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Material & Methods

A general algorithm for computing the distance between two surfaces of genus zero

The algorithm described here is derived from our initial studies of conformal mapping of genus zero surfaces

described in [1, 2], which provide comprehensive descriptions. We focus here on the general concepts and on the

differences with the original algorithm.

Let F1 and F2 be two surfaces of genus zero, represented by the meshesM1 andM2, respectively. Both meshes

are taken to be triangular, withMi = (Vi, Ei, Ti), i= 1, 2, where {Vi, Ei, Ti} denote the vertices, edges and triangles,

respectively. These two meshes are completely independent of each other, and are likely to have different combinatorics.

We define the distance dSD(F1, F2) between the two surfaces as the sum of the distortions of the optimal conformal

mapping fmin of the surface F1 onto F2 and of its inverse, f−1min, where distorsion relates to difference from isometry

and is computed using Equation (2) in the main text of the manuscript.

To find the optimal mapping fmin, we rely on the idea that any conformal mapping f between F1 and F2 can be

written as the composition of two discrete conformal mappings C1 and C2 that map F1 and F2 onto the sphere, and a

Möbius transformation m from the sphere to itself. In optimizing the map produced from this composition, C1 and C2

are fixed, while m is variable and depends on six degrees of freedom, summarized in a parameter vector ~h.

This optimization is implemented in the following algorithm.
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Algorithm 1 Conformal mapping with minimal distortion between two discrete surfaces F1 and F2 of genus zero
Initialization. (1) Scale the meshesM1,M2 representing F1 and F2 to have total area one. Set Emin =+∞
(2) Find C1 and C2 that conformally mapM1 andM2 onto the sphere.
for each j in [1, 24] do

(3) Initialize Möbius transformation m0 =m(j). Set f0 =C−12 ◦m0 ◦ C1.
for n= 0, . . . until convergence do

(4) Generate fn(M1) and f−1n (M2)
(5) Compute ESD(fn) and its gradient ∇ESD(fn) with respect to ~hn.
(6) Check for convergence: if ESD(fn)<TOL, break.
(7) Update ~hn+1 =~hn − αn∇ESD(fn). Set mn+1 =m(~hn+1)
(8) Update fn+1 =C−12 ◦mn+1 ◦ C1

end for
if ESD(fn)<Emin then

(9) Update Emin =ESD(fn); fmin = fn
end if

end for
(10) Output. The distance between the two surfaces, dSD(F1, F2) =Emin, and the optimal mapping fmin.

The scaling of the surface meshes in step (1) makes our comparison method insensitive to global changes of scale.

While not necessary, this step allows us to measure scale invariant properties. It is appropriate when the global scale

used to describe the vertex positions of the input surfaces is unknown.

Step (2) follows the approach proposed by Springborn and colleagues, which introduces a notion of discrete

conformal equivalence [3]. In this method, the meshM representing a genus zero surface F is first made topologically

equivalent to a disk by removing a vertex v0 and its star. The transformed mesh is projected conformally on a plane

through an optimization procedure [3]. The planar mesh is then warped onto the sphere by stereographic projection.

Vertex v0 is reinstated on the North pole of the sphere and connected back to the mesh. Finally, we apply a Möbius

normalization to ensure that the center of mass of all vertices is at the origin of the sphere. Full details on the

implementation of this algorithm are provided in Ref. [1].

The loop with variable j corresponds to different initial conditions for optimzing the conformal mapping f . A

random or a trivial initial guess (such as the identity transformation) is likely to lead to a local minimum. We have

therefore developed a simple procedure to automatically generate better starting points. The idea is to use the best

ellipsoid approximation to each surface to give the initial alignment. While this alignment is specified by setting the

images of three points, we do not rely on user selected landmarks or on local geometric features to select these points.

Instead, we simply compute for surface F1 the three principal components of its vertices, identified to the three axes of

the corresponding best fit ellipsoid. These three axes cut F1 in three pairs of points, (A1, A
′
1), (B1, B

′
1) and (C1, C

′
1).

Using the same procedure on F2, we get three corresponding pairs of points, (A2, A
′
2), (B2, B

′
2) and (C2, C

′
2). There are

twenty four choices of correspondences between these two sets of points that lead to an alignment of the axes of the two

ellipsoids with proper orientation (we do not impose an ordering of the axes). Each of these correspondences j defines

a unique Möbius transformation, m(j). Each of these transformations is then used as an initial guess for the steepest

descent procedure.
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Step (4) uses the following method. A vertex vi inM1 has image v′i =C1(vi) in the spherical mesh C1(M1). We

locate the image v′′i =m(v′i) on the spherical mesh C2(M2), namely we identify the triangle t of C2(M2) that contains

v′′i and compute barycentric coordinates (α, β, γ) of v′′i in t. Finally, we compute the position of v′′′i = f(vi) on the

surface F2 by propagating the barycentric coordinates (α, β, γ) onto the triangle t′ in M2 that corresponds to t. Full

details on the implementation of this method are provided in [1].

The value of TOL in step (6) is set to a small constant related to machine error. The damping parameter αn in step

(7) is obtained using a line search method.

Taking chirality into account

The algorithm described above is orientation dependent and therefore sensitive to chirality. For example, it will not

identify the left and right hands of a person as being similar, as they cannot be superimposed onto each other. Thus our

method can distinguish a shape from its reflection. When comparing anatomical surfaces such as bones from humans

or primates, this is a definite feature, as it allows for separating bones from the left side of the body from bones from

the right side of the body. In some cases however, samples have been pooled and need to be compared independently

of their chirality. We propose the following method to handle such cases. LetM1 andM2 be the meshes representing

two surfaces. We start by comparing M1 and M2 using the algorithm described above, and set E1 the energy of the

corresponding optimal mapping. We then apply a reflection on M1 (multiplying for example the z-coordinates of all

vertices inM1 by −1 and inverting the orientation of all its triangles), to generate an inverted meshM′1. We compare

M′1 andM2, and set E2 the energy of the corresponding optimal mapping. The distance betweenM1 andM2 is then

set to min(E1, E2).

Preprocessing the meshes

To test our algorithm, we used three independent datasets, representing three different regions of the skeletal

anatomy, of humans, other primates, and their close relatives. Those three datasets contain 61 proximal first metatarsals

of prosimian primates, New and Old World monkeys (data set A), 45 distal radii of apes and humans (data set B), and

116 second mandibular molars of prosimian primates and non primate close relatives (data set C), respectively. They

were originally assembled by Boyer and colleagues [4]. They are available on the web site of one of the co-authors of

Ref. [4]:

(http://www.wisdom.weizmann.ac.il/∼ylipman/CPsurfcomp/),

Digital models of all specimens were created using micro-CT and medical CT imaging devices (for details, see [4]).

The raw digitized surfaces include noise, which we process using the following steps:

i) Detect and remove small, disconnected components (a few of the files contained isolated tetrahedra).

ii) Detect and remove topological oddities, such as more than two triangles attached to an edge. The resulting meshes

are manifolds.

iii) Detect and clean up boundaries: remove “dangling" triangles, i.e. triangles with two boundary edges.
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iv) Apply three iterations of simple Laplacian smoothing, using the software package MeshLab

(http://meshlab.sourceforge.net).

v) Detect and fill all holes.

Step (v) is a requirement for our method, as it is currently designed for surfaces of genus zero, without boundary. To fill a

hole, we detect all vertices and edges on the boundary, build the center of gravityG of these vertices, and add to the mesh

all the triangles formed by connecting G to the edges of the boundary. The 61, 45, and 116 resulting smoothed triangular

meshes for data sets A, B, and C, respectively, have similar sizes, with approximately 5,000 vertices and 10,000 triangles

on average.
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