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Probability distribution of times for virus freely diffusing vs. interacting with mucins 
 

We derive probability distributions for the time that virions spend interacting with mucins and for the time that the 
virions spend freely diffusing.  We model these interactions by assuming a rate of Ab binding to mucin, [ ]onm M , where 

[ ]M  is the concentration of mucin proteins.  For brevity, we assume a uniform mucin concentration and abbreviate the 

forward reaction rate as onm , with units of 1s− .  Similarly, Ab unbind from the mucin network at a rate offm ( 1s− ). 

With attachments and detachments following a Poisson process, the probability density function (pdf) for the waiting 
time of a free Ab to associate with the mucin network is 

( ) .onm t
free onh t m e−=  (1) 

Similarly, the waiting time for an Ab fixed to the mucin network to dissociate is 

interact ( ) .offm t
offh t m e−=  (2) 

We assume that Ab already bound to virus also interact with mucins with the same binding/unbinding rates onm  and 

offm , with the exception of the first binding, which has rate first
onm m , where 

1
30

firstm = .  We assume that virions are 

freely diffusing if and only if all of its bound Ab are free from the mucin network.  Thus, it is of interest to calculate the 
waiting time distributions free,n ( )h t for the time a virion with n  Ab remains freely diffusing and the distribution 

interact,n ( )h t  of time it is fixed to mucins. 

The term firstm  simply modifies the freely diffusing distribution, without affecting the virion-mucin interaction 
distribution.  The distribution for the time a virion with n  Ab is freely diffusing is the distribution of the minimum of n  
exponential variables with rate first

onm m .  It is a standard result that this is again an exponential distribution but with 

rate first
onnm m  1: 

1 1 2 1(min( ,..., ) ) 1 ( , ..., ) 1 ( ) 1 ,
first

onnm m tn
n nP z z t P z t z t z t P z t e−< = − > > > = − > = −   

(3) 
so that the freely diffusing density function is given by 

free,n ( ) .
first

onnm m tfirst
onh t nm m e−=  (4) 

For the density function of the time interacting with mucin, we represent the number of Ab associated with mucin over 
time as a stochastic process { }tX  with 0 1X = , with jump times 1{ }k kT ≥  (when an Ab-mucin event takes place), and 

calculate the stopping time τ  such that 0.Xτ =  For notational convenience, we also define the process 1{ }k kY ≥  by the 

relation 1 0Y X=  and 
kk TY X= .  Thus, { }kY  is a discrete Markov chain representing state changes in Ab-mucin 

interactions. 

The transition probabilities from each state depend only on the number of Ab r currently associated with mucin.  That 
is, suppose tX r= , and let iz  denote the waiting time for the thi  Ab associated with mucin to dissociate, and let jw  

denote the waiting time for the thj  Ab not currently associated with mucin to associate.  Then the probability of the 

next event being a new Ab association is: 1 1( 1) (min( ,..., ) min( ,..., ))r t n r n rP X r P z z w w− −= + = < . 
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Since iz  are all independent and identically distributed, 1min( ,..., )n rz z − has density function ( )( ) onn r m t
onn r m e− −− .  

Similarly, 1min( ,..., )n rw w −  has density function .offrm t
offrm e−  

Then 

( )
1 1

0 0

(min( ,..., ) min( ,..., )) ( )

( )
( )

offon

w
rm wn r m z

n r r on off

on

on off

P z z w w n r m e rm e dzdw

n r m
n r m rm

∞
−− −

− < = −

−
=

− +

∫ ∫
 

 
 
 
 
(5) 

 

We can also derive the waiting time distribution for the next Ab-mucin interaction, given that the next event is 
dissociation: 

1 1 1

1 1 1

1 1

(min( ,..., ) | min( ,..., ) min( ,..., ))
(min( ,..., ) ,min( ,..., ) min( ,..., ))

(min( ,..., ) min( ,..., ))

n r n r r

n r n r r

n r r

P z z t z z w w
P z z t z z w w

P z z w w

− −

− −

−

< <
< <

=
<

 

 
 
 
(6) 

The numerator is 

  
 
 
 
(7) 

So  

( )
1 1 1(min( ,..., ) | min( ,..., ) min( ,..., )) 1 .on offn r m rm t

n r n r rP z z t z z w w e  − − + 
− −< < = −  (8) 

Similarly, we can show that the waiting time distribution given that the next event is association is the same; that is, the 
distribution of 1k kT T+ − , given tX r=  is: 

( )
1(min( ,..., ) ) 1 on offn r m rm t

n rP z z t e  − − + 
− < = − . (9) 

Now we derive the pdf for the total time that a virion interacts with mucin.  To do this, it suffices to take a weighted sum 
of the waiting time distributions over all paths { }kY  of the Ab-mucin interaction state.  The total probability ({ })kP Y  of 

a given path is the product of the probabilities 1( )
kY kP Y +  of taking the corresponding path at each point: 

1 1({ }) ( ),
kk k Y kP Y P Y≥ += P  (10) 

where 

1

1 1

( ) if 1
( )

( ) if 1.
( )

0                      otherwise

k

k on
k k

k on k off

k off
Y k k k

k on k off

n Y m Y Y
n Y m Y m

Y m
P Y Y Y

n Y m Y m

+

+ +

− = + − +
= = − − +




 

( ) ( )

0 0 0

[( ) ]

( ) ( )

( ) 1 .
( )

off offon on

on off

t t t
rm w rm wn r m z n r m z

on off on off
w

n r m rm ton

on off

n r m e rm e dzdw n r m e rm e dzdw

n r m e
n r m rm

∞
− −− − − −

− − +

− − −

−  = − − +

∫ ∫ ∫ ∫
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And the total waiting time for a path ({ })kh Y is given by a convolution of the waiting times 
1|k kY Yh
+

 along the path: 

1

*
|1

({ }) ( )
k kk Y Yk

h Y h t
+≥

= Π , (11) 

where 

1

[( ) ]
| [( ) ] k on k off

k k

n Y m Y m t
Y Y k on k offh n Y m Y m e

+

− − += − + , and 
1

*
|1

( )
k kY Yk

h t
+≥

Π represents the convolution 
1 0 2 1 1| | |* ...* ( )

k kY Y Y Y Y Yh h h t
−

. 

Then the waiting time distribution for Ab-mucin interaction is 

interact,n { }
( ) ({ }) ({ })

k
k kY

h t P Y h Y= Σ , (12) 

Equation (12) can further be simplified since it is the convolution of exponential variables, with exactly n  different rates.  
Since the convolution of exponential variables with the same rate parameter is a gamma distribution, the waiting time 
for a given path can be written simply as the convolution of n  gamma density functions. 

For example, when 2n = , the formula reduces to 

1 1

* *
1 2 2 1 1 0

0 0
* * ( ) ( 1, )* ( , 2 ).

k k

k kon on
on off off

k kon off on off

m mh h h t k m m k m
m m m m

+ +
∞ ∞

→ → →
= =

   
= Γ + + Γ      + +   

Σ Σ  
 
 
(13) 

 

Numerical examples of the waiting time distributions 

We conclude with a few examples of the freely diffusing and interaction distributions for common numbers of Ab.

 

Figure S1. Distribution of time virus spends (A,B) freely diffusing and (C,D) interacting with mucin for  virions with (A,C) 2 
associated Ab and (B,D) 10 associated Ab. 

A B 

C D 
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Theoretical estimate of IgG-mucin bond rates & times 

From the Smoluchowski equation, the diffusional flux to a flat sink of radius “a” at steady state is given by Fsteady state = 
4DaCo.  Since the radius of reactive sites for many diffusion-limited enzymes is found to be ~1 Angstrom i.e. 10-4 mm, 
assuming a = 10-4 mm, an average IgG concentration of ~500 mg/mL in CVM 2 and diffusivity of ~40 mm2/s, the flux of IgG 
to the site would be on the order of 30 IgG/s.  We assume binding sites on mucins are not saturated, based on the 
previous finding that addition of exogenous IgG to CVM can quickly immobilize HSV 2, that the trapping potency of 
exogenous IgG is indistinguishable to endogenous HSV-binding IgG 2, and that the total amount of IgG in CVM appears 
substantially less than the total binding sites available (see below).  If the binding sites on mucins are not saturated, by 
definition the bond times between IgG and mucins at steady state, which is equal to 1/moff, must be less than 1/ (30 s-1) 
= 0.03 s.  This estimate is consistent with observations that IgG-mucin interactions appear to be weak and exceedingly 
transient during Fluorescence Recovery After Photobleaching (FRAP) experiments, where complete recovery is observed 
within seconds 3. 

Alternatively, we consider the possibility that IgG binds selectively to different parts of mucins, either directly to an 
entire mucin molecule (or 1 binding site per mucin), naked protein domains on mucins, or to select glycans on the 
mucins (10% of all glycan chains).  Mucins possess a MW of ~0.5 MDa, are ~80% by weight sugar, and possess ~4 naked 
protein domains (NPDs) per mucin.  At a mucin concentration of 2% w/v (typically ~1-5% w/v in various mucus 
secretions 4), this is equivalent to 40 mM of mucins in CVM, 160 mM of NPD, or ~1 mM of glycan binding sites.  At ~500 
mg/mL total IgG in CVM (~3.3 mM), and assuming up to 20% of IgG associates with mucins at any moment in time (the 
ratio of diffusivity in mucus to that in water, Dm/Dw, typically ranges between 0.8-1 3), this would imply that at steady 
state, up to 1 in 60 binding sites are occupied if there is only 1 binding site per mucin, 1 in ~300 binding sites are 
occupied if IgG binds to NPD on mucins, and 1 in ~2000 binding sites are occupied if IgG binds to 10% of the glycan 
chains on mucins.  For equilibrium binding, the fraction of sites with a ligand bound is given by 1/(1+ KD/[IgG]).  Hence, 
the KD for IgG-mucin interactions ranges from ~200 mM if there is only 1 binding site per mucin to ~800 mM if IgG binds 
to NPD to ~5 mM if IgG binds to 10% of the glycan chains.  Arrhenius had derived a very simple relationship between the 
time a bound particle remains bound, Tb, and the binding energy Δε, by assuming that the bound particle has average 
kinetic energy by equipartition of energy.  Hence ½ mv2 along the escape axis equals ½ kT.  If the particle is constrained 
within the bond to bounce back and forth a distance Δx, then it will collide with the barrier (of magnitude Δε) and 
escape with a frequency of v/2Δx.  The odds it will have enough energy to escape per collision is given by e-(1/2)kT/Δε.  
Thus, Tb ~ Δx(m/kT)1/2eΔε/kT .  The corresponding bond times for KD in the 200 mM to 5 mM range would be in the 10-6 to 
10-4 s range. 

From both approaches, the estimated bond times between IgG and mucins are exceedingly short (i.e. IgG readily 
unbinds, thus high moff at rates likely substantially exceeding 1 s-1).  This supports our assumption that the binding rates 
are exceptionally fast, and justifies our use of partial differential equations in our model.  Unfortunately, such rapid 
binding and unbinding rates also pose a very difficult challenge to make such measurements experimentally, which 
remains unresolved to date. 
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Figure S2.  IgG concentration profiles in genital secretions overlaying the vaginal epithelium over time for IgG with 
distinct affinity to mucins (represented by α). 
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Figure S3. Comparison of mon and moff dynamics to the deterministic reaction-diffusion system.  (A) Predicted fraction of 
HIV load initially in semen that can diffuse across CVM containing NIH45-46 over the first two hours post-deposition, at 
various values of mon[M], with moff adjusted so that moff/(mon + moff) = 0.3.  The solid black line indicates the predicted 
HIV load for the PDE system at a = 0.3.  (B) Predicted HIV load diffusing across CVM for various values of a = 
moff/(mon[M] + moff), with results for the equivalent PDE system at the rightmost point.

A        B 
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Figure S4. Comparison of how differences in (A,C) mfirst and (B,D) kon’ can affect (A,B) the predicted fraction of HIV load 
initially in semen that can diffuse across CVM containing NIH45-46 over the first two hours post-deposition as well as 
(C,D) the average number of Ab-free Env trimer on HIV arriving the vaginal epithelium for Ab with different mucin-
affinity (i.e. a).   Dashed line represents the value chosen in the model to minimize over-estimating the protective 
efficacy of Ab-mediated trapping in mucus. 
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