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Supplementary Figures:

Supplementary Figure 1: Validation of FRET and competition assays

a) 5% native PAGE of samples taken from a HI-FI competition experiment between S31/30 (10
nM) and A1/10 (0-500 nM), for H1g (1 nM). The gel was visualized at the indicated
wavelengths, then stained with ethidium bromide. Lanes 1-6 are H1r with decreasing amounts
of A1/10 (500, 62.5, 15.6, 1.95, 0.244, 0.0305 nM, respectively). Lane 7 is S31/30 Atto647N
nucleosome alone. Donor signal with H1g remains with S31/30 nucleosome as more A1/10
nucleosome competitor is added (lanes 1-6: middle gel) indicating that A1/10 nucleosome is

unable to compete H1g from the $S31/30 nucleosome.

b) Representative (de)quenching curves of S30/30 nucleosome with the H2A.Z histone variant
(530/30.z) reconstituted with mouse histones, to measure the interaction with H1*¢. H1¢ was
held constant at 0.08-0.1 nM and S30/30.z nucleosome was titrated (0-25 nM). Curves were fit

with a quadratic equation (Eq. 3).

c) Representative (de)quenching curve of NLE-Tri (NLE-Tri.z) nucleosome with the H2A.z histone
variant containing mouse histones, upon binding to H1*¢.. H1r was held constant at 0.08-0.1

nM and NLE-Tri.z nucleosome was titrated (0-25 nM). Curves were fit with Eqg. 3.

Supplementary Figure 2: Analysis of NLE-Tri — H1 complexes by Atomic Force Microscopy
NLE-Tri was imaged with AFM alone or in presence of H1f (molar ratio of 1 H1 per 1 NLE-Tri
array).

a) Digital zooms of AFM scan with example height trace(s) of NLE-Tri alone (left) or with H1g
(right). Height increases 1.3 to 1.9 nm when H1f is present.

b) Upper two panels: Digital zoom of scans of NLE-Tri alone showing the open geometry of the
trinucleosome. Lower two panels: Digital zoom of scans of NLE-Tri in the presence of H1g

depicting the closed trinucleosome.

Supplemental Figure 3: Representative FRET curves, and competition with H1 C-terminal tail

deletion constructs.
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a) Representative competition experiment between S31/30 (10 nM) and the indicated

unlabeled nucleosome (0-500 nM) for H11-121 (1 nM). Curves were fit with Eq. 4.

b) Representative competition curves between $31/30 (20 nM) and the indicated unlabeled

nucleosome (0-500 nM) for H11.96 (1 nM). Curves were fit with Eq. 4.

c and d) Representative (de)quenching isotherm of (c) LE-Tri (0-25 nM) or (d) NLE-Tri (0-25 nM)
for H11.121 (0.1 nM). Data were fit with Eq 3.

Supplemental Figure 4: Validation of NLE-Tri and LE-Tri saturation and H1 purification.

a) Representative (de)quenching curves of H1g purified with the published method
demonstrating the effect of prep age on H1g affinity. Upper panel: bi-phasic nature of H1-
nucleosome interaction after storage of H1 at 4°C for ~4 days. The gray curve is S30/30 (from
figure 3b right). Lower panel: the bi-phasic curve (above) separated into 2 binding isotherms
(lower and upper) fit with eq 3. Lower portion (black) has a K4 of 0.022 */.0.0046 (R°=0.901);
upper portion (dark gray) has a Kq of 3.32 */.0.87 (R*=0.89).

b) 15% polyacrylamide SDS PAGE of H1 derivatives using an improved purification method
(Lanes 2-6), fluorescent image (top) and Imperial protein stain (bottom). Lanes 2-4 are the
indicated H1 derivative which had previously been frozen. Lane 5: freshly made protein; lane 6:
unlabeled H1g. Degradation of H1r occurs rapidly (in less than one week) at 4°C storage (lane

7); this is only seen when visualized by fluorescence.

c) Sequences of all mono-nucleosome DNA fragments used in this study. Trinucleosomes

sequences are 3 copies of S30/30.

d) Trinucleosomes were analyzed for degree of saturation. EcoRI digestion of NLE-Tri (top) and
LE-Tri (bottom); the absence of free 207 DNA indicates the trinucleosome is saturated. U:
uncut, C: cut. Lane 1: uncut trinucleosome; lane 2: EcoRlI-treated; lane 3: S30/30 nucleosome

control; lane 4: S30/30 bp DNA.

e) Analysis of trinucleosomes by analytical ultracentrifugation (AUC). Sedimentation coefficients

(S20,w)) for trinucleosome substrates. NLE-Tri = ~16S; LE-Tri = ~18S. Both trinucleosome
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substrates were reconstituted with mouse histones and have a slightly different Ssp compared

to published results using Xenopus laevis histones *.
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