
Supplemental Procedures

S1 The Swift-Hohenberg model

The Swift-Hohenberg (SH) model (Equation 1 in the main text) is a well-studied phenomenological model of periodic
patterning[1]. It represents a simple mathematical description of a Turing instability and encompasses many local acti-
vation, long-range inhibition models (and the corresponding local inhibition, long range activations models, such as the
substrate-depletion model[2]). Whilst this equation cannot capture some aspects of more complex mechanisms (since it is
only a one-variable model), it forms a good approximation in a parameter regime near the onset of Turing instability.

S1A The Swift-Hohenberg equation can qualitatively describe a more complicated set of
PDEs near the onset of Turing instability

Imagine we have a generic set of PDEs (that is invariant under rotations and translations):

∂Ai
∂t

= fi
(
{Aj ,∇2Aj ,∇4Aj ..}j

)
(S.1)

where {Aj} are the variables in the system. If we assume that we are near the onset of a Turing instability i.e. instability
of the homogeneous steady state, we can consider deviations of equation S.1 about the steady state. This separates the
equation into a linear component that dominates the behaviour for small disturbances, and a stabilizing nonlinear term:

∂δAi
∂t

=
∑
j

MijδAj + gi({δAj}j) (S.2)

We can then diagonalize the operatorM and transform from the basis {Aj} to the diagonal basis, {φj}. In this case, the
matrix dependence of the linear term disappears:

∂φi
∂t

=Miiφi + gi({φj}j) (S.3)

In the case that only a single mode exhibits a Turing instability, the other modes will rapidly decay to zero (i.e. Miiφi <
−kφi for some positive k, for all φi). Consequently we can consider just one equation of the set described by equation S.3.
Denoting the Turing-unstable mode by φ, we can write:

∂φ

∂t
=Mφ+ g(φ) (S.4)

Assuming that M is translationally and rotationally invariant means that Mq is a function of q2. Expanding about the
|q| = 0 long wavelength limit, we arrive atMq = α+β|q|2 +γ|q|4, where α, β, γ are constants. Note that all three terms are
required to describe a pattern that has a Turing instability over a finite set of wavelengths1. Reparameterizing this expansion
identifies Mq ≡ a− Lq in the Swift-Hohenberg model.

The specific form of the nonlinearity g(φ) is left unspecified. Near the onset of Turing instability, we expect the pattern
amplitude to be small, and thus can expand g(φ) ≈ −cφ2 − dφ3. If in addition, we require that the steady state pattern is
stripes, not spots, and follow the analysis of [3] and simulations of [4], and set c = 0 to favour exclusively striped patterns.

To summarize, if we take a set of PDEs and (i) expand about a homogeneous steady state, (ii) assume a single mode
exhibits a Turing instability, (iii) assume that we are in a regime near the onset of the instability, and (iv) assume the
pattern is exclusively striped, then we can motivate an equation qualitatively similar to the Swift-Hohenberg equation. This
formalizes the idea that many different PDEs can be qualitatively described by a simple, generic equation, at least in certain
limits. Outside of these limits the formal mapping no longer holds, however in nonlinear systems the limits can often describe
behaviours in other regimes[1].

S1B The Swift-Hohenberg operator, L, is associated with local activation, long-range in-
hibition (LALI)

To illustrate the intuition behind L, we use an example - model #3 in section S10. Here, the dynamics of the differentiation
status of the cells, φ(x, t) is described by an equation of the form:

dφ

dt
= K ∗ φ (S.5)

1An alternative way to motivate this is to requireMq > 0 for some small regime near q0, i.e. a formMq ∼ A−B(q2−q20)2, which is equivalent
to the expression above
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where ∗ denotes the convolution operator and K is an interaction function. In general, K describes the LALI interaction (or
vice versa, the LILA interaction); for model #3, for simplicity in 1D, this is of the form:

K(x) = KAe−|x|/LA −KIe
−|x|/LI (S.6)

To see the correspondence to the Swift-Hohenberg equation, we fourier transform equation S.5 and equation 1 and can
immediately make the following identification:

Kq ↔ a− Lq (S.7)

Does this assignment hold? In figure S1, we plot the two expressions as a function of q and find that, near the onset of Turing
instability, the Swift-Hohenberg expression, Lq, provides a reasonable approximation to the actual interaction function, Kq.
We expect this to hold for a variety of interaction functions, but again only in the limit near the onset of Turing instability.

Thus, the operator L is intimately linked to the nonlocal interactions in the system, and can be viewed as an approximate
description of a range of different LALI interactions.

Full interaction, Kq 
Swift-Hohenberg approximation 

q 

Figure S1: A comparison of the interaction function, Kq, with the approximation by the Swift-Hohenberg equation reveals
that a− Lq ≈ Kq for suitable parameters near the onset of a Turing instability. Related to Fig. 1

S1C Where does the Swift-Hohenberg approximation fail?

The model we use describes stripes formed by a Turing instability. This excludes the formation of non-striped patterns (e.g.
spots, or graded transitions from spots to stripes) but also excludes stripes formed by a non-Turing mechanism e.g. pair rule
gene expression in early Drosophila patterning[5]. A potentially more confusing case is where a Turing instability is present,
but is accompanied by other instabilities. In this case, our theory also breaks down. We illustrate this with two examples.

First, a number of reaction-diffusion models have been shown to display travelling wave behaviour (in addition to a Turing
instability). We find that, in this case, a parameter gradient can generate travelling waves and orient stripes perpendicular
to the gradient, see figure S2A and also the results from [4].

Second, reaction-diffusion models can also exhibit oscillatory dynamics. Again, a parameter gradient can have nontrivial
consequences on an oscillating + Turing system. In some regimes, stripes can form perpendicular to the gradient, provided
the gradient transitions the system from an oscillatory to a Turing state (see figure S2B).

Thus in both these cases, our model for stripe orientation does not apply. The reason is that our model applies to a
qualitatively different process, excluding both oscillations and travelling waves. However, simple observation of the patterning
process in vivo can dictate which of these qualitative models is appropriate. For example, neither travelling waves nor
oscillations are seen during digit/non-digit patterning, suggesting that the Swift-Hohenberg formulation is appropriate.
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Figure S2: A: Using the model described by equation S.42, a parameter gradient in fV can orient stripes perpendicular to the
gradient. The dynamics of orientation involves travelling waves (arrowhead highlights the travelling behaviour of a certain
portion of the pattern). B: Using the model described by equation S.40, a parameter gradient can orient stripes perpendicular
to the gradient by producing synchronized oscillations. Related to Fig. 3
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S2 Simulations

S2A Simulation methods

Equation 17 was simulated using a custom MATLAB script, available upon request. We simplified the core SH equation by
moving to dimensionless variables as:

∂φ

∂t
= aφ− (∇2 + 1)2φ− φ3. (S.8)

Equation S.8 was simulated on a 128 × 128 square grid in MATLAB (corrresponding to a physical length L = 10λ i.e.
∼10 stripes.) We began each simulation with a set of different stochastic initial conditions (random numbers drawn from a
normal distribution). The dynamics were solved using an algorithm that was inspired from an existing, freely available script
2 that transforms Equation S.8 into Fourier space in order to solve it (and thus uses cyclic boundary conditions). To examine
the solution, we plotted φ(x, t) as a RGB heatmap over time. For the figures in the main text, we plot the solution at a time
100a−1, which corresponded to a time where the pattern had almost stopped changing3. The results of each simulation vary
due to the variable initial conditions. We therefore repeated each simulation a number of times to ensure the behavior that
we observed was consistent.

S2B Parameter values

Equation S.8 has a single parameter, a, which we held constant for most of the simulations in the main text, a = 0.1 (the
exceptions being figure 1A upper right, a = 1.0; S5A where a = 0.1, 0.3, 1.0 respectively; and lower right where a = 0.01.).
For each of the simulations, we then modified Equation S.8 to resemble Equation 17, and we list the simulation details in the
table below.

Table S1: Simulation details and parameter values for the results in the main text

Mechanism to orient stripes Figure Parameter values and implementation

Production gradient 2A A linear gradient along the x-axis from +h to −h was added in the
tissue, with h = 0.0, 0.004, 0.01

Parameter gradient 2B a(x) varied linearly from 0.1 to −h, with h = −0.1, 0, 0.1

Tissue anisotropy 2C Operator L changed to L = (∇2 + 1)2 − h∂2
x, with h = 0, 0.01, 0.5

Anisotropic growth 2D Pattern was ‘grown’ at each timestep via φ(x, y, t + δt) = φ(x/(1 +
hδt), y, t). with h = 0, 0.05, 0.1

S2C Stripes may be oriented despite variability in initial conditions

To investigate the dependence of stripe orientation on initial conditions, we varied the initial conditions in our simulations.
Firstly, we used ‘stochastic’ initial conditions, in which each spatial gridpoint has a normally distributed random number as
its initial condition. We chose the standard deviation of this distribution to be roughly equal to the final pattern amplitude.
We then repeated the simulation many times and observed the variability in stripe direction.

To quantify the variability in stripe direction, we wrote a script to measure stripe angle by computing the pattern fourier
transform and looking for the dominant modes (figure S3A). We then represent the stripe direction on a polar plot, where the
polar angle corresponds to the angle of the stripes. For each of the mechanisms in the main text, we repeated the simulation
100 times, for a number of parameter sets, and plotted the distribution of final stripe direction. As expected, for parameter
sets that are weakly orienting, variable initial conditions can result in variable final patterns. However, we see that as the
orientation mechanism increases in magnitude, that stripes may be robustly oriented despite variability in initial conditions
(figure S3B).

The extreme of this would be starting from A-stripes and evolving to B-stripes, or vice versa. The analysis of section
S6-9 predicts that, under some parameter regimes, instability of A-stripes is certainly possible. Indeed, when using A stripes
as initial conditions, we could observe instability of these stripes when an orientation mechanism was present that tended to
favour B stripes, and vice versa (see figure S4).

2written by Roman Gregoriev and modified by Karen Daniels http://nile.physics.ncsu.edu/hon292a-f08/
3We choose to plot this timepoint, as opposed requiring the solution to converge, in order to show the different strengths and/or speeds between

the different orientation mechanisms
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Figure S3: A: Upper: By Fourier transforming striped patterns and finding the dominant wavevector, we may infer stripe
orientation from simulation results. Each simulation is plotted as a polar angle over π/2 of the unit circle, with random
scatter added to distinguish identical angles. Lower: Stripes are randomly oriented in the absence of orientation mechanisms.
B: Depending on the strength of each orientation mechanism, stripes may be unoriented, weakly oriented or strongly oriented,
even in the presence of variable initial conditions. Related to Fig. 2.
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Figure S4: In some parameter regimes, stripe orientation is sufficiently strong to completely reorient stripes. Related to Fig.
2.
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S3 Defining pattern orientation

The orientation of periodic patterns is often parameterized by a wavevector, q, that specifies the direction and spacing of
the pattern, see Figure 1 of the main text. (Spotted patterns can be considered as superpositions of periodic solutions with
different wavevectors, e.g. in a hexagonal lattice, these wavevectors are rotated π/3 w.r.t. one another[6]).

There are two ways that stripe direction can be variable: 1) stripe direction can vary across space within a tissue (Figure
S5A), and 2) stripe direction is constant in space, but varies due to stochastic effects, often variable initial conditions (Figure
S5B). In this work we choose a parameter regime where the stripes are largely straight (a → 0) but the direction of the
stripes is random in the absence of other factors (like Figure S5B).

dψ/dt = 0.1 ψ − (∇2 + 1)2 + 0 ψ2 − ψ3 dψ/dt = 0.3 ψ − (∇2 + 1)2 + 0 ψ2 − ψ3 dψ/dt = 1 ψ − (∇2 + 1)2 + 0 ψ2 − ψ3

Increase bifurcation parameter, a 

ds/dt = 0.01 s − (¢2 + 1)2 + 0 s2 − s3
ds/dt = 0.01 s − (¢2 + 1)2 + 0 s2 − s3 ds/dt = 0.01 s − (¢2 + 1)2 + 0 s2 − s3

Same parameters, different initial conditions 

A 

B 

Figure S5: A: Increasing the parameter a reduces the ‘straightness’ of stripes, so that stripe direction varies continuously
across space within the tissue. B: Even for ‘straight stripes’ (a = 0.01), randomly seeded initial conditions generate stripes
with different orientations. Related to Fig. 2.

S4 Stripes oriented by an arbitrary angle

In the main text we have focussed on two possible stripe orientations - vertical A stripes and horizontal B stripes. Here we
will argue that by considering just these two stripe orientations, we may infer the general behavior of stripe orientation.

For concreteness, consider an orientation mechanism (gradient or anisotropy) that is directed along the x-axis. Now, by
symmetry, the stripes will have a tendency to align along the y-axis (A stripes) or along the x-axis (B stripes). To illustrate
the logic, we first choose a mechanism that generates B-stripes. We then wish to ask: what range of other possible stripe
orientations exist?

To answer this question, we consider Aθ-stripes, oriented at an angle θ w.r.t. B-stripes (Figure S6A). In the main text, we
derived amplitude equations for the case θ = π/2, and quantified each in terms of a parameter p that introduced asymmetry
between A- and B-stripes (where p could be one from the set {hA, α,∆r ≡ rA − rB}). Stripe orientation arose when p
increased past a critical value pcrit. Now, these parameters can also be calculated for Aθ stripes - specifically p ≡ p(θ) takes
on an angular dependence. Whilst the precise form of this dependence may be complicated, we have: 1) p(θ = 0) = 0; and
2) p(θ) is monotonically increasing over (0, π/2]. Thus, when considering the alignment of B-stripes, we have the following
three regimes (figure S6B):

1. No stripe orientation, pπ/2 � pcrit

2. Some stripe orientation, pπ/2 ∼ pcrit
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3. Strong stripe orientation, pπ/2 � pcrit

Therefore, by analyzing the case θ = π/2 we determine the transition from randomized stripes to weakly oriented stripes.
Then, by using this, and by the monotonicity of p(θ), we can deduce the qualitative behavior of arbritrarily oriented stripes
Aθ - as the stripe orientation effect becomes stronger, a narrower range of stable stripe orientations is admissible.

This result can be generalized to write amplitude equations for two arbitrarily aligned stripes: Aθ, Aφ. Again, we deduce
that the parameter p that describes the asymmetry between Aθ, Aφ, will be extremized for: 1) θ, φ separated by π/2, and 2)
θ or φ are along the x-axis (the direction of the orientation mechanism, via symmetry). In this case, either A or B stripes
will be most stable and selected for large values of p. The qualitative behavior (i.e. classifying the mechanism as either A
or B in figure S6B,C) can be determined by considering perpendicular A- and B-stripes only, thus motivating the analysis in
the main text.

✓

A✓ A BA: 

B: Stable stripe orientations 

Increase strength of orientation mechanism 

✓

No orientation Some orientation Strong orientation 
B stripes 

C: Stable stripe orientations 

Increase strength of orientation mechanism 

No orientation Some orientation Strong orientation 
A stripes 

Figure S6: A: Schematic of Aθ, A and B stripes. B: Qualitative behavior of B stripes. As the orientation mechanism increases
in strength, the region of stable stripe orientations (green) narrow. On the far right is an example of strongly oriented B
stripes. C: Same as above, but for A stripes. Related to Fig. 2.
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S5 Deriving amplitude equations

To understand how periodic patterns are oriented, we look for steady state solutions of Equation 1. In the limit a→ 0, these
steady state solutions can be approximated as linear superpositions of functions of the form:

A(x, t)eiq.x +A∗(x, t)e−iq.x, (S.9)

with |q|2 = q20 , and θ ≡ cos−1(q.̂i)/q0 is the angle the pattern makes with the x-axis. The problem of pattern orientation is
then reduced to understanding which of these function(s) are a stable steady state solution of Equation 1?

To determine this we perform a bifurcation analysis of Equation 1, following the approach of e.g. [6, 7, 8, 9, 10].
In particular, we explore the equation near the onset of Turing instability, by setting a → ε2a, where ε is the bifurcation
parameter. We consider slowly varying variations in the amplitude of periodic solutions to Equation 1, by defining a timescale
T as ∂t = ε2∂T . Performing a bifurcation analysis, we write:

φ = εφ0 + ε2φ1 + ε3φ2. (S.10)

Equating terms of order ε and ε2 gives Lφ0 = Lφ1 = 0, i.e. periodic solutions with wavevector |q|2 = q20 . The amplitude
equation is generated from the ε3 term, giving:

Lφ2 = aφ0 − dφ30 − φ̇0. (S.11)

Since Lφ0 = 0, the RHS and LHS of Equation S.11 are orthogonal, hence must be identically zero, giving:

φ̇0 = aφ0 − dφ30. (S.12)

Substituting the ansatz

φ0 = A(x, t)eiq0x +A∗(x, t)e−iq0x + (S.13)

+B(x, t)eiq0y +B∗(x, t)e−iq0y, (S.14)

(which satisfies Lφ0 = 0) we arrive at the equation:

Ȧ = aA− 3d|A|2A− 6d|B|2A, (S.15)

and vice versa for B. Therefore, we arrive at Equations 4,5 if we rescale the time units and identify r = a/3d.
To understand why stripes are the only stable solution for this equation, we consider the alternative of a square array

of spots, i.e. A = B. In this case, the steady state solutions of Equations 4,5 give |A|2 = r/3, and disturbances about this
steady state are governed by the equations:

∂

∂t

(
δA
δB

)
= −2r

3

(
1 2
2 1

)(
δA
δB

)
, (S.16)

which can easily be shown to be unstable.
We now consider the effect of each of the orientation mechanisms considered in this article. The approach in each case

follows that of above: 1) perform a bifurcation analysis, 2) derive amplitude equations, 3) solve for the steady states, and 4)
determine the stability of these steady states.

S6 Production gradient

We modify Equation 1 to include the effects of a spatially varying production in the pattern variable, i.e.

∂φ

∂t
= aφ− Lφ− dφ3 + h(x). (S.17)

Again, we use a bifurcation expansion to derive the amplitude equations. The relevant scaling for h that describes its
effect on the stability of periodic patterns (as opposed to it dominating the patterning) is a→ ε2a, h→ ε3h. This generates
a modified version of Equation S.12:
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φ̇0 = aφ0 − dφ30 + h. (S.18)

To substitute ansatz S.14 into Equation S.18, we require the Fourier representation of the gradient:

h(x) =
∑
q

hqeiq.x + h∗qe−iq.x. (S.19)

Assuming that the gradient is along the x-axis (h is a function of x alone), then we may identify:

Ȧ = aA− 3d|A|2A− 6d|B|2A+ hq=(q0,0), (S.20)

with the h term absent in the equivalent equation for B. We may assume a form for h(x) to calculate the magnitude of the
additional term, e.g. h(x) = h0exp[−|x|/l] gives hq=(1,0) = 2h0q0l(1 + q20l

2)−1. Redefining constants recasts the equation
into Equations 9,10.

To solve the for the solutions of Equations 9,10 and their stability, we consider the nullclines Ȧ = Ḃ = 0. B = 0 is a
trivial stable solution, corresponding to stripes aligned along the y-axis. The second stable solution, corresponding to A = 0
for h = 0 loses stability when the nullclines no longer intersect. This is solved by writing the nullclines as:

B2 = r − 2A2, (S.21)

B2 =
1

2
(r −A2 +

h

A
) (S.22)

By equating these two functions, and their derivatives, we arrive at a critical value for h as described in the main text.

S7: Parameter gradient

For the case of an parameter gradient, we modify Equation 1 to include spatial variation in parameters. Accordingly, when
performing a bifurcation analysis of this equation, we must consider not only variations in amplitude over time, but also
variations over space. Letting X and Y denote slow spatial variations, and T slow time variations, we can rewrite the
bifurcation transformations as: a → ε2a, ∂t = ε2∂T and ∇ → ∇ + ε∇̃, where ∇ ≡ (∂x, ∂y)T acts on the rapidly varying,

periodic functions of the form exp[iq.x], and ∇̃ ≡ (∂X , ∂Y )T corresponds to the slow amplitude variations. When applied to
the operator defined in Equation 2, we obtain:

L → Lε = aκ
(
q−20 (∇+ ε∇̃)2 + 1

)2
. (S.23)

Considering the ε and ε2 expansion terms gives Lφ0 = Lφ1 = 0 as before. The effect of the spatial fluctuations appears
in the ε3 term, generating the amplitude equation:

φ̇0 = aφ0 − dφ30 + 4aκq−40 (∇.∇̃)2φ0. (S.24)

If we substitude ansatz S.14 into this equation, we obtain:

Ȧ = r(X,Y )A− |A|2A− 2|B|2A+ αAXX , (S.25)

Ḃ = r(X,Y )B − |B|2B − 2|A|2B + αBY Y , (S.26)

wtih α a constant defined as α ≡ 4aκ/3dq20 . For parameter variations purely along the x-axis, the Y dependence vanishes,
and we arrive at Equations 12,13, where we have dropped the capitalization for convenience in the main text.

To solve these equations, we focus on a regime near the onset of Turing instability r → 0, such tht r(x) changes sign in
the patterning field (Figure S7A)[6]. This is likely a relevant scenario in vivo - the position where r(x) changes sign controls
the boundary where the periodic pattern begins. For example, the murine limb bud has been proposed to transition from a
non-Turing regime (the forearm) to a Turing regime (the digits) via a proximal-distal gradient of hoxd13 [11, 4] (Figure S7B).

In this scenario, close to the gradient source, the pattern will be described by either (A,B) = (
√
r∞, 0) or (A,B) =

(0,
√
r∞). Far away from the gradient we are below the Turing instability threshold and thus (A,B) = (0, 0). To determine
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dψ/dt = 0.1 ψ − (∇
2 + 1) 2 + −0.2 ψ

2 − ψ
3

Fgf 
Hoxd13 

r

r1

r = 0 x

r

r1

r = 0 x
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A 

Figure S7: A parameter gradient from sub-Turing to Turing regimes. A: Transition to a Turing regime in simulation (left)
and in a schematic of limb development (right). B: Proposed parameter values as a function of distance, r(x), for the two
cases above. Related to Fig. 2.

the stability of each stripe direction we focus on the transition region. One possible steady state solution is B =
√
r(x),

A = 0. Variations about this steady state are described by equations:

δȦ = −r(x)δA+ αδAxx, (S.27)

δḂ = −2r(x)δB, (S.28)

i.e. this solution is a stable steady state. In contrast, consider the steady state with B = 0. Equation S.26 implies continuity
of A and ∂A/∂x in space. Therefore, near the onset of instability, defined by r(x0) = 0, A increases from zero to

√
r∞, but

in a way that respects the continuity of A and ∂A/∂x, i.e. A ∝ (x − x0)2 near x0. Now, consider the fluctuations in the
amplitude B about this steady state:

δḂ = (r(x)− 2|A|2)δB. (S.29)

Since r(x) near the transition will be linear in space, r(x) ∼ x − x0, whereas A(x) ∼ (x − x0)2, then for sufficiently small
x − x0, this steady state will become unstable to patterns in the transverse direction. Putting these results together mean
that (A,B) = (0,

√
r(x)) is the stable solution of Equation 11, i.e. parameter gradients can orient stripes parallel to the

gradient4

S8 Tissue anisotropies

In an isotropic and translationally invariant system, the operator L in Equation 1 takes a particular form. Specifically,
the Fourier transform, Lq ≡ Lq(|q|2) is a function of wavevector magnitude only. In an anisotropic (but translationally
invariant) system, this restriction changes to Lq ≡ Lq(q2x, q

2
y). In this case, the relevant Turing instability parameter, a, will

take different values according to the direction of the stripes. For stripes along the x-axis, aX = a−minq0Lq(q20 , 0), and for
stripes along the y-axis aY = a − minq0Lq(0, q20). If aX 6= aY , then the system is anisotropic. Applying these relations to
Equation S.12 and ansatz S.14 generates Equations 15,16 in the main text:

4The effective strength of this orientation can be rationalized by considering the size of the parameter α. By dimensional analysis, this sets a

lengthscale l ∼
√
α/r ∼

√
κ
π
λ that determines over what distance this effect will be realized. For small α, the effect will be moderate; whereas the

effect will become prominent as α increased.
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Ȧ = rAA− |A|2A− 2|B|2A, (S.30)

Ḃ = rBB − |B|2B − 2|A|2B. (S.31)

Consider the steady state (A,B) = (0,
√
rB). Fluctuations about this steady state obey the equations:

δȦ = (rA − 2rB)δA (S.32)

δḂ = −2rBδB, (S.33)

i.e. this steady state is stable if rA < 2rB , and vice versa for the solution (A,B) = (
√
rA, 0). Putting this together means

that, for rB > 2rA, then 1) B stripes are stable and 2) A stripes are unstable, as reported in the main text. Thus, parameter
anisotropies in the tissue can orient stripes, in the direction that maximizes the Turing instability parameter, r (Figure 2C).

S9 Anisotropic growth

We consider two types of growth. The first type is tissue growth without pattern growth. An example of this would be
a reaction-diffusion system where the tissue grows via cell division. As the tissue grows, the effective concentration of the
reaction-diffusion molecules will be continuously diluted. In contrast, a second case is where tissue growth occurs with pattern
growth. For example, in a cell-based mechanism, cell growth naturally involves replication of the pattern - since growth is
driven by cell division. Note, a third type of growth that has been considered elsewhere is growth where material is simply
added to the boundary of the tissue, see [12].

In both these cases, the growth generates an effective flow field (or velocity) in the tissue, v(x, t), related to the local
growth rate g(x, t) via ∇.v = g[13]. For example, uniform growth directed along the x-axis generates a flow field v = gxi.

For case 1 (tissue growth without pattern growth), this flow has two consequences: advection and dilution. This is
summarized by adding a term −∇.(vφ) to Equation 1[14]. Noting that ∇.v = g, we arrive at:

∂φ

∂t
= (a− g)φ− Lφ− dφ3 − v.∇φ. (S.34)

The term −gφ represents dilution - note that fast growth can drive the system below the Turing regime via this dilution.
In case 2 (tissue growth with pattern growth), the dilution is absent, i.e. we have:

∂φ

∂t
= aφ− Lφ− dφ3 − v.∇φ. (S.35)

Thus the two types of growth can be mapped onto one another provided we rewrite a→ a+ g for case 1.
To model anisotropic growth we consider the extreme of growth along the x-direction, i.e. v = vxi. As before, we perform

a bifurcation analysis of Equation S.35. Since v is a velocity, and since ∂x → ε∂X , ∂t → ε2∂T from before, we have that
v → εv. Substituting Equation S.10 into Equation S.35 and equating terms of order ε3 yields:

φ̇0 = aφ0 − dφ30 − v
∂φ0
∂x

. (S.36)

Using the ansatz S.14, we obtain:

Ȧ = aA− 3d|A|2A− 6d|B|2A− ivq0A, (S.37)

Ḃ = aB − 3d|B|2B − 6d|A|2B, (S.38)

or, rewriting parameters:

Ȧ = (r − iβ)A− |A|2A− 2|B|2A, (S.39a)

Ḃ = rB − |B|2B − 2|A|2B, (S.39b)

where β ≡ vq0/3d can vary across space, β ≡ β(x).
Now, by looking for steady state solutions of Equation S.39, the imaginary term means that the steady state B = 0 is no

longer admissible. In contrast, the steady state (A,B) = (0,
√
r) still exists and, analogously to Equation S.33, is a stable

solution. Thus, stripes are oriented along the direction of maximal tissue growth.
We can also estimate the typical growth rates for which this effect is observed, by requiring β ∼ r to be of similar

magnitude. This corresponds to v ∝ gL ∼ a/q0, where L is the typical tissue size. Thus, for g � a/q0L, the effect of growth
is negligible.
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S10 Stripe orientation is qualitatively similar in a range of different periodic
patterning mechanisms

S10A Applying our results to a canonical reaction-diffusion model

Whilst the existence of a bona fide reaction-diffusion model in biology is still debated, there are a number of chemical systems
that can self-assemble into stripes. One such system is the CIMA reaction - one of the first experimental realizations of a Turing
system - which involves the diffusion and reactions of chlorite-iodide and malonic acid[15]. Mathematical representations of
this chemistry are well established, and we follow the Lengyel-Epstein model[16, 17] (detailed below).

Now, we wish to ask whether the results outlined in the main text hold for this system, and thus interrogate the generality
of our results. We implement the model as a set of two-variable PDEs in MATLAB, on the same spatial domain as used
for the Swift-Hohenberg model. We chose a parameter regime that gives striped patterns (as opposed spots, or labryinthine
patterns), and then add one of a production gradient, a parameter gradient, or an anisotropy. In each case, we find that
stripe orientation is qualitatively similar to the predictions from a Swift-Hohenberg model.

We refer back to section S1C to highlight some exceptions to the rule. In particular, the CIMA reaction can also exhibit
oscillations and, if a parameter gradient moves the system into the oscillatory state, orientation by oscillation is possible, as
in figure S2B. Similarly, some parameter gradients do not transition the system from a sub-Turing to a Turing state, and in
this case stripe orientation is also not predicted by our model (e.g. if the transition is from a spotted to a striped state). Both
the cases are qualitatively distinct from the ‘parameter gradient’ outlined in the main text, where the parameter concerned
controls the onset of a Turing instability.

S10B Applying our results to other Turing models

We repeated the same type of analysis for several different Turing models - spanning molecular, cellular and mechanical
processes - as shown in Figure 3 of the main text. The models we consider are:

1. A 2-component reaction-diffusion equation, consisting of an unspecified activator/inhibitor pair, as used in Sheth et.
al. [4] to describe limb patterning.

2. A 3-component reaction-diffusion equation, consisting of two diffusible factors (BMP, Wnt) and a transcription factor
(Sox9), used by Raspopovic et al. [11] to describe limb patterning.

3. A cell-based model, in which the differentiation status of the cells is regulated by two diffusible signals secreted from
the cells - a short-ranged positive signal and a long-ranged negative signal, as motivated in Hiscock et al.[18]

4. A cell-based model involving cell movement and aggregation. Cells move randomly, and in response to a short-ranged
chemoattractant and a long-ranged chemorepellent secreted from the cells, as motivated in Hiscock et al. [18]

5. A mechanical model based on cells migrating on and interacting with ECM, as suggested by Murray et al. [19] in the
context of limb patterning.

The details of these equations follows in section S10D.
For each case, we follow the approach of Sheth et al. [4] and Raspopovic et al. [11], by considering a predominantly cubic

nonlinearity in the reaction terms which reliably generates striped patterns, without having to scan through high-dimensional
parameter spaces to find regimes of stripe formation. We focus on a single parameter set for each model, in which stripes are
formed, but with variable direction. We then add a production gradient, a parameter gradient or an anisotropy and examine
whether stripe orientation is achieved. For each case, the specific variable that is produced; or parameter that is varied; or
operator that is made anisotropic is different; but in each case, the results are consistent with the simpler Swift-Hohenberg
model.

S10C Previously published results are consistent with our simple model

There have been a number of existing simulation-based studies that have considered stripe orientation. In the table below,
we list the model; the orientation mechanism considered; and whether the results of our analysis hold.

S10D Model equations used in figure 3

1. The CIMA system is modelled by a 2 component reaction diffusion equation[17]:

∂u

∂t
= ∇2u+ a− u− 4

uv

1 + u2
(S.40a)

∂v

∂t
= σ

(
c∇2v + b

(
u− uv

1 + u2

))
(S.40b)
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Model Reference Orientation mechanism Orientation correctly predicted
by SH equation?

2 component reaction-diffusion Sheth et al. [4] Parameter gradient Yes, except for travelling waves

BSW model Raspopovic et al. [11] Parameter gradient Yes

Reaction-diffusion model Shoji et al. [20] Anisotropy Yes

Molecular model for digit pattern-
ing

Glimm et al [21] Production gradient Yes

Chemical Turing pattern, Brussela-
tor

De Wit et al. [22] Parameter gradient Yes

We use the parameters a = 10.2, b = 0.205, σ = 20, c = 1. We incorporate production of the variable u as the production
gradient, varying linearly between [−0.01, 0.01]; variation in parameter b as the parameter gradient, varying linearly
between [0.185, 0.265]; and anisotropy in the diffusion of v as the anisotropy. This is captured by changing the diffusion
operator to tensor form ∇TD∇, where

∇TD∇ ≡
(
∂x ∂y

)(Dxx 0
0 Dyy

)(
∂x
∂y

)
(S.41)

and we use Dxx = 0.1Dyy.

2. The two component reaction-diffusion model is taken from Sheth et. al. [4]:

∂

∂t

(
u
v

)
=

(
fU fV
gU gV

)(
u
v

)
+

(
DU 0
0 DV

)
∇2

(
u
v

)
−
(
u3

0

)
(S.42)

We use the parameters fU = 0.23, fV = 0.5, gU = 0.5, gV = −0.5, DU = 0.1, DV = 1.25. We use production of u as the
production gradient, varying linearly from [−0.001, 0.001]; variation in fU as the parameter gradient, linearly varying
from [0.20, 0.24] (though in fact, all 4 linear parameters can have the same effect in certain regimes, data not shown);
and variation in v diffusivity as the source of anisotropy, exactly as in #1. (These parameter sets are near those defined
by [4].)

3. The 3-component reaction-diffusion model is taken from Raspopovic et al. [11], the ‘BSW model’:

∂

∂t

B
S
W

 =

−k5 −k4 0
k2 0 −k3
0 −k7 −k9

B
S
W

+

DB 0 0
0 0 0
0 0 DW

∇2

B
S
W

−
 0
S3

0

 (S.43)

Again, we focus on parameter sets used in the original study. We choose k2 = 1.06, k3 = 0.7, k4 = 1.59, h5 = 0.1, k7 =
1.4, k9 = 0.1, d = 2.4, γ = 0.3, where γ ≡ DW , γd ≡ DB . We consider a production gradient of S, linearly varying
between [−0.05, 0.05]; a parameter gradient based on k4 linearly varying between [1.39, 1.79] and using d = 2.5, k2 =
1.05, k7 = 1.4, (although other ki gradients also apply); and anisotropy of B diffusion, exactly as in #1.

4. This cell-based model is motivated by Hiscock et al. [18]. We consider the differentiation status of a cell as a variable
φ, and we allow cells at different points in their tissue to interact. We allow cells to interact via diffusing and linearly
degrading secreted molecules, one of which is short ranged and promotes cells of the same type, A; the other is longer
ranged and inhibits cells of the same type, I. These equations can be written as:

∂φ

∂t
= gA(A) + gI(I) + λ− φ

τ
(S.44)

∂A

∂t
= DA∇2A− A

τA
+ fA(φ) (S.45)

∂I

∂t
= DI∇2I − I

τI
+ fI(φ) (S.46)

13



When linearized, in the limit of rapid molecular kinetics compared to the differentiation kinetics, these equations can
be mapped to the form of equations S.5 and S.6. We then choose cubic nonlinearities about the otherwise linearized
set of equations, so that stripes are reliably generated, i.e.:

∂φ

∂t
= K ∗ φ− γφ− φ3 (S.47)

Kq ≡
hA

1 + L2
Aq

2
− hI

1 + L2
Iq

2
(S.48)

We use hA = 1, hI = 2, LA = 1, LI = 3, γ = 0.3, where γ ≡ 1/τ . We allow variation in production of φ as the production
gradient, λ, varying linearly from [−0.001, 0.001]; variation in γ as an example of a parameter gradient, varying linearly
from [0.25, 0.35]; and anisotropy in the diffusion of I, exactly as in #1.

5. A slight variant on the above model is to allow the secreted molecules to act as chemical guidance cues. The simplest
representation of this case would be:

∂φ

∂t
= Dφ∇2φ−KA∇.(φ∇A) +KI∇.(φ∇I) + λ− φ

τ
(S.49)

∂A

∂t
= DA∇2A− A

τA
+ fA(φ) (S.50)

∂I

∂t
= DI∇2I − I

τI
+ fI(φ) (S.51)

Here, φ now represents density of cells. Again, we linearize this equations and allow cubic nonlinearities to straightfor-
wardly generate stripes without having to fine tune the parameters:

∂φ

∂t
= Dφ∇2φ−∇2 (K ∗ φ)− γφ− φ3 (S.52)

We use the same parameters as above, but with Dφ = 0.2, γ = 0.1. We use the same gradients and anisotropies as
the model above. As above, we allow variation in production of φ as the production gradient, λ, varying linearly from
[−0.001, 0.001]; variation in γ as an example of a parameter gradient, varying linearly from [0.07, 0.13]; and anisotropy
in the diffusion of I, exactly as in #1.

6. The final model is a simplified version of the full Oster-Murray model used to study chondrogenesis [23, 24, 19]. It
consists of a viscoelastic isotropic medium (the ECM) upon which cells migrate, exert traction forces and are passively
transported (advected). The variables in this model are the ECM density, ρ, the ECM displacement, u, and the cell
density, n, with the following PDEs:

(a) Conservation of matrix
∂ρ

∂t
+∇.

(
ρ
∂u

∂t

)
= 0 (S.53)

(b) Force balance.

∇.
[(
µ1
∂ε

∂t
+ µ2

∂θ

∂t
I

)
+ E (ε+ νθI) + τ

(
n+ ρ+ β∇2ρ

)
I

]
= −su (S.54)

(c) Advection of cells along the ECM
∂n

∂t
= −∇.

(
n
∂u

∂t

)
(S.55)

Here, θ ≡ ∇.u, 2ε ≡ ∇u + (∇u)T is the strain tensor, µ are viscosities, E is Young’s modulus; s is an elastic restoring
force exerted by attachment to an underlying substrate; τ is the traction force exerted by cells, with a nonlocal (e.g.
filopodia) term captured by β. We linearize these equations, assume a cubic nonlinearity and, after rearranging, arrive
at a simpler description that we simulate directly:

µ
∂

∂t
θ = KOM ∗ θ − θ3 (S.56)

KOM
q = 2τ − E −

(
s

q2
+ τβq2

)
(S.57)

Here, τ, µ, s have been rescaled by 1 + ν. We set µ = µ1 + µ2 = 1 WLOG, and use E = 1, s = 1, τ = 2, β = 1.
We allow production of cells, adding a gradient linearly between [−0.1, 0.1]; variation in the Young’s modulus, linearly
between [1, 1.4]; and anisotropy of the filopodia interactions, equivalently as in #1, to orient stripes (in this case with
E = 1, s = 0.2, τ = 0.5 to generate similar spacing).
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