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1 Supplementary methods relating to the original model

In this section we cover in more detail the calculations using the PDE model that help us to
understand when ART is expected to favour the less virulent strain. We then relate the PDE
model to the ODE model at equilibrium and solve the full ODE model at equilibrium. This is
done in order to calculate ‘total number of AIDS-related deaths per untreated infected person per
year’ at equilibrium and its relation to the relative importance of low CD4 transmissions.

1.1 ODE model equations

Recall the equations for the ODE model with ART as presented in (2) in the main text. S represents
the population of susceptible (uninfected) individuals, I are the various infected classes, where the
superscripts H and L indicate high and low (resp.) SPVL and the subscripts S1 and S2 index strain
type, with u and t distinguishing between individuals who will remain untreated or will be treated
with ART. To shorten notation we denote Iji = Iji,t + Iji,u and define λi = (βHcI

H
i + βLcI

L
i )/N . T

is the population of individuals receiving ART, assumed to be noninfectious.

dS

dt
=B − (λS1 + λS2)S − µS

dIHS1,u
dt

= (1− k)λS1S − (µ+ aH)IHS1,u −mIHS1,u +mIHS2,u

dIHS1,t
dt

= kλS1S − (µ+ pH)IHS1,t −mIHS1,t +mIHS2,t

dILS1,u
dt

= − (µ+ aL)ILS1,u −mILS1,u +mILS2,u

dILS1,t
dt

= − (µ+ pL)ILS1,t −mILS1,t +mILS2,t

dIHS2,u
dt

= − (µ+ aH)IHS2,u −mIHS2,u +mIHS1,u

dIHS2,t
dt

= − (µ+ pH)IHS2,t −mIHS2,t +mIHS1,t

dILS2,u
dt

= (1− k)λS2S − (µ+ aL)ILS2,u −mILS2,u +mILS1,u

dILS2,t
dt

= kλS2S − (µ+ pL)ILS2,t −mILS2,t +mILS1,t

dT

dt
= pH(IHS1,t + IHS2,t) + pL(ILS1,t + ILS2,t)− µT

(1)
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1.2 PDE model definition and solution at epidemic equilibrium

To recap, in the PDE model both treatment and AIDS-related death are dependent on age of
infection. Therefore each infected class is no longer split into ‘treated’ and ‘untreated’. Let τ
denote time since infection, and define yH1 (t, τ) to be the number of high SPVL virulent strain (S1)
infections of infection-age τ at time t, so that∫ ∞

0

yHS1(t, τ)dτ = IHS1(t)

and similarly for yLS1, y
H
S2, y

L
S2.

Let an average person with a high SPVL infection become classified as ‘low CD4’ at τ = TH
and an average person with a low SPVL infection become classified as ‘low CD4’ at τ = TL. Let dH
and dL be the AIDS-related death rates of patients with high and low SPVL infections respectively.
Then the full set of PDEs describing the spread of the two strains is:

dS

dt
= B − (λS1 + λS2)S − µS

∂yHS1
∂t

+
∂yHS1
∂τ

=

{
−(µ+m)yHS1(t, τ) +myHS2(t, τ) if τ ≤ TH

−(µ+ dH +m)yHS1(t, τ) +myHS2(t, τ) if τ > TH
yHS1(t, 0) = λS1S

∂yLS1
∂t

+
∂yLS1
∂τ

=

{
−(µ+m)yLS1(t, τ) +myLS2(t, τ) if τ ≤ TL

−(µ+ dL +m)yLS1(t, τ) +myLS2(t, τ) if τ > TL
yLS1(t, 0) = 0

∂yHS2
∂t

+
∂yHS2
∂τ

=

{
−(µ+m)yHS2(t, τ) +myHS1(t, τ) if τ ≤ TH

−(µ+ dH +m)yHS2(t, τ) +myHS1(t, τ) if τ > TH
yHS2(t, 0) = 0

∂yLS2
∂t

+
∂yLS2
∂τ

=

{
−(µ+m)yLS2(t, τ) +myLS1(t, τ) if τ ≤ TL

−(µ+ dL +m)yLS2(t, τ) +myLS1(t, τ) if τ > TL
yLS2(t, 0) = λS2S

where λS1 = (βHcI
S1
H +βLcI

S1
L )/N and λS2 = (βHcI

S2
H +βLcI

S2
L )/N . There is also a discontinuity

at τ = Ti where a proportion k of infected patients reaching that infected age are put onto treatment
(and hence removed from the infectious class):

lim
τ→T+

j

yji (τ) = (1− k) lim
τ→T−

j

yji (τ)

At equilibrium, when
∂yji
∂t

= 0, the above reduce to a set of ODEs in τ :
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dyHS1
dτ

=

{
−(µ+m)yHS1(τ) +myHS2(τ) if τ ≤ TH

−(µ+ dH +m)yHS1(τ) +myHS2(τ) if τ > TH
yHS1(0) = λS1S

∗

dyLS1
dτ

=

{
−(µ+m)yLS1(τ) +myLS2(τ) if τ ≤ TL

−(µ+ dL +m)yLS1(τ) +myLS2(τ) if τ > TL
yLS1(0) = 0

dyHS2
dτ

=

{
−(µ+m)yHS2(τ) +myHS1(τ) if τ ≤ TH

−(µ+ dH +m)yHS2(τ) +myHS1(τ) if τ > TH
yHS2(0) = 0

dyLS2
dτ

=

{
−(µ+m)yLS2(τ) +myLS1(τ) if τ ≤ TL

−(µ+ dL +m)yLS2(τ) +myLS1(τ) if τ > TL
yLS2(0) = λS2S

∗

where S∗ is the equilibrium value of S and so λS1S
∗, λS2S

∗ are now constants (independent of
τ). We may solve these for yjS1 + yjS2 and yjS1 − y

j
S2:

yHS1 + yHS2 =

{
λS1S

∗e−µτ if τ ≤ TH

(1− k)λS1Se
−µTHe−(µ+dH)(τ−TH) if τ > TH

yHS1 − yHS2 =

{
λS1S

∗e−(µ+2m)τ if τ ≤ TH

(1− k)λS1Se
−(µ+2m)THe−(µ+2m+dH)(τ−TH) if τ > TH

yLS1 + yLS2 =

{
λS2S

∗e−µτ if τ ≤ TL

(1− k)λS2Se
−µTLe−(µ+dL)(τ−TL) if τ > TL

yLS1 − yLS2 = −

{
λS2S

∗e−(µ+2m)τ if τ ≤ TL

(1− k)λS2Se
−(µ+2m)TLe−(µ+2m+dL)(τ−TL) if τ > TL

Then

2yHS1 = λS1S
∗[e−µτ + e−(µ+2m)τ ]×

{
1 if τ ≤ TH

(1− k)e−dH(τ−TH) if τ > TH

2yHS2 = λS1S
∗[e−µτ − e−(µ+2m)τ ]×

{
1 if τ ≤ TH

(1− k)e−dH(τ−TH) if τ > TH

2yLS1 = λS2S
∗[e−µτ − e−(µ+2m)τ ]×

{
1 if τ ≤ TL

(1− k)e−dL(τ−TL) if τ > TL

2yLS2 = λS2S
∗[e−µτ + e−(µ+2m)τ ]×

{
1 if τ ≤ TL

(1− k)e−dL(τ−TL) if τ > TL

(2)

Recall that the purpose of introducing age-of-infection dependent death rates and treatment
was to determine for which parameter sets the following inequality is true

Pr(infected with strain S1 | low CD4) > Pr(infected with strain S1)
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Here the sample space is the population of currently infected individuals and we are concerned
with how these probabilities compare in the absence of ART (k = 0). This can be written as:∫∞

TH
yHS1dτ +

∫∞
TL
yLS1dτ∫∞

TH
yHS1 + yHS2dτ +

∫∞
TL
yLS1 + yLS2dτ

>

∫∞
0
yHS1dτ +

∫∞
0
yLS1dτ∫∞

0
yHS1 + yHS2dτ +

∫∞
0
yLS1 + yLS2dτ

(3)

We may now use the expressions in (3) for yHS1(τ) etc., with k = 0, to calculate both sides of
(4) at equilibrium. First the left hand side:∫ ∞

TH

yHS1dτ =
1

2
λS1S

∗
∫ ∞
TH

(
e−µτ + e−(µ+2m)τ

)
e−ah(τ−TH)dτ

=
1

2
λS1S

∗edHTH
∫ ∞
TH

e−(µ+dH)τ + e−(µ+2m+dH)τdτ

=
1

2
λS1S

∗
[
−e
−(µ+dH)τ

µ+ dH
− e−(µ+2m+dH)τ

µ+ 2m+ dH

]∞
TH

=
1

2
λS1S

∗
[
e−(µ+dH)TH

µ+ dH
+
e−(µ+2m+dH)TH

µ+ 2m+ dH

]
=

1

2
λS1S

∗
(
e−µTH

µ+ dH
+

e−(µ+2m)TH

µ+ 2m+ dH

)
Similarly ∫ ∞

TH

yHS2dτ =
1

2
λS1S

∗
(
e−µTH

µ+ dH
− e−(µ+2m)TH

µ+ 2m+ dH

)
∫ ∞
TL

yLS1dτ =
1

2
λS2S

∗
(
e−µTL

µ+ dL
− e−(µ+2m)TL

µ+ 2m+ dL

)
∫ ∞
TL

yLS2dτ =
1

2
λS2S

∗
(
e−µTL

µ+ dL
+

e−(µ+2m)TL

µ+ 2m+ dL

)

Therefore ∫ ∞
TH

yHS1 + yHS2dτ +

∫ ∞
TL

yLS1 + yLS2dτ = λS1S
∗ e
−µTH

µ+ dH
+ λS2S

∗ e
−µTL

µ+ dL

Also, for the right hand side∫ ∞
0

yHS1dτ =

∫ ∞
TH

yHS1dτ +

∫ TH

0

yHS1dτ

=

∫ ∞
TH

yHS1dτ +
1

1
λS1S

∗
[
−e
−µτ

µ
− e−(µ+2m)τ

µ+ 2m

]TH
0

=

∫ ∞
TH

yHS1dτ +
1

2
λS1S

∗
[

1

µ
+

1

µ+ 2m
− e−µTH

µ
− e−(µ+2m)TH

µ+ 2m

]
=

1

2
λS1S

∗
[

1

µ
+

1

µ+ 2m
+ e−µTH

(
1

µ+ dH
− 1

µ

)
+ e−(µ+2m)TH

(
1

µ+ 2m+ dH
− 1

µ+ 2m

)]
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and similarly to before the integral of all four populations is:

λS1S
∗
[

1

µ
+ e−µTH

(
1

µ+ dH
− 1

µ

)]
+ λS2S

∗
[

1

µ
+ e−µTL

(
1

µ+ dL
− 1

µ

)]
Substituting these all into equation 3, cross multiplying and comparing the λS1λS1, λS1λS2 and

λS2λS2 terms on both sides we obtain

1

µ

[(
λS1 + λS2 − λS1e−µTH − λS2e−µTL

)(
λS1

e−(µ+2m)TH

µ+ 2m+ dH
− λS2

e−(µ+2m)TL

µ+ 2m+ dL

)]
>

1

µ+ 2m

[(
λS1

e−µTH

µ+ dH
+ λS2

e−µTL

µ+ dL

)(
λS2e

−(µ+2m)TL − λS1e−(µ+2m)TH + λS1 − λS2
)]

To simplify further we set m = 0, which is reasonable when m is very small compared to µ.
So, with this assumption we are able to obtain

[(
λS1 + λS2 − λS1e−µTH − λS2e−µTL

)(
λS1

e−µTH

µ+ dH
− λS2

e−µTL

µ+ dL

)]
>

[(
λS1

e−µTH

µ+ dH
+ λS2

e−µTL

µ+ dL

)(
λS2e

−µTL − λS1e−µTH + λS1 − λS2
)]

⇒ 2λS2λS1
e−µTH

µ+ dH
− 2λS1λS2

e−µTL

µ+ dL
> 2λS1λS2

e−µTLe−µTH

µ+ dH
− 2λS1λS2

e−µTHe−µTL

µ+ dL

⇒ eµTL

µ+ dH
− eµTH

µ+ dL
>

1

µ+ dH
− 1

µ+ dL

⇒ eµTL − 1

eµTH − 1
>
µ+ dH
µ+ dL

1.3 Relating the ODE and PDE models at equilibrium

As covered briefly in the main text, we wish to relate the parameters aj and pj in the ODE model to
the parameters Tj and dj in the PDE model. We do this by equating the two models at equilibrium,
i.e. ensuring that at equilibrium the sizes of both the high SPVL and low SPVL infected classes
in the ODE model match those in the PDE model. So, for j = H,L:∫ ∞

0

yj(t, τ)dτ = Iju + Ijt

⇔
∫ Tj

0

λS∗e−µτdτ

+

∫ ∞
Tj

(1− k)λS∗e−µTje−(µ+dj)(τ−Tj)dτ =
(1− k)λS∗

µ+ aj
+

kλS∗

µ+ pj

⇔ λS∗

µ
− λS∗

µ
e−µTj +

(1− k)λS∗

µ+ dj
e−µTj =

(1− k)λS∗

µ+ aj
+

kλS∗

µ+ pj

⇔ e−µTj
[

1− k
µ+ dj

− 1

µ

]
=

(1− k)

µ+ aj
+

k

µ+ pj
+

1

µ



6

Substituting in k = 0 and k = 1 shows that in order to obtain a condition that is independent
of k we must have µ+ dj = pj(µ+ aj)/(pj − aj). Substituting this back in:

e−µTj
[

(1− k)(pj − aj)
pi(µ+ aj)

− 1

µ

]
=

1− k
µ+ aj

+
k

µ+ pj
− 1

µ

⇔ e−µTj
[
−µ(kpj + (1− k)aj) + ajpj

µpj(µ+ aj)

]
= −µ(kpj + (1− k)aj) + ajpj

(µ+ aj)µ(µ+ pj)

⇔ e−µTj =
pj

µ+ pj

So we must choose ai and pj to satisfy

e−µTj =
pj

µ+ pj
and dj =

aj(µ+ pj)

pj − aj

1.4 Equilibrium population size calculations for the ODE model

To find the equilibrium population class sizes we first re-write the model equations in (4) in matrix
notation. Let dy be the vector of derivatives, ordered as in (4). Similarly let y be the vector of
population sizes. Then define the matrices Λ and M such that

dy = ΛyS/N + My

At equilibrium dy = 0 and so we wish to solve ΛyS∗/N∗ = −My, where S∗ and N∗ are
the equilibrium values of S and N . The solution for y that we want is the eigenvector of M−1Λ
corresponding to the eigenvalue with the largest absolute value.

Now let δ1 = µ+ aH +m, δ2 = µ+ pH +m, δ3 = µ+ aL +m, δ4 = µ+ pL +m so that

M =



−δ1 0 0 0 m 0 0 0
0 −δ2 0 0 0 m 0 0
0 0 −δ3 0 0 0 m 0
0 0 0 −δ4 0 0 0 m
m 0 0 0 −δ1 0 0 0
0 m 0 0 0 −δ2 0 0
0 0 m 0 0 0 −δ3 0
0 0 0 m 0 0 0 −δ4


and we can calculate the inverse

M−1 =



m1 0 0 0 n1 0 0 0
0 m2 0 0 0 n2 0 0
0 0 m3 0 0 0 n3 0
0 0 0 m4 0 0 0 n4

n1 0 0 0 m1 0 0 0
0 n2 0 0 0 m2 0 0
0 0 n3 0 0 0 m3 0
0 0 0 n4 0 0 0 m4


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where mi = δi
m2−δ2i

, ni = m
δ2i−m2 for i ∈ {1, 2, 3, 4}. This gives

M−1Λ = c



m1k̄βH m1k̄βH m1k̄βL m1k̄βL 0 0 0 0
m2kβH m2kβH m2kβL m2kβL 0 0 0 0

0 0 0 0 n3k̄βH n3k̄βH n3k̄βL n3k̄βL
0 0 0 0 n4kβH n4kβH n4kβL n4kβL

n1k̄βH n1k̄βH n1k̄βL n1k̄βL 0 0 0 0
n2kβH n2kβH n2kβL n2kβL 0 0 0 0

0 0 0 0 m3k̄βH m3k̄βH m3k̄βL m3k̄βL
0 0 0 0 m4kβH m4kβH m4kβL m4kβL


where k̄ = (1 − k). We can calculate the eigenvalues and eigenvectors of this matrix com-

putationally. If y∗ is the eigenvector corresponding to the largest eigenvalue then the equilib-
rium value of total AIDS-related deaths per untreated infected person per year is

∑
i(aHy

∗H
i,u +

aLy
∗L
i,u)/

∑
i(y
∗H
i,u + y∗Li,u), as plotted in figure 5 (main text).
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2 Low heritability of SPVL

2.1 Methods

In this new model an infection initiated with strain S1 has high SPVL with frequency f ∈ (0.5, 1)
(whereas before f = 1) and remains at the same SPVL regardless of within host strain switching
(as before). The same is true for infections initiated by strain S2 and low SPVL. The lower f is,
the lower the heritability of SPVL in the model. The adjusted model equations are:

dS

dt
=B − (λS1 + λS2)S − µS

dIHS1,u
dt

= f(1− k)λS1S − (µ+ aH)IHS1,u −mIHS1,u +mIHS2,u

dIHS1,t
dt

= fkλS1S − (µ+ pH)IHS1,t −mIHS1,t +mIHS2,t

dILS1,u
dt

= (1− f)(1− k)λS1S − (µ+ aL)ILS1,u −mILS1,u +mILS2,u

dILS1,t
dt

= (1− f)kλS1S − (µ+ pL)ILS1,t −mILS1,t +mILS2,t

dIHS2,u
dt

= (1− f)(1− k)λS2S − (µ+ aH)IHS2,u −mIHS2,u +mIHS1,u

dIHS2,t
dt

= (1− f)kλS2S − (µ+ pH)IHS2,t −mIHS2,t +mIHS1,t

dILS2,u
dt

= f(1− k)λS2S − (µ+ aL)ILS2,u −mILS2,u +mILS1,u

dILS2,t
dt

= fkλS2S − (µ+ pL)ILS2,t −mILS2,t +mILS1,t

dT

dt
= pH(IHS1,t + IHS2,t) + pL(ILS1,t + ILS2,t)− µT

(4)

Note that a low strain switching rate, m, is still required to avoid one strain necessarily becoming
extinct.

The R0 values are now calculated as (approximating using m = 0 again):

R0 = Pr(new infection has high SPVL)× (avg. # infections generated by high SPVL infection)

+ Pr(new infection has low SPVL)× (avg. # infections generated by low SPVL infection)

Hence:

RS1
0 = fβHc

(
(1− k)

µ+ aH
+

k

µ+ pH

)
+ (1− f)βLc

(
(1− k)

µ+ aL
+

k

µ+ pL

)
RS2

0 = (1− f)βHc

(
(1− k)

µ+ aH
+

k

µ+ pH

)
+ fβLc

(
(1− k)

µ+ aL
+

k

µ+ pL

)
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And the equilibrium matrix becomes:

M−1Λ = c



m1fk̄βH m1fk̄βH m1fk̄βL m1fk̄βL n1f̄ k̄βH n1f̄ k̄βH n1f̄ k̄βL n1f̄ k̄βL
m2fkβH m2fkβH m2fkβL m2fkβL n2f̄kβH n2f̄kβH n2f̄kβL n2f̄kβL
m3f̄ k̄βH m3f̄ k̄βH m3f̄ k̄βL m3f̄ k̄βL n3fk̄βH n3fk̄βH n3fk̄βL n3fk̄βL
m4f̄kβH m4f̄kβH m4f̄kβL m4f̄kβL n4fkβH n4fkβH n4fkβL n4fkβL
n1fk̄βH n1fk̄βH n1fk̄βL n1fk̄βL m1f̄ k̄βH m1f̄ k̄βH m1f̄ k̄βL m1f̄ k̄βL
n2fkβH n2fkβH n2fkβL n2fkβL m2f̄kβH m2f̄kβH m2f̄kβL m2f̄kβL
n3f̄ k̄βH n3f̄ k̄βH n3f̄ k̄βL n3f̄ k̄βL m3fk̄βH m3fk̄βH m3fk̄βL m3fk̄βL
n4f̄kβH n4f̄kβH n4f̄kβL n4f̄kβL m4fkβH m4fkβH m4fkβL m4fkβL


where f̄ = (1− f).

2.2 Results: Magnitude and direction of the ART effect

We have not re-done the PDE analysis for this model since we expect the direction of the ART-
effect at equilibrium to remain the same as in the original model. This is because, even though
high SPVL infections don’t correspond exactly to strain S1 infections, it is still the case that if ‘low
CD4’ transmissions occur proportionally more in high SPVL infections (compared to low SPVL
infections) then they are of greater importance to the onward transmission of S1. Therefore, so
long as f > 0.5, the direction of the long-term ART-effect will remain the same.

In supplementary figures 1-3 we have redone figures 3, 5 and 6 (resp.) of the main text using
this model and f = 0.8. We see that, in both the short- and the long-term, the magnitude of the
ART-effect on virulence is lessened. This is because reducing the heritability brings the number
of high and low SPVL infections closer together, and so there is less scope for change in overall
virulence. Aside from this the results are qualitatively the same; the figures show that the patterns
of virulence change in the absence of ART and the direction of the ART-effect in the short- and
long-term are all very similar to in the original model.
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Figure 1:Behaviour of the model with reduced heritability, with and without ART.
Parameters and initial conditions are as in figure 3 (main text) but with f = 0.8. A, C: In the
absence of ART RS1

0 = 2.4, RS2
0 = 2.2. B, D: In the absence of ART RS1

0 = 2.2, RS2
0 = 2.4. Solid

lines show the output of the model without ART while dotted lines plot trajectories for the model
when ART is introduced at 30% coverage 40 years into the epidemic. A, B: The number of strain
S1 infections through time is shown in red and the number of strain S2 infections in blue. With
reduced heritability, the numbers of S1 and S2 infections are similar to in the case where f = 1
(figure 3, main text). C, D: However since each strain now gives rise to a mixture of high and low
SPVL infections, the numbers of high and low SPVL infections are closer to each other and this
results in the smaller magnitude variations in virulence. The shape of virulence change over time
is similar to when f = 1. The effect of ART is still to increase virulence compared to the model
without ART, but this effect is also reduced in magnitude when heritability is reduced.
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Figure 2:The relationship between ART coverage and virulence at equilibrium for
different parameter sets, when f = 0.8. Parameters and colours as in figure 5 (main text) but
with the heritability parameter f = 0.8. Recall BH

AH
is kept constant while BL

AL
is varied from low

(red line) to high (yellow line). A: RS1
0 = 2.4, RS2

0 = 2.2. B: RS1
0 = 2.2, RS2

0 = 2.4. Total number
of AIDS-related deaths per untreated infected person per year is plotted on the y axis. Since each
strain now gives rise to a mixture of high and low virulence infections, the overall virulence values
that occur when one strain dominates and the other is maintained at mutation-selection balance
are less extreme than in figure 5 (main text) when f = 1. Hence the potential effect of ART is
reduced in magnitude while the direction of the effect remains the same.
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Figure 3:The effect of ART on virulence in the short term, 50 years after the intro-
duction of ART, when f = 0.8. The results of model simulations in which ART is introduced
40 years into the epidemic are shown. Parameters and colours are as in figure 5 (main text)
but with the heritability parameter f = 0.8. Recall BH

AH
is kept constant while BL

AL
is varied from

low (red line) to high (yellow line). Initial conditions are as given in figure 3 (main text). A:
RS1

0 = 2.4, RS2
0 = 2.2. B: RS1

0 = 2.2, RS2
0 = 2.4. Total number of AIDS-related deaths per un-

treated infected person per year is plotted on the y axis. Note that points are not plotted for k = 1
because when all patients are treated there are no AIDS-related deaths and so overall virulence
is not well defined at this point. Since each strain now gives rise to a mixture of high and low
virulence infections, changes in the strain balance have a less severe effect on overall virulence and
so the potential effect of ART is reduced compared to in figure 6 (main text) when f = 1. The
direction of the ART-effect is to decrease overall virulence at this point in time for all parameter
sets, as before.
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3 Model with increased transmission in acute infection

3.1 Methods

In this model we add in an ‘acute’ stage of infection, A, which lasts for on average 1/α years.
Individuals in the acute classes have γ-fold higher infectiousness. When these individuals transition
into the standard infected classes they are at that point subdivided unto those who will or won’t
later receive treatment. The ODE model equations are shown below.

dS

dt
= B − (βHc(I

H
. + γAH. ) + βLc(I

L
. + γAL. ))S/N − µS

dAHS1
dt

= f(βHc(I
H
S1 + γAHS1) + βLc(I

L
S1 + ALS1))S/N − (µ+ aH + α)AHS1

dALS1
dt

= (1− f)(βHc(I
H
S1 + γAHS1) + βLc(I

L
S1 + ALS1))S/N − (µ+ aL + α)ALS1

dAHS2
dt

= (1− f)(βHc(I
H
S2 + γAHS2) + βLc(I

L
S2 + ALS2))S/N − (µ+ aH + α)AHS2

dALS2
dt

= f(βHc(I
H
S2 + γAHS2) + βLc(I

L
S2 + ALS2))S/N − (µ+ aL + α)ALS2

dIHS1,u
dt

= (1− k)αAHS1 − (µ+ aH)IHS1,u −mIHS1,u +mIHS2,u

dIHS1,t
dt

= kαAHS1 − (µ+ pH)IHS1,t −mIHS1,t +mIHS2,t

dILS1,u
dt

= (1− k)αALS1 − (µ+ aL)ILS1,u −mILS1,u +mILS2,u

dILS1,t
dt

= kαALS1 − (µ+ pL)ILS1,t −mILS1,t +mILS2,t

dIHS2,u
dt

= (1− k)αAHS2 − (µ+ aH)IHS2,u −mIHS2,u +mIHS1,u

dIHS2,t
dt

= kαAHS2 − (µ+ pH)IHS2,t −mIHS2,t +mIHS1,t

dILS2,u
dt

= (1− k)αALS2 − (µ+ aL)ILS2,u −mILS2,u +mILS1,u

dILS2,t
dt

= kαALS2 − (µ+ pL)ILS2,t −mILS2,t +mILS1,t

dT

dt
= pH(IHS1,t + IHS2,t) + pL(ILS1,t + ILS2,t) − µT

(5)

The R0 values for this model are calculated as follows (in the absence of ART, and using the
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approximation m = 0 as before):

RS1
0 =

γβH
µ+ aH + α

+
α

µ+ aH + α

βH
µ+ aH

RS2
0 =

γβL
µ+ aL + α

+
α

µ+ aL + α

βL
µ+ aL

To examine how changing the transmission profile alters the relative importance of low CD4
transmissions we switch to using the PDE form of the model. The partial differential equations for
the infected populations are no different to in the original PDE model (equations 4, main text),
except that λi changes. Let acute infection last for A years. In the simple m = 0 case we are now
interested in when the following inequality holds:∫∞

TH
yHS1dτ∫∞

TH
yHS1dτ +

∫∞
TL
yLS2dτ

>
γ
∫ A
0
yHS1dτ +

∫∞
A
yHS1dτ

γ
∫ A
0
yHS1 + yLS2dτ +

∫∞
A
yHS1 + yLS2dτ

(6)

where, as before (with m = 0)

yHS1 = λS1Se
−µτ ×

{
1 if τ ≤ TH

(1− k)e−dH(τ−TH) if τ > TH

yLS2 = λS2Se
−µτ ×

{
1 if τ ≤ TL

(1− k)e−dL(τ−TL) if τ > TL

(7)

Note that the end of the acute period (t = A) is before the start of the treatment period for
both high and low virulence infections (t = TH , TL). Hence

∫ ∞
TH

yHS1dτ = λS1S
e−µTH

µ+ dH

γ

∫ A

0

yHS1dτ +

∫ ∞
A

yHS1dτ = λS1S

[
e−µTH

µ+ dH
+ γ

(
1

µ
− 1

µ
e−µA

)
+

1

µ
e−µA − 1

µ
e−µTH

]
Writing (6) in terms of the parameters of the model:(
λS1S

e−µTH

µ+ dH

)(
λS1S

[
e−µTH

µ+ dH
+ γ

(
1

µ
− 1

µ
e−µA

)
+

1

µ
e−µA − 1

µ
e−µTH

]
+ λS2S

[
e−µTL

µ+ dL
+ γ

(
1

µ
− 1

µ
e−µA

)
+

1

µ
e−µA − 1

µ
e−µTL

])
>(

λS1S
e−µTH

µ+ dH
+ λS2S

e−µTL

µ+ dL

)(
λS1S

[
e−µTH

µ+ dH
+ γ

(
1

µ
− 1

µ
e−µA

)
+

1

µ
e−µA − 1

µ
e−µTH

])
After multiplying out, the λS1λS1 terms all cancel and we can then divide by λS1λS2S

2 to get:
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(
e−µTH

µ+ dH

)([
γ

(
1

µ
− 1

µ
e−µA

)
+

1

µ
e−µA − 1

µ
e−µTL

])
>(

e−µTL

µ+ dL

)([
γ

(
1

µ
− 1

µ
e−µA

)
+

1

µ
e−µA − 1

µ
e−µTH

])
⇒ µ+ dL

µ+ dH
>

(
γ − γe−µA + e−µA

)
eµTH − 1

(γ − γe−µA + e−µA) eµTL − 1

3.2 Results: Magnitude and direction of the ART-effect

To model a scenario in which in the absence of ART approximately 50% of all transmissions
occur in acute infection, we take γ = 13 and α = 2 (or equivalently, A = 1/2, so the increased
transmission of acute infection lasts for 6 months). Supplementary figures 4–6 show the results
of this ‘increased acute phase infectivity’ model using these values for γ and α. Note that as
we increase the proportion of transmissions that are occurring in acute infection, the importance
of low CD4 transmissions to the force of infection of both strains decreases. Hence when 50%
of transmissions occur in acute infection ART has a lesser effect on viral dynamics and higher
coverage is needed to see effects of the same magnitude as before (see supplementary figures 5 and
6 and compare with figures 5 and 6 in the main text).

With these parameters, the condition for ART to benefit the low virulence strain is:

µ+ dL
µ+ dH

>
1.15eµTH − 1

1.15eµTL − 1

(where as when we previously assumed constant probability of transmission throughout infec-
tion the RHS was (eµTH − 1)/(eµTL − 1)). Since eµTH and eµTL are both a little greater than 1, the
fraction on the RHS is larger than previously. Hence, when we account for increased transmission
in acute infection, then dL and dH have to be closer in size than they did before in order to see a
benefit to the low virulence strain. Or, in other words, there are fewer cases in which the effect of
ART is to drive a decrease in virulence (as seen in supplementary figure 5 compared with figure 5
(main text)).
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Figure 4:Behaviour of the model with 50% of transmissions occurring in the first 6
months of infection, with and without ART. Parameters and initial conditions are as in
figure 3 (main text) and with α = 2, γ = 13. A, C: In the absence of ART RS1

0 = 2.0, RS2
0 = 1.8.

B, D: In the absence of ART RS1
0 = 1.8, RS2

0 = 2.0. Solid lines show the output of the model
without ART while dotted lines plot trajectories for the model when ART is introduced at 30%
coverage 40 years into the epidemic. A, B: The number of strain S1 infections through time is
shown in red and the number of strain S2 infections in blue. With increased transmission earlier
in infection the peak of the epidemic occurs earlier, even given lower R0 values used in this figure
compared to figure 3 in the main text. C, D: In this model equilibrium is reached earlier and so the
decrease of virulence in (D) occurs faster. The effect of ART on virulence is of smaller magnitude
compared to the original model with constant transmission profile.
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Figure 5: The relationship between ART coverage and virulence at equilibrium, in the
model with 50% of transmissions occurring in the first 6 months of infection. Parameters
and colours as in figure 5 (main text) plus α = 2, γ = 13. Recall BH

AH
is kept constant while BL

AL
is

varied from low (red line) to high (yellow line). A: RS1
0 = 2.0, RS2

0 = 1.8. B: RS1
0 = 1.8, RS2

0 = 2.0.
Total number of AIDS-related deaths per untreated infected person per year is plotted on the y
axis. Since transmissions late in infection are now of lesser relative importance to both strains,
ART very rarely has a large effect on virulence. There are fewer cases in which the effect of ART
is to drive a decrease in virulence.
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Figure 6: The effect of ART on virulence in the short term, 50 years after the introduc-
tion of ART, in the model with 50% of transmissions occurring in the first 6 months of
infection. The results of model simulations in which ART is introduced 40 years into the epidemic
are shown. Parameters and colours are as in figure 5 (main text) plus α = 2, γ = 13. Recall BH

AH

is kept constant while BL

AL
is varied from low (red line) to high (yellow line). Initial conditions are

as given in figure 3 (main text). A: RS1
0 = 2.0, RS2

0 = 1.8. B: RS1
0 = 1.8, RS2

0 = 2.0. Total number
of AIDS-related deaths per untreated infected person per year is plotted on the y axis. As seen in
the equilibrium calculations, the effect of ART on virulence in this model is smaller in magnitude
compared to the model with constant transmission profile (figure 6, main text) and there are fewer
cases in which the effect of ART is to drive a decrease in virulence.
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4 Modelling increased transmission amongst a subsection

of the population

4.1 Methods

For this extension of the model, we split the population into a ‘core’ and ‘periphery’, where there
will be much higher contact between individuals in the core and the core will be much smaller
than the periphery. We assume no movement between the core and periphery compartments. So
the basic structure of the model is:

Core : Sc
λc−→ Ic

Periphery : Sp
λp−→ Ip

where, now specifying the viral strain, i,

λi,c = βHcc
IHi,c

Sc + Ic
+ βLcc

ILi,c
Sc + Ic

+ βHcb
IHi,p

Sp + Ip
+ βLcb

ILi,p
Sp + Ip

λi,p = βHcp
IHi,p

Sp + Ip
+ βLcp

ILi,p
Sp + Ip

+ βHcb
IHi,c

Sc + Ic
+ βLcb

ILi,c
Sc + Ic

and we now have three contact rates: cc is the contact rate within the core, cp is the contact
rate within the periphery, and cb is the contact rate between the core and the periphery. Hence
cc > cp, cb. The spread of the infection within each compartment is described by the equations in
(1), with λi replaced by λi,c or λi,p as appropriate. We introduce ART to the core only.

Let cb = cp, so it is only within the core that there are higher contact rates. We wish to use this
model to simulate the dynamics of generalised and concentrated epidemics and compare the two.
For the generalised epidemic we let cp = 1

2
cc and then for the concentrated epidemic cp = 1

100
cc.

4.2 Comparison of generalised and concentrated epidemics

The results in figure 7 show that in the generalised epidemic the dynamics of the core and the
periphery are almost identical. This situation is not much different from our original model.
Therefore it is not surprising that virulence change over time is very similar to in figure 3 (main
text), both in the absence and presence of ART.

In contrast, in figure 8 we see that in the concentrated epidemic the dynamics of the periphery
lag behind those of the core and the fraction of individuals infected in the periphery is more than
10 times smaller than in the core. Note that in the concentrated model the forces of infection are
dominated by the following terms:

λi,c ≈ βHcc
IHi,c

Sc + Ic
+ βLcc

ILi,c
Sc + Ic

λi,p ≈ βHcb
IHi,c

Sc + Ic
+ βLcb

ILi,c
Sc + Ic
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Hence the spread of infection in the core is influenced very little by the periphery, whereas in
the periphery the incidence of infection is almost entirely determined by the prevalence of infection
in the core and the force of infection is low. These observations explain the strain dynamics seen
in figure 8.

Despite the differences in dynamics between the core and periphery, we see in figure 8 that
patterns of virulence change in the first 200 years of the epidemic are very similar to in the
generalised epidemic, both in the absence and presence of ART. We wish to gain an understanding
of what we would expect the ART-effect in the long term (at equilibrium) to be in the concentrated
model. First note that in general we would expect the magnitude of the effect to be slightly greater
because we are targeting therapy at the individuals who contribute most to onward transmission
(the core). We would expect the direction of the ART effect to be similar to that in the original
model (since the relative importance of ‘low CD4’ transmissions to each strain hasn’t changed). so
long as the ratio of high:low SPVL infections in the core (where ART is applied) is similar to that
in the periphery. We can use the approximated forces of infection above to do a straightforward
calculation of the equilibrium position of the model (in the absence of ART):

dIHS1,c
dt

= 0 ⇒ βHcc
IHS1,c
Nc

Sc + βLcc
ILS1,c
Nc

Sc − (µ+ aH +m)IHS1,c +mIHS2,c = 0

⇒
βHccI

H
S1,c + βLccI

L
S1,c

(µ+ aH +m)IHS1,c −mIHS2,c
=
Nc

Sc

dILS1,c
dt

= 0 ⇒ −(µ+ aH +m)ILS1,c +mILS2,c = 0

⇒ m

µ+ aH +m
IHS1,c = IHS2,c

⇒
βHccI

H
S1,c + βLccI

L
S1,c

(µ+ aH +m)IHS1,c − m2

µ+aH+m
IHS1,c

=
Nc

Sc

Similar calculations for S2 in the core and S1 and S2 in the periphery yield

βHccI
H
S2,c + βLccI

L
S2,c

(µ+ aL +m)ILS2,c − m2

µ+aL+m
ILS2,c

=
Nc

Sc

βHcbI
H
S1,c + βLcbI

L
S1,c

(µ+ aH +m)IHS1,p − m2

µ+aH+m
IHS1,p

=
Nc

Sp

βHcbI
H
S2,c + βLcbI

L
S2,c

(µ+ aL +m)ILS2,p − m2

µ+aL+m
ILS2,p

=
Nc

Sp
.

Combining the core and periphery pairs of equations and rearranging gives

(µ+ aH +m)IHS1,c − m2

µ+aH+m
IHS1,c

(µ+ aL +m)ILS2,c − m2

µ+aL+m
ILS2,c

=
(µ+ aH +m)IHS1,p − m2

µ+aH+m
IHS1,p

(µ+ aL +m)ILS2,p − m2

µ+aL+m
ILS2,p

.

When m << 1, as in the original model, this approximates to IHc /I
H
p = ILc /I

L
p . In other words

the ratio of high:low SPVL infections is approximately the same in the core as in the population
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as a whole. Hence we would expect the direction of the ART-effect on virulence at equilibrium to
be similar to that in the original model.
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Figure 7: Behaviour of the core-periphery model under the assumptions of a generalised
epidemic, with and without ART. Parameters are as in table 1 but with the differing contact
rates cc = 1, cp = cb = 0.5. The core is 20 times smaller than the periphery, so Sc(0) = 2000, Sp(0) =
40000. Initially there are no infections in the periphery, but in the core IHS1,u(0) = ILS2,u(0) = 1
and all other infected populations are 0 initially. A, C: In the absence of ART, the R0s of the
core (where c = 1) are set at RS1

0 = 2.4, RS2
0 = 2.2. In other words, we choose βH , βL such that

2.4 = βH/(µ + aH), 2.2 = βL/(µ + aL). B, D: In the absence of ART, the R0s of the core (c = 1)
are set at RS1

0 = 2.2, RS2
0 = 2.4. Solid lines show the output of the model without ART while

dotted lines plot trajectories for the model when ART is introduced 40 years into the epidemic.
Only the core is treated (at coverage of 30%). A, B: The number of strain S1 infections through
time is shown in red and the number of strain S2 infections in blue. In this simulation of a
generalised epidemic, though the dynamics are driven by transmission in the core, the dynamics
in the periphery closely match those in the core. C, D: Patterns of virulence change over time are
qualitatively similar to the original model, though the peak is smaller and the magnitude of the
ART-effect is lesser since only the core is treated.
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Figure 8: Behaviour of the core-periphery model under the assumptions of a con-
centrated epidemic, with and without ART. Parameters are as in table 1 but with the
differing contact rates cc = 1, cp = cb = 0.01. The core is 20 times smaller than the periphery, so
Sc(0) = 2000, Sp(0) = 40000 and also Bc = 50 and Bp = 1000. Initially there are no infections
in the periphery, but in the core IHS1,u(0) = ILS2,u(0) = 1 and all other infected populations are 0
initially. A, C: In the absence of ART, the R0s of the core (c = 1) are set at RS1

0 = 2.4, RS2
0 = 2.2.

B, D: In the absence of ART, the R0s of the core (c = 1) are set at RS1
0 = 2.2, RS2

0 = 2.4. Solid
lines show the output of the model without ART while dotted lines plot trajectories for the model
when ART is introduced 40 years into the epidemic. Only the core is treated (at coverage of 30%).
A, B: The number of strain S1 infections through time is shown in red and the number of strain
S2 infections in blue. Compared to the generalised epidemic the peak of infections is later due to
reduced transmission in the periphery, and the number of infections is much lower in the periphery.
The force of infection in the periphery is very dependent on the proportion of infected individuals
in the core and the shape of the epidemic peak reflects this. C, D: Patterns of virulence change
are still very similar to those seen in the original model, except that the low virulence strain (S2)
starts to dominate earlier in (D) than in fig 3D (main text).
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5 Modelling an ART treatment protocol where all patients

are treated as soon as possible

5.1 Methods

To model a set of treatment guidelines where all individuals are treated as soon as possible (i.e. as
soon as they are identified as HIV-positive) we use the original ODE model with ART, as given in
equations 2, main text, and set pH = pL. In other words, identification of infection and resulting
treatment is independent of disease course. In the figures that follow (figures 9 and 10) we vary
the average time from infection to identification of infection between 6 months and 4 years and
look at the resulting ART-effect at equilibrium (figure 9) and in the short-term (figure 10).

5.2 Results

Under this treatment protocol, the low virulence strain is always affected most when ART is intro-
duced because a greater proportion of its onward transmissions are effectively removed (compared
to the onward transmissions of the high virulence strain). Therefore in the long term (at equilib-
rium), ART always drives an increase in virulence, whatever the value of the parameter pj. The
magnitude of the effect is smaller when pj is large, i.e. when patients are treated particularly early
in infection, because in that case both strains are (more equally) heavily affected by ART.

In the short term, the effect of ART is either to benefit the high virulence strain (S1), in which
case the magnitude is small because S1 dominates in the absence of ART anyway, or to benefit the
low virulence strain. However, the benefit to the low virulence strain occurs in the (unrealistic)
cases where ART is causing the eventual extinction of both strains – since the turnover of the S2-
infected population is lower it decays at a slower rate and so the average virulence of an infection
rises in these cases.
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Figure 9: The relationship between ART coverage and virulence at equilibrium when
patients are treated as soon as possible after infection, regardless of disease progres-
sion. A: RS1

0 = 2.4, RS2
0 = 2.2. B: RS1

0 = 2.2, RS2
0 = 2.4. Total number of AIDS-related deaths

per untreated infected person per year is plotted on the y axis. Treating independent of disease
progression translates to setting pL = pH in the ODE model. Different coloured lines here rep-
resent different rates at which individuals in the ‘treated’ class are treated, from pj = 2 i.e. an
average of 6 months of infection before initiating ART (blue) to pj = 1/4 i.e. an average of 4 years
of infection before initiating ART (red). The remaining parameters are the same as in Table 1
(main text). Note that when everyone is treated almost immediately, both strains take a big hit
to onward transmission, where as when individuals are treated after four years the low virulence
strain, S2, takes a much bigger hit, hence overall virulence is higher the lower pj is.
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Figure 10:The short term effect of ART on virulence, in the model where patients
are treated as soon as possible after infection, regardless of disease progression. The
results of model simulations at 90 years (where ART is introduced 40 years into the epidemic)
are shown, with total number of AIDS-related deaths per untreated infected person per year once
again used as a proxy for virulence A: RS1

0 = 2.4, RS2
0 = 2.2. B: RS1

0 = 2.2, RS2
0 = 2.4. As in

supplementary figure 9, different coloured lines represent different rates at which individuals in the
‘treated’ class are treated, from pj = 2 i.e. an average of 6 months of infection before initiating
ART (blue) to pj = 1/4 i.e. an average of 4 years of infection before initiating ART (red). The
remaining parameters and initial conditions are the same as in figure 3 and table 1 (main text).
When pj is low then even at this stage in the epidemic the effect of ART is to benefit the high
virulence strain (S1). For higher values of pj and ART coverage, k, ART results in the eventual
extinction of both strains. Since the death rate of the S2-infected population is lower than that of
the S1-infected population this can lead to a rise in the proportion of S2 compared to S1 -infected
individuals in the period leading to extinction, and hence a decrease in virulence by this measure.
The points representing parameter sets where this extinction has already occurred at 90 years
(IS1(90) + IS2(90) < 1) are not plotted.
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6 Additional sensitivity analyses

In this section we conduct sensitivity analyses in which we vary the R0 values (figures 11–13), the
timing of ART initiation relative to the peak of the epidemic (figures 14 & 15) and the initial
conditions (figure 16). These sensitivity analyses are based on the original model as presented in
the main text. Table 1 summarises the results of all these sensitivity analyses and the analyses
in sections 2–4 in terms of the effect of the various modifications on the key results regarding
virulence evolution and the ART-effect.
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Figure 11: Behaviour of the model where both strains have particularly high R0 s, with
and without ART. Parameters and initial conditions are as in table 1 and figure 3 (main text),
except for mortality and progression rates of infected individuals which are in general lower in this
simulation (aH = 1/6, aL = 1/14, pH = 1/4, pL = 1/12). A, C: In the absence of ART, the R0s are
set at RS1

0 = 4.4, RS2
0 = 4.0. B, D: In the absence of ART, the R0s are set at RS1

0 = 4.0, RS2
0 = 4.4.

Solid lines show the output of the model without ART while dotted lines plot trajectories for the
model when ART is introduced at 30% coverage 25 years into the epidemic. A, B: The number of
strain S1 infections through time is shown in red and the number of strain S2 infections in blue.
The peak of the epidemic now occurs between 20 and 25 years after the start and is slightly more
severe than in the original model. Otherwise the dynamics are similar. C, D: Patterns of change in
virulence are qualitatively similar to the original model and occur on the same order-of-magnitude
timescales.
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Figure 12: Behaviour of the model where both strains have particularly low R0 s, with
and without ART. Parameters and initial conditions are as in table 1 and figure 3 (main text).
A, C: In the absence of ART, the R0s are set at RS1

0 = 1.6, RS2
0 = 1.4. B, D: In the absence of

ART, the R0s are set at RS1
0 = 1.4, RS2

0 = 1.6. Solid lines show the output of the model without
ART while dotted lines plot trajectories for the model when ART is introduced at 30% coverage
55 years into the epidemic. The number of strain S1 infections through time is shown in red and
the number of strain S2 infections in blue. A, B: The peak of the epidemic now occurs much later
and the progress of the epidemic is in general much slower. In the case where RS1

0 < RS2
0 , the high

virulence strain is unable to spread through the population as quickly (B) and its domination in
the early stages is significantly reduced compared to in simulations with higher R0s. C, D: Despite
this, patterns of virulence change are still quantitatively similar - a first-phase rise in virulence is
followed by a second phase decline (though this is modest in (C)), and the third phase is determined
by the balance of the R0s.
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Figure 13: Patterns of virulence change in the first 150 years of the epidemic for a range
of combinations of R0 values for the two strains. Total number of AIDS-related deaths per
untreated infected person per year is plotted on the y axis. Parameters and initial conditions are
as given in table 1 and figure 3 (main text), except for the R0 values which are varied from 2 to 2.6.
Changes in virulence are quantitatively different for different R0 combinations but the patterns of
change through time are consistent. There is a decrease in virulence in the second half-century of
the epidemic in all cases, this is most severe when RS2

0 is much greater than RS1
0 and very slight

when RS1
0 is greater than RS2

0 . ART always results in a decrease in virulence (compared to the
model with no ART) and this ART effect is largest when RS2

0 is a little larger than RS1
0 .
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Figure 14:Behaviour of the model without ART compared to the model where ART
is introduced before the epidemic peak. Parameters and initial conditions are as in table 1
and figure 3 (main text), including R0 values. Solid lines show the output of the model without
ART while dotted lines plot trajectories for the model when ART is introduced at 30% coverage 25
years into the epidemic. The number of strain S1 infections through time is shown in red and the
number of strain S2 infections in blue. Despite ART being introduced 15 years earlier, patterns of
virulence change in this simulation, measured as total AIDS-related deaths per untreated infected
person per year, are almost identical to those in figure 3 (main text).
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Figure 15:Behaviour of the model without ART compared to the model where ART
is introduced after the epidemic peak. Parameters and initial conditions are as in table 1
and figure 3 (main text), including R0 values. Solid lines show the output of the model without
ART while dotted lines plot trajectories for the model when ART is introduced at 30% coverage 55
years into the epidemic. The number of strain S1 infections through time is shown in red and the
number of strain S2 infections in blue. Despite ART being introduced 15 years later, patterns of
virulence change in this simulation, measured as total AIDS-related deaths per untreated infected
person per year, are almost identical to those in figure 3 (main text).
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Figure 16: Behaviour of the two strain model with and without ART and with differing
initial conditions. Parameters are the same as in figure 3 (main text) but the model is run for
1000 years in order to show the epidemic approaching equilibrium. A, B: The number of strain
S1 infections through time is shown in red and the number of strain S2 infections in blue. The
initial conditions are S(0) = 40000, IHS1,u(0) = 1, ILS2,u(0) = 1, all other populations equal to zero.
C, D: The effect of three different sets of initial conditions on the average death rate of untreated
individuals is shown (i) IHS1,u(0) = 0, ILS2,u(0) = 2 (black), (ii) IHS1,u(0) = 1, ILS2,u(0) = 1 (dark grey),
(iii) IHS1,u(0) = 2, ILS2,u(0) = 0 (light grey). The initial conditions do not change the equilibrium
position of the model. For (ii) and (iii) the model behaviour is close to identical after the peak
of the epidemic, approximately 50 years in. For (i), when all infections are initially of the low
virulence strain (S2) the model reaches equilibrium faster but the same ‘second phase’ patterns of
decreasing virulence after the peak are still seen in both (C) and (D).
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