

z

2m
+ β(t)(~kso)zFz. (3)

After a unitary transformation Rz(t) = exp
[
izksoFz

∫ t

0
β (t1) dt1

]
, the above Hamiltonian is changed

into

H̃ (t)= Rz(t)H(t)R†z (t) − i~Rz(t)∂tR†z (t)

=
~2

2m

(
kz − ksoFz

∫ t

0
β (t1) dt1

)2

. (4)

Because [H̃(t), H̃(t′)] = 0, the time evolution operator in the rotated frame over one period takes

a simple form Ũ(T ) = exp[−i
∫ T

0
H̃(t)dt/~]. As

∫ T

0
β(t)dt = 0 or Rz(T ) becomes the identity

operator. Thus after one period of evolution, wavefunctions in the two frames can only differ by a

phase factor. The effective Hamiltonian for the whole period reads

Heff=
1
T

∫ T

0
H̃(t)dt

=
~2k2

z

2m
− c1~

2kso

m
kzFz +

c2~
2k2

so

2m
F2

z , (5)

where cn =
∫ T

0
dt[

∫ t

0
β(t′)dt′]n/T . For the special case of a sinusoidal GMF B′(t) = (π/T ) sin(2πt/T+

φ) with an initial phase φ, one easily arrives at c1 = (1/2) cosφ and c2 = 3/8. In our experiments

φ = 0 is used, thus c1 = 1/2 and c2 = 3/8. The above derivation neglects QZS from the bias

field ~qF2
z , because it commutes with Eq. (5), thus can be directly absorbed into the effective

Hamiltonian

Heff =
~2k2

z

2m
− c1~

2kso

m
kzFz + (~q +

c2~
2k2

so

2m
)F2

z , (6)

THE EFFECTIVE HAMILTONIAN WITH RADIO-FREQUENCY MAGNETIC FIELD PULS-

ES

In our experiment, a modulating GMF generates an effective 1D SOC which does not contain

any explicit spin flip interaction. If wanted, spin flip interaction can be introduced from additional

RF pulses, following an earlier suggestion in Ref. [2]. Fig. S1(a) illustrates schematically the

new scheme. Each period is now composed of two parts with durations T1 and T2 respectively for

pulsed interactions with GMF and RF magnetic fields.
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FIG. S1. Spin flip coupling synthesized from interlacing (a) sinusoidal modulations for the GMF (blue

wavy lines) of duration T1 with radio-frequency (RF) couplings (black rectangles) of duration T2. (b)

The dispersion curves of |1⟩ (red solid line), |0⟩ (green solid line), and |−1⟩ (blue solid line) states in the

absence of RF coupling for c̃1 = 0.4, ~Ω̃ = 0Eso, ~∆ = 0Eso, ~q̃ = 0.25Eso, in the rotating frame at a

frequency ω = ω0. (c) The avoided crossing dispersion curves in the presence of RF coupling for c̃1 = 0.4,

~Ω̃ = 0.15Eso, ~∆ = −0.1Eso, ~q̃ = 0.25Eso. The colors for the lines are now given by the weighted

averages of the |1⟩, |0⟩, and |−1⟩ components in the eigenstates of Eq. (12) respectively as red, green, and

blue colors, this time in the rotating frame at a frequency ω = ωRF.

The interaction between an atom and the 3D quadrupole magnetic field, the bias field, and the

RF magnetic field b(t) cos(ωRFt)x̂ is governed by the Hamiltonian

H(0)
B = gFµBB′(t)(−xFx/2 − yFy/2 + zFz) + ~ω0Fz + gFµBb(t) cosωRFtFx + ~qF2

z . (7)

In the frame rotating around z-axis at a frequency ω = ωRF, it is transformed to

HB= RtH
(0)
B R†t − i~Rt∂tR

†
t

= −gFµBB′(t)x[cos(ωRFt)Fx + sin(ωRFt)Fy]/2 − gFµBB′(t)y[cos(ωRFt)Fy − sin(ωRFt)Fx]/2

+[gFµBB′(t)z + ~ω0 − ~ωRF]Fz +
1
2

gFµBb(t){[1 + cos(2ωRFt)]Fx + sin(2ωRFt)Fy} + ~qF2
z , (8)

where |q| = ω2
0/∆HFS is the bias field QZS, and ∆HFS denotes the ground state hyperfine splitting.

If ωRF ≫ gFµBB′y/(2~) and gFµBB′x/(2~), which is equivalent to B0 ≫ B′x/2 and B′y/2 as ωRF ≈
ω0, all fast rotating terms at frequencies ωRF and 2ωRF can be neglected, thus the Hamiltonian

reduces to

HB ≈ [gFµBB′(t)z − ~∆]Fz + ~Ω(t)Fx + ~qF2
z , (9)

where ∆ = ωRF − ω0 is the detuning of the RF field frequency from the linear Zeeman shift,

Ω(t) = gFµBb(t)/2~ is the corresponding resonant Rabi frequency of the RF field.
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Including the kinetic term, the evolution operator for one period is given by

U(T ) = URF(T2)Uso(T1), (10)

where Uso(T1) and URF(T2) are the evolution operators for the two parts respectively. In the first

part a periodically modulating GMF is applied with Ω = 0. Following the same steps outlined in

the previous section, we obtain Uso(T1) = exp{−iHsoT1/~}, where

Hso = ~
2k2

z /(2m) − c1~
2ksokzFz/m − ~∆Fz + (~q + c2Eso)F2

z , (11)

with Eso = ~
2k2

so/2m. In the second part, the quadruple field is turned off with B′ = 0. According

to Eq. (9), we obtain URF(T2) = exp{−iHRFT2/~}, where

HRF = ~
2k2

z /(2m) + ~ΩFx − ~∆Fz + ~qF2
z . (12)

When the pulses are sufficiently short, we can simply add the noncommuting exponents to arrive at

U(T ) ≈ exp{−i [HsoT1/T + HRFT2/T ] T/~}. Thus the effective Hamiltonian for a complete period

is given by

Heff =
~2k2

z

2m
− c̃1~

2kso

m
kzFz + ~Ω̃Fx − ~∆Fz + ~q̃F2

z , (13)

where c̃1 = c1T1/T , ~q̃ = ~q+c2EsoT1/T , and Ω̃ = ΩT2/T . A gap now opens up between different

eigenstate dispersions as is shown in Fig. S1(c). This fine tuning is essential to the rich physics

already probed in previous SOC experiments [3–9], and constitutes one of the most important

future directions for the present experiment.

In this generalized scheme, the SOC term ∝ kzFz and the spin flip term ∝ Fx do not commute

with each other, thus the net gauge field in Eq. (13) cannot be transformed away. Our protocol

augmented with RF pulses can be understood intuitively. An atom moves a distance depending

on its spin state after one period of gradient magnetic field pulses. It acquires a spin dependent

group velocity (dz/dt) due to the modulating GMF while its canonical momentum (pz) remains

unchanged. It is this step that couples atomic spin and velocity. The additional RF pulses then

couples different spin states. This coupling is also immune to atomic spontaneous emission, like

GMF induced coupling. The two steps together give a velocity changing spin coupling, which can

be contrasted to the Raman scheme, where SOC is accomplished by a momentum sensitive two-

photon Raman transition. Thus our scheme (with additional RF pulses) and the Raman scheme

are equivalent in their physical effects.
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ESTIMATION OF ENERGY SCALE

The characteristic energy scales for the SOC and the effective QZS are both of the order of

atomic recoil energy Eso = ~
2k2

so/2m, which is typical for most ultracold atomic quantum gas

systems. For the particular parameters adopted in our study, this is about 1 kHz for kso ∼ 0.5kL

(one photon recoil momentum). The bias field QZS is about 1 kHz. The coherent spin exchang-

ing collision interaction at atomic densities of our experiment is about 10 Hz for 87Rb atoms in

F = 1 states. The relaxation or dissipation is mainly caused by parametric heating from the time

modulating GMF, which we estimate based on the inverse of the observed life time ( 300 ms for

kso ∼ 0.5kL), to be about 3Hz, much smaller than the characteristic energy of SOC. Three-body

loss is negligible under our experimental conditions. This is affirmed by our observed life time,

which is long enough to observe interesting phenomena associated with SOC. In our experiments,

the linear Zeeman splitting or the distance between the states |1⟩, |0⟩, |− 1⟩ is about 4 MHz, which

is much larger than other energy scale, due to the strong bias magnetic field used to select out

the one dimensional gradient. The largest energy scale of our system as implemented is the bias

field Zeeman energy, which is much larger than the coherent spin coupling, thus prevented us from

directly observing spin flip oscillations. In section II we present a generalized scheme to resolve

this difficulty by introducing a near resonant coherent drive coupling different atomic spin states,

which could nullify the off scale Zeeman shift, as employed in the Raman scheme. Besides, even

with a large Zeeman shift, we can still observe interesting many-body phenomena. For example,

coherent spin dynamics where two atoms in the |0⟩ state oscillate into a pair of atoms in the |1⟩
and |− 1⟩ states was observed experimentally with linear Zeeman shift much larger than coherent

spin exchange, due to conservation of the spin magnetization [10].
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