
 1

Supplemental Data

Figure S1. Image extraction workflow. Related to Figure 1. Workflow (shown here with text

descriptions of each step above and graphics corresponding to each step below) used to convert

depth images of freely-behaving mice into mouse pose dynamics data in which each mouse is

aligned along the axis of its spine (see Movie S1 for both the raw input data and the product of

this process). This process is described in detail in the Supplemental Experimental Procedure. In

brief, after recording depth data within a behavioral apparatus (A), background values are

computed (B) and missing pixel values are imputed (C). The mouse is then resampled into real-

world coordinates to correct for parallax artifacts (D-E), and the background contributed by the

apparatus is subtracted away (F). These images are then filtered, (G) and the image of the mouse

is identified and extracted as a region of interest (H-I). The unrotated image is then aligned

longitudinally based on fitting an ellipse to the boundary of the image (the major axis of which

we refer to as “the axis of its spine) (J), enabling quantitative analysis of egocentric pose

dynamics while the animal freely translates in space. This pre-processed imaging data is then

subject to wavelet decomposition and PCA for dimensionality reduction before submission to the

modeling algorithms.

Figure S2. Block structure, autocorrelation and compressibility in mouse depth imaging

data. Related to Figure 1. A. Block structure is present in random projections data, spine data

and raw pixel data derived from aligned mouse pose dynamics data (random projections and

spines are depicted as in Fig. 1A, raw data in bottom panels are heatmapped based upon imaging

pixel value; values are sorted by mean height, and rarely-used pixels are omitted). Each

dimension of random projections data uses all pixels from the original mouse image. Live mice

 2

exhibit significant block structure in imaging data (left panels), while dead mice do not (right

panels). Smoothing refers to the modest median filtration applied during pre-processing, which

does not visibly affect the structure of the data (Supplemental Experimental Methods). B.

Dimensionality reduction does not significantly affect autocorrelation structure or spectral

content of mouse pose dynamics data, nor does the particular experimental setup. The result of

the Wiener filtering analysis (left) is similar for both a 10-dimensional PCA and a random

projection representation of depth data, as well as across experimental conditions (OFA = open

field assay, TMT Odor = square box with the fox odor TMT in one quadrant, Blank Odor =

square box without introduced odorants, RorB = OFA data with mice mutant, heterozygous or

wild-type at the Ror1β locus, Optogenetics = optogenetic experiment in the OFA with unilateral

motor cortex implantation of an optical fiber). The autocorrelation of random projections and

PCA data (right), both of which represent the same depth data, exhibit approximately the same

falloff, demonstrating that data compression does not influence fine-timescale autocorrelation

structure in the imaging data. The particular arena in which the mouse was recorded, or the

experimental manipulation to which the mouse was subjected also does not affect the

autocorrelation structure, indicating it is a core feature of our data. Note that the slightly different

autocorrelation structure observed in the optogenetics data can be explained by the presence of

an optical fiber implanted in the head of the animal, which alters the imaged pose dynamics of

the animal. C. This correlation structure is not observed if mouse poses evolve as if taking a

Levy flight (left) or random walk (right), suggesting that live mice express a specific sub-second

autocorrelation structure. The alpha parameter and sigma parameter control the rate of dispersion

for data generated from the Levy flight and Brownian motion processes, respectively. D. The

 3

first 10 principal components capture 88 percent of the variance in raw mouse imaging data. This

number of dimensions was used for data analysis in the AR-HMM.

Figure S3. Additional template-matched trajectories in pose space. Related to Figure 2.

Scanning the behavioral data using a template matching method identified additional instances in

which given stereotyped motifs were reused (with time proceeding from blue to red). Six

additional templates and their nine closest matched trajectories are plotted in the first two

dimensions of principal components. The complete pose data in principal component space is

represented as a background density plot. Note that 10 PCs were used to identify examples

matching the seed templates, although only 2 PCs are depicted here for clarity.

Figure S4. Modeling mouse behavior. Related to Figure 2 and Supplemental Experimental

Procedures. A. Sketch of the part of the data processing pipeline that includes model fitting. The

mouse is first identified, extracted and aligned from depth camera video frames along the major

axis of the mouse, which approximates its spine. Parallax artifacts are removed. The tracked

mouse images are then subjected to a wavelet decomposition, and then reduced to a principal

component representation, yielding a multidimensional time series. This principal component

time series is then modeled with one of a family of models, which is then fit using Gibbs

sampling iterations; this procedure segments the principal component time series into reused

behavioral modules. B. The workflow for fitting behavioral data with the AR-HMM, the best-

performing of the family of models composed to represent different hypotheses about the

underlying structure of behavior. The input to the workflow extracted and aligned mouse images,

and the output is a label sequence equal in length to the original data timeseries that assigns a

 4

behavioral module identity for every recorded frame of behavioral data. This process is described

in detail in the Supplemental Experimental Procedures. (i) First, after pre-processing image data

are compressed from 3600 to 10 dimensions via wavelet decomposition and PCA. (ii) Data are

randomly split into “train” and “test” segments (in a 70:30 ratio), in order to evaluate the

performance of the model on unseen data, and to guard against overfitting. (iii) The parameters

of the model are randomly initialized (parameters describing each module’s characteristic

trajectory through pose space, duration distribution, and transition statistics relative to other

modules), and fit iteratively with Gibbs sampling. Gibbs sampling alternates between several

updates: the algorithm first attempts to segment the imaging data into modules given a fixed set

of transition statistics and a fixed description of the AR parameters that describe any given

module, and then the algorithm switches to fixing the segmentation and updating the transition

matrix and the AR parameters. Filled circles represent fixed parameters, while open circles

represent parameters that are varied in a particular iteration. (iv) The product of this process is

the parameters described above: “AR Matrices,” the AR parameters that describe the specific

trajectory through pose space that defines any given behavioral module, “Duration

Distributions,” the parameters describing the duration distribution for each behavioral module (in

model classes in which this distribution is explicitly modeled), “Transition Matrix,” the

probability that any given module will precede or follow any other module, and “State Labels,”

the behavioral module inferred for each frame of 3D video data. (v) The quality of the fit in

terms of predicting behavior is evaluated using the likelihood of data that was held out from

training. C. A schematic representation of the aspects of behavior captured by the AR-HMM.

The AR-HMM takes in a sequence of mouse behavioral data (fed into the model as 10 PCs,

which are derived from pixel data), and generates a sequence of re-used labels over time

 5

(“Labels”), such that every moment of the mouse’s behavior is associated with a single

behavioral module. Each behavioral module is internally modeled as an autoregressive process

that can be visualized as a trajectory through pose space (“AR Process 1,” AR Process 2,” etc.).

The transition probabilities between modules are represented in a transition matrix, which may

be represented as a state map, where each behavioral module is a node, and the probability of

transition between two nodes is represented by the thickness of a directed arrow between those

nodes (“Transition Probabilities”). D. The AR-HMM outperforms alternative models as

measured by next-frame average held-out log likelihood. E. Data generated from a fit AR-HMM

model are qualitatively similar to PCs derived directly from imaging data.

Figure S5. Characterizing behavioral modules identified by the AR-HMM. Related to

Figure 2 and Supplemental Experimental Procedures. A. Duration distributions for

changepoint-identified blocks and AR-HMM-identified modules are similar. B. Shuffling

behavioral data at fast timescales lowers AR-HMM performance, as measured by the ratio of

held-out likelihood before and after shuffling; destroying temporal information at a timescale

longer than 500 ms has essentially no effect on model performance, while shuffling at faster

timescales catastrophically prevents effective behavioral prediction. C. Data instances drawn

from different behavioral modules trace distinct paths through PCA space. Six separate

representative behavioral modules are plotted in the first two principal components, overlaid on a

density indicating the distribution of all recorded poses. Note that the data represented here are

plotted in 2D; pose dynamics are significantly more separated in 10D (see Fig 2D). D. 95 percent

of frames were explained by only 51 behavioral modules; 99 percent of frames were explained

by 65 behavioral modules in the open field dataset (error bars indicate ± S.E. calculated with

 6

bootstrap samples). E. Modules (X axis) sorted by usage (Y axis) with Bayesian credible

intervals indicated as error bars, which are smaller than SEs computed with the nonparametric

bootstrap (see Fig. 2). F. Module interconnectivity is sparse. With no thresholding, each module

is interconnected with on average 16.85±0.95 other modules, with the rate of interconnectivity

falling sharply with even modest thresholding (Y axis indicates interconnectivity, ± SE

calculated via the nonparametric bootstrap, X axis indicates thresholding applied to transition

probabilities). This is consistent with sparse temporal interconnectivity between behavioral

modules. These transition probabilities are distinct from bigram probabilities (e.g., Fig. 3B &

4C); bigram probabilities represent the frequency with which one module occurs after another as

a proportion of all pairs of temporally adjacent modules. Transition probabilities, in contrast,

represent the frequency with which one module occurs after the other as a proportion of all

instances of only the preceding module.

Figure S6. Subjective and objective analysis of AR-HMM identified behavioral modules.

Related to Fig. 4. A. Histogram depicting the number of modules that fall into one of five coarse

labels of behavior, as scored by a human observer; this coarse subjective description is intended

to offer a sense of the distribution of behaviors parsed by the AR-HMM. Note that these module

descriptors are completely subjective, and applied post-hoc after modeling. Furthermore,

inspection revealed that the modules within each broad category could be further distinguished

from the others within that category; the “rear” category, for example, included a wide variety of

behaviors in which the mouse’s head was transiently or perdurantly elevated, including true

rears, elevated pointing behaviors, head-bobs, and sniffs. B. Histogram depicting the average

 7

velocity of the modules that were interconnected after TMT exposure (red), which individually

and collectively encode “freezing,” compared to all other modules in the dataset.

Figure S7. Sensitivity analysis of model-free parameters. Related to Supplemental

Experimental Procedures. A. To denoise data from the Kinect a filtering approach was used in

which a median filter was applied iteratively both in space and in time; this approach has been

shown to effectively maintain data structure while smoothing away noise (see Supplemental

Experimental Procedures). To determine filter settings, we imaged dead mice that were

differentially posed in rigor mortis; ideal filter settings would distinguish mice that were posed

differently, but be unable to distinguish data from the same mouse. Filter settings are indicated as

((pixels), (frames)) with the numbers within each parenthesis referring to the iterative settings for

each round of filtering. To assess filter performance, a within/between pose correlation ratio (Y

axis) was computed, in which the mean spatial correlation for all frames of the same pose was

divided by the mean spatial correlation for all frames of different poses. This revealed that light

filtering (with settings ((3), (3,5))) optimized discriminability in the data. B. Optimal parameters

for changepoints analysis were identified by grid scanning. By maximizing the number of

changepoints identified in a live mouse, while fixing the number in a dead mouse to be zero,

clear optimal values were identified via grid scanning for sigma and H (left two panels). This

changepoint ratio was not highly sensitive to K; a setting of 48 (at the observed maximum) was

therefore chosen.

Movie S1. Related to Fig. 1A. Imaging the three-dimensional pose dynamics of freely-

behaving mice in the open field with depth cameras. A depth camera placed above the arena

 8

captures the three-dimensional shape of the mouse at 30 frames-per-second as it freely behaves

(right, height is colormapped as indicated). These raw imaging data are pre-processed (filtered,

background subtracted and parallax corrected) and submitted to a machine learning algorithm

that aligns the animal along the axis of its spine, thereby enabling quantitative measurements of

how its pose dynamics evolve over time (left, see Experimental Procedures for details). Color

scale bar indicates the height of any given pixel above the floor of the arena (mm).

Movie S2. Related to Fig. 1D. Changepoints analysis identifies approximate boundaries

between behavioral motifs. Three-dimensional movie of a freely-behaving mouse, with

changepoints indicated on upper left. Periods of behavior between the changepoints, which

identifies approximate boundaries between blocks, appear to capture behavioral motifs. Color

scale bar indicates the height of any given pixel above the floor of the arena (mm).

Movie S3. Related to Fig. 2B, 2C. The AR-HMM identifies a stereotyped and reused

behavioral module that encodes low rearing. Three separate 3D behavior movies (top left, top

right, bottom left) taken from a single mouse in a single experiment, each depicting a separate

instance in which the AR-HMM identified a particular sequence of frames as encoding the same

behavioral module. In these movies, the ongoing expression of the module is indicated by a dot

being placed over the mouse; imaging frames before the dot onset and after the dot offset are

associated with different behavioral modules that are distinct in all three movies, as is the

allocentric position of the mouse within the arena. Nevertheless, during expression of the module

(i.e., when the dot is over the animal), the mouse in all three examples emits a stereotyped motif

of three-dimensional motion that can be identified in these movies as a low rear. By collating and

 9

overlaying 20 of these individual movies (high-likelihood examples taken from 20 different

experiments using 20 individual mice) into a single movie (lower right), the stereotyped nature

of this behavioral module is clear. Note that this “crowd” movie is timelocked such that all the

modules are expressed at approximately the same time during the movie; this timelocking was

achieved by aligning the middle frame of the module across all examples. Despite this

timelocking, the duration of each instance of the behavioral module is slightly different; this is

because the AR-HMM defines a unique duration distribution for every behavioral module, rather

than a single duration. Color scale bar indicates the height of any given pixel above the floor of

the arena (mm).

Movie S4. Related to Fig. 2C. Behavioral modules are distinct, stereotyped, and reused

motifs of behavior. “Crowd” movies (see legend for Movie S3) depicting 10 distinct behavioral

modules automatically identified by the AR-HMM, each labeled with a descriptor; three of these

are from the trigram depicted in Fig. 2. Color scale bar indicates the height of any given pixel

above the floor of the arena (mm).

Movie S5. Related to Fig. S4E, 2D. The synthetic output of the AR-HMM appears similar

to the pose dynamics data exhibited by real mice. A “dream” (left) and real (right) mouse in

aligned pose space during normal exploration. The images on the left were generated by training

an AR-HMM on open field behavioral data and then, after training, having the model emit

synthetic data representing its best estimate of mouse behavior (Supplemental Experimental

Procedures). Note that there is some sensor noise apparent in the real mouse (right) that is not

modeled by the AR-HMM, but that otherwise these movies are visually very similar.

 10

Movie S6. Related to Fig. 2B. Module sequences encode exploratory behaviors. Three-

dimensional imaging of three separate examples of the sequence of three modules (“walk,”

“pause” and “low rear”) from Fig. 2 being expressed by mice during free behavior. Note that, in

this case, when the dot comes over the animal (see legend for Movie S3 for details) the sequence

is being expressed, rather than a single module. Color scale bar indicates the height of any given

pixel above the floor of the arena (mm).

Movie S7. Related to Fig. 3D. Modules encoding wall-hugging behaviors. “Crowd” movie

(see legend to Movie S3 for details) of an open-field specific behavioral module (left) encoding a

behavior in which mice locomote while hugging the walls of the apparatus, referred to as

thigmotaxis. In this case, the module can be seen to encode locomotion with a body habitus that

is slightly curved to match the curve in the circular walls of the arena. A similar thigmotaxis

module can be seen in the square (right); in this case, however, the syllable is also used during

straight patterns of locomotion in both the square box and the circular open field arena. Color

scale bar indicates the height of any given pixel above the floor of the arena (mm).

Movie S8. Related to Fig. 4E. TMT-regulated behavioral sequences encode freezing

behavior. “Crowd” movies of three behavioral modules that are placed into series after exposure

to the aversive fox odor TMT (see legend to Movie S3 for details); these trigrams reveal that this

sequence of behavioral modules encodes freezing behavior. Color scale bar indicates the height

of any given pixel above the floor of the arena (mm).

 11

Movie S9. Related to Fig. 4D,4E. TMT regulates where behavioral modules are expressed

within an experimental apparatus. “Crowd” movie (see legend to Movie S3 for details) of two

separate behavioral modules whose usage is not altered by the aversive fox odor TMT, but

whose pattern of allocentric deployment is changed. An investigatory sniffing module is

expressed near the TMT quadrant (left), and a pausing module is expressed away from the TMT

quadrant (right). Color scale bar indicates the height of any given pixel above the floor of the

arena (mm).

Movie S10. Related to Fig. 5A, 5C. Ror1β mice express a waddling module. “Crowd” movie

(see legend to Movie S3 for details) of a Ror1β −specific behavioral module that encodes a

waddling gait; note that upon the expression of the module the animal’s hindquarters waggle

during locomotion. Color scale bar indicates the height of any given pixel above the floor of the

arena (mm).

Movie S11. Related to Fig. 6B. Optogenetically-induced spinning behavior. “Crowd” movie

(see legend to Movie S3 for details) of the most upregulated behavioral module in response to

optogenetic stimulation of the left motor cortex. This module is not expressed during normal

behavior, but encodes pathological spinning behaviors that are associated with strong unilateral

stimulation of corticostriatal neurons.

 12

Supplemental Experimental Procedures

Methods Summary

Experiments, unless otherwise noted, were performed on C57/BL6 male mice, aged 6-8

weeks, on the dark cycle of a reverse 12 hour light / 12 hour dark cycle. All mice were

videotaped with a Microsoft Kinect depth camera and custom recording software. Recorded

depth video was subjected to custom algorithms to extract, parallax correct and align the 3D

image of the mouse, and then the time-series data were dimensionally compressed using a

wavelet transformation and PCA before being subjected to both model-free and model-based

analysis. Autocorrelation analysis was performed using correlation distance between time-lagged

data points to correct for sensor-specific noise. Spectral analysis was carried out using the Welch

periodogram method, and approximate changepoints were identified using a filtered derivative

algorithm. Template matching was achieved using a minimal Euclidean distance criterion.

Established Bayesian time-series modeling methods were modified to identify behavioral

modules. The core AR-HMM was built from three components: 1) an observation distribution,

describing the fast-timescale pose dynamics of each behavioral module; 2) a duration distribution,

to allow variability in the length of emission of each behavioral module; and 3) a transition

distribution (when relevant), which summarizes the interconnectivity over time of identified

behavioral modules. Each behavioral module has its own distinct pose dynamics, its own

characteristic duration distribution, and its own transition structure in relation to all other

behavioral modules. Models were fit using Markov Chain Monte Carlo methods such as Gibbs

sampling. The quality of fit was evaluated by testing the model on previously held-out data,

which allows direct comparison between alternative model constructions.

 13

Statistical significance of differences in behavioral module usage and transition usage

were evaluated by computing both bootstrap samples over the data (on a per-mouse basis) and

Bayesian credible intervals. Group comparisons were performed using the Hotelling t-squared

statistic, single hypothesis tests using the Wald test. Both tests were adjusted with the Holm-

Bonferroni step-down procedure to correct for multiple comparisons.

Mouse Strains, Housing and Habituation

 Unless otherwise noted, all experiments were performed on 6-8 week old C57/BL6 males

(Jackson Laboratories). Mice from the Ror1β and Rbp4-Cre strains (Jackson Laboratories) were

habituated and tested identically to the reference C57/BL6 mice. Mice were brought into our

colony at 5 weeks of age, where they were group-housed for one week in a reverse 12 hours

light/12 hours dark cycle. On the day of testing, mice were brought into the laboratory in a light-

tight container, where they were habituated in darkness for 20 minutes before testing.

Behavioral Assays: Innate Exploration

 For the open field assay (OFA), mice were habituated as noted above and then placed in

the middle of a circular 17” diameter enclosure with 15”-high walls (US Plastics), immediately

after which 3D video recording was begun. Mice were allowed to freely explore the enclosure

for the 20 minute experimental period. Mice whose behavior was assessed in a square box were

handled identically to the OFA.

Behavioral Assays: Stimulus-Driven Innate Behaviors

 14

To assess innate behavioral responses to volatile odorants, an odor delivery system was

developed that spatially isolates odors in specific quadrants of a square box. Each 12” x 12” box

was constructed of ¼” black matte acrylic (Altech Plastics), with 3/4” holes patterning the

bottom of the box in a cross formation, and a 1/16" thick glass cover (Tru Vue). These holes

were tapped and connected via PTFE tubing to a vacuum manifold (Sigma Aldrich) that provides

negative pressure to isolate odors within quadrants. Odor was injected into the box through ½”

NPT-⅜” pipe-fittings (Cole-Parmer). Filtered air (1.0 L/min) was blown over odorant-soaked

blotting paper (VWR) placed at the bottom of Vacutainer syringe vials (Covidien). The odorized

airstream was then passed through corrugated PTFE tubing (Zeus) into one of the four pipe-

fittings in a corner of the odor box. The ability of the odor box to isolate odors within specified

quadrants was verified by visualizing vaporized odor or smoke through sheet illumination of the

box with a low-power handheld HeNe laser. This approach allowed us to tune the vacuum flow

and odor flow rates to achieve odor isolation, which was verified using a photoionization device

(Aurora Scientific). To eliminate the possibility of cross contamination between experiments, the

odor boxes were soaked in a 1% Alconox solution overnight, then thoroughly cleaned with a

70% ethanol solution. Mice were habituated to the experimental room for 30 minutes before the

initiation of the experiment. Under control conditions, dipropylene glycol with air (1.0 L/min)

was delivered to each of the four corners of the apparatus before a single mouse was placed in

the center of the box and allowed to freely explore while 3D video records were acquired for 20

minutes. The same cohort of animals was tested for odor responses by subsequently repeating the

experiment with odorized air delivered to one of the four quadrants. All 3D video recordings

were performed in total darkness. TMT (Pherotech) was used at 5% concentration.

 15

Behavioral Assays: Optogenetics

 Four adult male Rbp4-Cre (The Jackson Laboratory) mice were anesthetized with 1.5%

isoflurane and placed in a stereotaxic frame (Leica). Microinjection pipettes (O.D. 10-15 µm)

were inserted into the left motor cortex (coordinates from Bregma: 0.5 AP, -1 ML, 0.60 DV).

0.5 µl of AAV5.EF1a.DIO.hChR2(H134R)-eYFP.WPRE.hGH (~1012 infectious units/mL,

Penn Vector Core) was injected in each mouse over 10 minutes followed by an additional 10

minutes to allow diffusion of viral particles away from the injection site. After the injection, a

bare optical fiber with a zirconia ferrule (O.D. 200 µm, 0.37 numerical aperture) was inserted

100 µm above the injection site and secured to the skull with acrylic cement (Lang). Twenty-

eight days following the viral injection, mice were placed in a circular arena and the optical

implant was coupled to a laser pump (488 nm, CrystaLaser) via a patch-chord and a rotary joint

(Doric Lenses). The laser was directly controlled from a PC. After allowing the mouse 20

minutes of familiarization to the arena, optogenetic stimuli were delivered. The laser power, the

pulse width, the inter-pulse interval and the inter-train interval were controlled by custom-made

software (NI Labview). Each train of laser pulses consisted of 30 pulses (pulse width: 50 ms) at

15 Hz. The interval between successive trains was set to 18 seconds. 50 trains were delivered for

each laser intensity. The animal was progressively exposed to higher laser intensities over the

course of the experiment.

Camera Setup and Initialization

Mice were tracked in 3D using a Kinect for Windows (Microsoft). A boom tripod

(Manfrotto) was used to suspend the camera above the recording arena, affording a stable top-

down view of the mouse. The Kinect has a minimum working distance (in Near Mode) of 0.5

 16

meters; by quantitating the number of missing depth pixels within an imaged field, the optimal

sensor position was found to be between 0.6 and 0.75 meters depending on ambient light

conditions and assay material. Thermal effects can cause degradation in the signal coming off the

sensor; after each recording session, the camera was therefore unplugged from its power source to

allow the sensor to deactivate and cool. The Kinect sensor has a small indicator LED that was

masked using electrical tape so as to not emit spurious illumination.

Data Acquisition

 Data from the Kinect was sent to an acquisition computer (hand-assembled, 16GB RAM,

Intel i7, 512GB SSD) via USB. Custom Matlab software was used to interface the Kinect via the

official Microsoft .NET API that retrieves depth frames at a rate of 30 frames per second and

saves them in raw binary format (16-bit signed integers), along with the timestamp of each

frame, in milliseconds, to an external hard-drive. After acquisition, we indicate a region-of-

interest (ROI) delimiting the boundaries of the experimental arena using Matlab GUI tools, and

save the polygon specifying the ROI containing the arena.

Data Preprocessing

 All data analysis performed with Python scientific computing tools and OpenCV for

image analysis (Pedregosa et al., 2011; Perez and Granger, 2007; van der Walt et al., 2011) on

r3.8xlarge EC2 virtual machines running an AMI customized from a base Ubuntu 14.04 Linux

AMI. Tracking the evolution of an imaged mouse’s pose over time requires identifying the

mouse within a given video sequence, segmenting the mouse from the background (in this case

the apparatus the mouse is exploring), orienting the isolated image of the mouse along the axis of

 17

its spine, correcting the image for perspective distortions, and then compressing the image for

processing by the model.

 To isolate our analysis to the experimental arena in which the mouse is behaving, a

region-of-interest (ROI) was identified for further analysis that was manually traced along the

outside edge of any imaged arena; pixels outside this ROI were by default set to zero to prevent

spurious object detection. The raw imaging data were filtered with an iterative median filter

(Arias-Castro and Donoho, 2007), which is well suited to removing correlated noise from the

sensor within the Kinect. Filter settings were identified that maximized between-pose

discriminability while minimizing within-pose differences by using dead mice in rigor mortis

that were placed into distinct poses (Fig. S7A); based upon this analysis, a three pixel median

filter over space, and then a three-then-five frame iterative median filter over time was applied to

the imaging data.

 To subtract the background image of the arena, the median value of the first 30 seconds

of data from any imaging stream were taken, and subtracted from all video frames; any spurious

values less than zero were by default reset to zero. The image was then binarized and any objects

that did not survive three iterations of morphological opening were eliminated. The mouse was

defined as the largest object within the arena that survived the subtraction and masking

procedures. The centroid of the mouse was identified as the center-of-mass of the preprocessed

image; an ellipse was fit to its contour to detect its overall orientation. In order to orient the

mouse along the axis of the spine, a random forest classifier was trained on a set of manually

oriented mouse images to facilitate automated identification of the head and tail. Although this

algorithm was nearly always correct, its output was manually supervised to ensure accuracy.

Note that this procedure does not directly identify the spine, but that the ellipse-based alignment

 18

procedure has the effect of aligning the animal along this anatomic axis. During episodes when

the mouse was reared directly upwards (and therefore appears as a circle against the sensor,

which is orthogonal to the axis of the mouse’s spine under these conditions) neither a human nor

our algorithm can identify the spinal axis; because we model pose dynamics based upon

dimensionally-reduced representations of the pixels (rather than extracted scalar features, like

orientation or length), the presence of this symmetry does not adversely affect model

performance, and synthetic data generated from the model appropriately captures these rearing

episodes without “flipping” the mouse along its spinal axis.

The position of the mouse within the arena enabled extraction of allocentric data about

the mouse, including the centroid, head and tail positions of the mouse, orientation, length,

width, height, and each of their first derivatives with respect to time. Critically, none of these

scalar parameters are fed to the model; we obtain these data for the sake of convenience and to

understand how the egocentric behaviors captured by the model might relate to allocentric

parameters like position or velocity.

To correct perspective distortion in the X and Y axes, a tuple of (x,y,z) coordinates was

generated for each pixel in real-world coordinates, and then those coordinates were resampled to

fall on an even grid in the (x,y) plane using Delaunay triangulation. This procedure corrected for

the slight differences in the appearance of the mouse when at the left or right edges of the arena;

these differences derive from parallax effects caused by imaging the animal from a single fixed

vantage point from above, but are normalized by the interpolation procedure. All extracted

images and scalars were saved in HDF5 format. The extraction pre-processing which transforms

raw data into the extracted HDF5 format runs at approximately real-time (e.g. 20 minutes of

 19

preprocessing is required for a 20 minute recording session) on a 32-core r3.8xlarge EC2

instance.

The full extracted image size of a mouse covered an area of 120 mm2, where each pixel is

2 mm on a side; each frame to be submitted for analysis contained 3,600 16-bit integers (which

were cast to floating point before any image analysis) in a 60x60 array. The information captured

in this image was often either highly correlated (neighboring pixels) or uninformative (pixels on

the border of the image that never contain the mouse’s body). To both reduce redundant

information and make modeling computationally tractable, each image was dimensionally

reduced. A five-level wavelet decomposition was first applied, thereby transforming the image

into a representation in which each dimension captured and pooled information at a single spatial

scale; in this transformation, some dimensions coded explicitly for fine edges on the scale of a

few millimeters, while others encoded broad changes over spatial scales of centimeters (Mallat,

1989). This wavelet decomposition expanded the dimensionality of the image; to reduce this

dimensionality principal components analysis was applied to these vectors, and projected the

wavelet coefficients into ten dimensions, which captures 88% of total variance (Fig. S2D) and

which were submitted to our modeling algorithms. Principal components were built using a

canonical dataset of 25 C57 BL/6 mice, aged 6 weeks, recorded for 20 minutes each in the OFA,

and all datasets were projected into this common pose space.

For some model-free depictions of behavioral data, the random projections technique was

used to reduce the data dimensionality. This approach also has the benefit of representationally

normalizing the data to changes in the size of the mouse on the sensor. For example, when a

mouse rears up the number of pixels that describe the mouse changes drastically, leading to

obvious striations in the raw pixel data over time that may visually overstate the overall change

 20

in the behavior of the mouse. Because, as described below, each random projection dimension

takes into account all of the pixels within the 60x60 array, representations of the random

projections data are not dominated by these effects, enabling more holistic inspection of changes

in the data over time. Random projections is an approach that produces new dimensions derived

from an original signal, with dimensionality D_orig, by randomly weighting each original

dimension, and then summing each dimension according to that weighting, producing a single

number per data point. This procedure is repeated several times, with new random weightings, to

produce a set of "randomly projected" dimensions. The Johnson–Lindenstrauss lemma shows

that distances between points in the original dataset with dimensionality D_orig are preserved in

the randomly projected dimensions, D_proj, where D_proj < D_orig. As random projections is

primarily employed as a visualization aid, we set D_proj << D_orig, where D_proj=300,

D_orig=3600. For visualization purposes we do not sort the random projections dimensions in

any way.

Model-Free Data Analysis Methods

 Standard methods for computing autocorrelation were modified, as sensor-specific noise

results in a monotonically decreasing autocorrelogram, even for a mouse that is posed in rigor

mortis. Average correlation of all 10 dimensions of the mouse’s pose data was therefore used as

the comparator between time-lagged versions of the time-series signal in question, resulting in a

nearly flat autocorrelation function of value ~1.0 for a dead mouse, and a declining

autocorrelation function for a behaving mouse. The recording of the dead mouse was performed

after the animal had entered rigor mortis; the posed dead mouse was placed in the open field

arena and recorded for 5 minutes. The rate at which this autocorrelogram declines in a behaving

 21

mouse may be characterized as a time-constant, tau, of an exponentially decaying curve. Tau was

fit using the Levenberg-Marquardt algorithm (non-linear least squares) using the SciPy

optimization package.

 Power-spectral density (PSD) analysis was performed on behavioral data to further

analyze its time domain structure (Welch, 1967) using a Wiener filter (Wiener, 2013), and

implemented by taking the ratio of the PSD of a behaving mouse over the PSD of a dead mouse.

The PSD was computed using the Welch periodogram method, which takes the average PSD

over a sliding window across the entire signal; a 33-second window was used, sliding in 0.8

second increments.

 Plotting the mouse depth data over time (as either raw data or as random projections)

yields obvious striations, each a potential boundary between blocks or modules. To automate the

identification of these approximate boundaries between blocks, a simple changepoint

identification technique was used, called the filtered derivative algorithm (Basseville and

Nikiforov, 1993). Briefly, the algorithm calculated the derivative of the per-frame unit-

normalized random projections with a lag of k=4 frames; this signal was binarized using a

threshold h=0.15 mm, summed across each of D=300 random projection dimensions, and then

the resulting one-dimensional (1D) signal was smoothed with a Gaussian filter with a standard

deviation of sigma=0.43 frames. Changepoints were identified as the local maxima of this

smoothed 1D time-series. As specified above, this procedure depends in part upon the values of

the parameters k, h and sigma; these were identified as those values that maximize the number of

changepoints in the behaving mouse while yielding no change points in a dead mouse.

Optimizing the difference between live and dead mice was largely insensitive to k, but sensitive

to h and sigma; however, grid searching revealed clear optimal values for h and sigma, which are

 22

used in the analysis above (Fig. S7B). Note that changepoints methods provide access to the

overall timescale of behavior, but the specific boundaries between blocks identified by these

approaches are highly approximate, as they only consider local data structure and ignore higher-

order interactions between modules (including transition structure).

 To ask whether any reasonably long snippet of behavior (greater than just a few frames)

was ever "repeated" (without reliance on a underlying model for behavior), a template matching

procedure was devised to identify similar trajectories through PCA space; here similarity was

defined both quantitatively (minimal Euclidean distance in pose PC space) and qualitatively (via

inspection of spines and PC trajectories). To identify similar trajectories, the Euclidean distance

between some target snippet, the "template", and every possible snippet of equal length was

computed. The most similar snippets were selected, ignoring snippets discovered that were

shifted less than 1 second from each other (to ensure selection of behavioral snippets that occur

distanced in time from each other).

Data Modeling and Fitting Methods

 The modeling approach used herein takes preprocessed depth-camera video data (e.g., the

10 top PCs) as input and yields a fit model as output (Fig. S4A), where the fit model includes

estimates of several key parameters, including the number of behavioral modules observed

within a given set of experimental data, the autoregressive parameters that describe the motion

expressed by the mouse within a given module, and the transition parameters that describe how

often any particular module precedes or follows any other module; furthermore, for each video

frame an assignment is made to the most likely associated behavioral module. To model pre-

processed data, we modified established and well-documented modeling and fitting approaches

 23

that have provided insight into complex and dense datasets with time-series structure (Fox et al.,

2008; Fox et al., 2009). These approaches include Bayesian nonparametric methods, which allow

identification of the most likely number of behavioral modules and lags in the AR process

without human supervision. For convenience and clarity, we provide a summary of these

methods and their specific application to the 3D behavioral data below, together with formal

mathematical descriptions of our modeling and fitting procedures.

 In brief, three-dimensional pose data were modeled using generative probabilistic

modeling, which is often used to model complex dynamical processes (Bishop, 2006; Koller and

Friedman, 2009; Murphy, 2012). By choosing probability models that reflect stylized versions of

the physical dynamics that might give rise to the 3D pose dynamics data within a given

experiment, this framework allowed the instantiation and testing of hypotheses about different

organizations of behavior. These hypotheses ranged from simple progressions of poses described

as Gaussians in pose space to the hierarchical AR-HMM that includes both autoregressive states

and switching dynamics. Furthermore, using a generative framework for modeling behavior

addresses a key limitation in alternative methods used for behavioral classification: distinct

models for behavior can now be quantitatively and objectively compared based upon each

model’s ability to describe the statistics of held-out test data.

 To test the hypothesis that behavior is composed of a series of behavioral modules that

are stereotyped in form and which are interconnected in time with defined transition statistics, a

family of discrete-time hidden Markov models (HMMs) were instantiated (Bishop, 2006; Koller

and Friedman, 2009; Murphy, 2012). Here, at each point in time (e.g., for every frame of

imaging data), an HMM posits that the mouse is within a discrete state that can be given a label.

Each hidden Markov state corresponds to a prototypical brief three-dimensional motif of motion

 24

the animal undertakes while within that state. The Markovian state of the dynamical process is

then composed of both the latent discrete component, which identifies the behavioral mode of

the animal, and a number of lagged values of the observation sequence, which are used by the

autoregressive model to predict the short-timescale behavior of the animal based on the

behavioral mode. This model structure is often called a switching vector-autoregressive (SVAR)

model or autoregressive HMM (AR-HMM) (Fox et al., 2009; Murphy, 2012). Different

experimental conditions were allowed to share the same library of state-specific VAR dynamics

but learned their own transition patterns as well as any unique VAR dynamical modes, allowing

the model to reveal changes in the parameters due to changes in the experiment.

 Compositionally altering model structure allowed objective comparisons between

different underlying models for how mouse behavior is organized over time. Removing the

discrete switching dynamics captured in the transition matrix and replacing them with a mixture

model generated an alternative model in which the distribution over each discrete state does not

depend on its previous state. This would be the case if animals had a set of behavioral modules

from which to choose, and the likelihoods of expressing any given one of them did not depend

on the order in which they appear. This simplification resulted in the autoregressive mixture

model (AR-MM). Alternatively, replacing the conditionally autoregressive dynamics with simple

state-specific Gaussian emissions resulted in a Gaussian-emission HMM (G-HMM); this model

explored the hypothesis that each behavioral module is best described by a simple pose, rather

than being a dynamical trajectory. Applying both simplifications yielded a Gaussian mixture

model (G-MM), in which behavior is simply a sequence of poses over time in which the

probability of expressing any given pose does not depend on the prior pose. Removing the

switching dynamics yielded a pure autoregressive (AR) or linear dynamical system (LDS)

 25

model, in which behavior was described as a trajectory through pose space without any reused

discrete behavioral modules at all. By fitting each of these alternative models and comparing

model performance, the model structure that best explains the behavioral dynamics captured by

the 3D imaging was identified (in this case the parent AR-HMM); this model (of the alternatives)

thus best reflected the underlying organization of action (Fig. S4).

 To fit models we utilized algorithms that have been well validated in a variety of

contexts, including specifically for fitting models of the class used herein (Bishop, 2006; Koller

and Friedman, 2009; Murphy, 2012 Robert, 2013, r14413). In brief, to estimate the parameters of

any given model, approximate Bayesian inference was performed using Gibbs sampling, a

Markov Chain Monte Carlo (MCMC) inference algorithm (Robert and Casella, 2013). The Gibbs

sampling algorithm employed here has a natural alternating structure (Fig. S4C), directly

analogous to the alternating structure of the popular expectation-maximization (EM) algorithm.

Applied to the AR-HMM, the algorithm first segments the imaging data into modules given a

fixed set of transition statistics and a fixed description of the AR parameters that describe any

given module, and then the algorithm switches to fixing the segmentation and updating the

transition matrix and the AR parameters. These two steps are alternated as an iterative process.

 To employ Bayesian inference methods to fit the model, unknown quantities, including

the transition matrix and the autoregressive parameters that describe each state, were treated with

a uniform representation as latent random variables. In particular, weak prior distributions

(except for the sticky parameter) were placed on these quantities and their posterior distributions

after conditioning on observed 3D imaging data were investigated. For the autoregressive

parameters, we used Automatic Relevance Detection (ARD) algorithms, which incorporate a

prior with a Lasso-like penalty to encourage uninformative lag indices to have their

 26

corresponding regression matrix coefficients tend to zero (Gelman et al., 2003). For the transition

matrix, a Hierarchical Dirichlet Process (HDP) prior was used, which served to regularize the

number of discrete latent states. In addition, the transition matrix prior also included a sticky

bias, which is a single nonnegative number that controlled the tendency of the discrete states to

self-transition (Fox et al., 2008; Fox et al., 2009). Because this parameter controlled the

timescale of the inferred switching dynamics, this parameter was set such that the output of the

model inference algorithms matches (as closely as possible) the model-free duration distribution

determined by our changepoint analysis. In this sense the sticky bias acts as a kind of “lens”

which focuses the model on the organization of behavior at a specific temporal scale. It is

important to note that despite the fact that this parameter was tuned — indeed this parameter

defined our prior over the timescale of behavior — it was not clear a priori that the model could

identify a duration distribution that was similar to the changepoints distribution (or that a

duration distribution mode would match the specific sub-second timescale found in the model-

free analysis) for any sticky parameter value.

Model Training and Parameter Tests

 Datasets from the open-field, odor, and genetic manipulation experiments were modeled

jointly in a single model to increase statistical power and facilitate comparisons between results.

Because the neural implants associated with the optogenetics experiment modestly altered the

physical profile of the animal, these data were modeled separately. In all experiments, the first 10

principal components for the wavelet decomposition coefficients of each frame of each imaged

mouse were gathered. Data were then randomly subdivided and assigned either a “train” or a

“test” label, with 70% of the data assigned to the training subset, and 30% assigned to the test

 27

subset. The mice labeled “test” were held-out from the training process, and used to test

generalization performance via measurement held-out likelihood. This approach allowed us to

directly compare algorithms whose composition reflected different underlying structures for

behavior.

 Models were trained on data using the procedures described above; modeling was robust

to both initialization settings and to parameter and hyperparameter settings (with the exception of

the sticky bias parameter kappa, see below). Specifically, the number of lags used in our AR

observation distributions and the number of used states in our transition matrix with an HDP

prior was found to be robust to the particular hyperparameter settings on both. The

hyperparameters of our sparsifying ARD prior were varied by several orders of magnitude, and

held-out likelihood, the number of used lags, and the number of used states varied negligibly.

The hyperparameters of our HDP prior were also varied by several orders of magnitude and

again no change to the number of used states or held-out likelihood was observed. All jointly-

trained data shared observation distributions, but each treatment class was allowed its own

transition matrix. Each model was updated through 1000 iterations of Gibbs sampling; upon the

last iteration of Gibbs sampling the model output was saved; all further analysis was performed

on this final update.

 The “stickiness” of the duration distribution of our behavioral modules — defined by the

kappa setting of the model — influenced the average duration of behavioral modules discovered

by the AR-HMM; this allowed us to control the temporal scale at which behavior was modeled.

As discussed in the main text, autocorrelation, power spectral density, and the changepoint

algorithm identified switching dynamics at a specific sub-second temporal scale (as encapsulated

by the changepoints duration distribution and reflected by the spectrogram and autocorrelogram).

 28

The kappa stickiness parameter of the time-series model was therefore empirically set to best

match the duration distribution discovered by changepoint detection. To find the kappa setting at

which these distributions were best matched, the Kolmogorov-Smirnov distance was minimized

between the inter-changepoint interval distribution and the posterior behavioral module duration

distribution through a dense grid search. Using alternative distance metrics did not affect the

results.

Evaluating the Log-likelihood of Held-out Test Data

 A crucial feature of a useful model is its ability to “generalize”, meaning its ability to

usefully describe phenomena in similar data that it has not previously seen. This is intimately

related to the problem of over-fitting; if a model performs well on training data, but poorly on

some new data, then the model has been over-fit. The higher the generalization performance,

which was measured as the log-likelihood of held-out test data, the less the model has been over-

fit. Model comparisons were performed by evaluating the log-likelihood of held-out test data

under the AR-HMM and each member of the family of alternative models. For each Markov

Chain Monte Carlo (MCMC) sample of the AR-HMM transition matrix and autoregressive

parameters, the log likelihood of a held-out data sequence was computed by summing over every

possible hidden state sequence the joint probability of the data sequence and that hidden state

sequence (Bishop, 2006).

Predictive comparison metric to stratify model capacities

 We use two metrics to compare model performance: the aggregate held-out likelihood

score used to compare models in Figure S4D, and a temporal horizon-based predictive

 29

comparison metric in Figure 2A. While the held-out likelihood score used in Fig. S4D compares

the models’ overall prediction performance, the metric shown in Figure 2A shows separately the

benefit of each component of the model’s structure.

 There are two possible versions of the horizon-based prediction metric, both based on

predictive likelihood but differing in what data is used to make the prediction:

1. Given the data up to time t, score how well the model predicts what happens at time t+k

(for various k>0 and averaging over t). Symbolically, this metric is

log! !!!! !!,… ,!_!)

2. Given the data up to time t and an instant of data before time t+k for the short timescale

model, score how well the model predicts what happens at time t+k. More precisely, an

“instant of data” is taken to be the amount of data used in the short-timescale AR model.

Symbolically, this metric for the AR-HMM, AR-MM, and AR models is

log! !!!! !!,… ,!! ,!!!!!!,!!!!!!,!!!!!!)

where the short-timescale data is not included for the G-HMM, G-MM, or Gaussian

models (i.e. the “pose” models).

Metric #1 shows overall prediction capability, much like the comparison in Figure S4D,

and hence lumps together the benefit from the AR model component and that from the discrete

hidden state model component. However, Metric #2 actually separates these effects out: the

amount by which the AR-HMM beats the AR-MM is precisely due to the discrete Markov state,

since both models use the same short-timescale information. We therefore use Metric #2 for Fig.

2. Metric #2 demonstrates that the AR-MM persistently beats the AR model, corresponding to

the fact that it is a more expressive dynamics model for short timescales. Metric #2 also shows

 30

the G-HMM and G-MM (i.e. the “pose models”) as persistently lower because they do not model

the short timescale information. Finally, we note that Metric #2 can be computed exactly, while

#1 requires approximation with Monte Carlo or importance sampling methods.

Analysis of the Model Consistency

 To evaluate model consistency the following procedure was adopted, which enabled

comparisons between model fits. For any two fits, each containing a set of behavioral modules,

the modules between the two fits were matched by the Frobenius norm between the AR matrices

for each module, and then the Hungarian algorithm (also called Munkres matching) was used to

generate a mapping that associated a module in the first fit with a single module in the second fit.

The number of frames each fit assigned to the module was then plotted as a single point, where

the x-axis represents frames assigned to that module in the first fit, and the y-axis represents

frames assigned to that module in the second fit. We evaluate how well two fits matched as the

goodness-of-fit R2 value between these points and the y=x line. Both algorithmic consistency, in

which the data do not change, but the random seed that initializes the model is different, and data

consistency, in which different bootstrapped datasets are used to train the model, were evaluated

with this procedure. Results for algorithmic consistency are described in the main text (R2 = 0.93

± 0.03). To test data consistency, we randomly sampled a subset of n=24, 20, 10 and 5 mice from

a dataset with 25 mice (20 minutes each in the OFA), and refit the AR-HMM model 15 times.

For n=24: R2 = 0.95 ± 0.02; n=20: R2 = 0.93 ± 0.04; n=10: R2 = 0.92 ± 0.04; n=5: R2 = 0.88 ±

0.09.

Analysis on Model Output

 31

 Fit models included a number of states that were infrequently used (see Fig. S5E).

Because we wished to focus on those changes in behavior that are most significant, we

concentrated our analysis on the set of modules that explain 95 percent of the total frames in our

dataset (e.g., the top 51 modules in the dataset) and in the main text only describe modules

within this group. Visual inspection reveals that many of the frames assigned to states above this

threshold are corrupted by sensor-specific noise that is not eliminated by our pre-processing.

Because the model attempts to cluster together data with similar structure, this thresholding

procedure has a practical de-noising effect and mitigates ambiguity injected into the imaging by

the depth camera itself. Future use of our approach with different depth cameras may require

distinct pre-processing and thresholding methods, as alternative cameras will have unique noise

characteristics.

 To represent the grammatical relationship between behavioral syllables, two analyses

were performed. First, the probabilities of transition from any given module to any other module

(in a pairwise fashion) were computed; second, the bigram probability was computed, which is

the probability that two syllables were found occurring one after the other (a “bigram” of

modules), as a fraction of all observed bigrams. To calculate this value for each pair (i,j) of

modules, first a square n x n matrix, A, was created where n is the number of total modules in the

label sequence. The label sequences that were saved at the last iteration of Gibbs sampling were

then scanned, incrementing the entry A[i,j] for every time syllable i directly preceded syllable j.

At the end of the label sequence, each entry was divided by the number of total bigrams

observed.

 In order to visually organize those modules that were specifically up-regulated or

selectively expressed as a result of a manipulation, a selectivity index was assigned to each

 32

module. Specifically, where p(condition) indicates the percent usage of a module in a condition,

modules in the circular open field versus square box comparison were sorted by (p(circle)-

p(square) / (p(circle) + p(square)). In the comparison between blank odor and fox odor (TMT),

modules were sorted by (p(tmt) - p(blank)) / (p(tmt) + p(blank)). In the comparison of Ror1β

mutant, heterozygous mutant, wildtype and C57/BL6, modules were sorted by (p(het)+p(mut)) /

(p(wt) + p(c57)).

Statemap Visualizations

To lay out each graph in a reproducible manner (up to global rotation of the figure), the

position of the nodes was initialized using the spectral layout algorithm and fine-tuned node

positions using the Fructherman-Reingold iterative force-directed layout algorithm (Koren,

2005); both algorithms were used as implemented in the NetworkX and GraphViz software

package. To simplify the visual representation, only edges for which the bigram value was more

than some multiple of bootstrap-estimated standard error units (indicated in figure legends)

above zero were drawn.

Hinton Diagram

 To succinctly display all bigram probabilities between all syllables, the full bigram

probability matrix was displayed using a Hinton diagram. In this representation, the value at each

index of a rectangular matrix is shown as a 2D geometric object (such as a square or circle) at the

spatial index of the matrix’s element, where the area of the geometric element is proportional to

the value of the matrix at that index. This has the property of representing larger values as more

visually salient than smaller values. Additionally, we encoded additional properties of the matrix,

 33

such as the statistical significance of a particular bigram, using color of each geometric element.

Because the indices of syllables in our AR-HMM model are chosen randomly by our model, we

resorted the rows and columns of the bigram probability matrix using spectral clustering to better

represent syllables which tend to transition amongst themselves. This re-sorting did not affect the

data itself, only its presentation.

Computing Entropy Rate and Mutual Information

Let ! denote the estimated transition matrix, so that !!" = P !!!! = ! !! = !] for

!, ! = 1,2,… ,! and all time indices !, and let ! denote the steady-state distribution of the Markov

chain, so that !! = Pr[!! = !]. The entropy rate on the transition matrix was calculated as

– !! !!"ln !!"!,! . The mutual information between states was calculated as − !!ln !!! +

!! !!"ln !!"!,! .

Cross-likelihood Analysis of AR-HMM States

To evaluate whether discovered AR-HMM states represent meaningful clusters of data in

the underlying dataset, we measured how well, on average, each state’s autoregressive

parameters explain its assigned data segments compared to how well, on average, they explain

data segments assigned to other states. This cross-likelihood measure can also be viewed in

terms of likelihood ratio testing: given a data segment to assign to one of two possible states, if

that data segment was assigned according to a likelihood ratio test, the corresponding cross-

likelihood values measure how far on average such data segments are from the likelihood ratio

test decision boundary. Cross-likelihoods near or above 1 (i.e., when their logarithms are near or

above 0) indicate that the corresponding states’ autoregressive models can explain each others’

 34

data segments; the states’ assigned data segments cannot be readily or reliably discriminated, at

least using the states’ autoregressive parameters and a likelihood ratio test. Conversely,

likelihoods well below 1 indicate that the states’ assigned data segments are easily discriminated.

For any two states !, ! ∈ {1,2,… ,!} with assigned data segments

{!!! }!!!!! = {!!!:!!: !!!:!! = !, !!!!! ≠ ! ≠ !!!!!} and {!!! }!!!
!! = {!!!:!!: !!!:!! = !, !!!!! ≠

! ≠ !!!!!} and autoregressive parameters ! ! and ! ! , respectively, we computed the !, !

entry of the log cross-likelihood matrix as

CL!" ≝
1
!!

 log
! !!! | ! !

! !!! | ! !

!!

!!!

 While these cross-likelihood ratios can be interpreted on an absolute scale in terms of

classification of data segments using likelihood ratio testing, it is also useful to compare this

measure to a null model (i.e., a reasonable baseline hypothesis that should not have meaningful

discrete state structure). This baseline was constructed by first fitting with Gibbs sampling a

linear dynamical system (LDS) with 60-dimensional latent state to the same open field dataset on

which AR-HMM was fit; while an LDS can capture the correlation structure in the data, both in

time and across components, its only state is continuous and thus it by definition lacks

modularity. Synthetic data were generated from the fit LDS; an AR-HMM was then fit to the

synthetic data, thereby producing the corresponding cross-likelihood plot from the inferred

states. In this specific case the AR-HMM hyperparameters were adjusted to enable more than

one state to be inferred; otherwise, the Bayesian inference procedure only instantiates one

autoregressive state to explain the LDS synthetic data, a result that is consistent with our non-

parametric methods appropriately recognizing state number in the underlying data.

 35

Visualizing Synthetic Mice

 To generate synthetic mice from the AR-HMM and each model in the family of

alternative models, the sticky kappa biasing term in each model was replaced with an explicit

duration model so as to more accurately represent the timescales in each model’s inferred label

sequence. For each model fit, a corresponding autoregressive hidden semi-Markov model (AR-

HSMM) was instantiated with the same autoregressive and transition parameters but with a

negative binomial duration model for each state, which was also fit using Gibbs sampling. Each

AR-HSMM generates a 10D principal coordinate sequence; using the principal components

analysis fit to the original data, these are mapped into images to produce the “dream mouse”

videos.

Statistical Methods

 To evaluate the model’s performance from a frequentist perspective, the inference

algorithm is treated as a (stochastic) point estimation procedure, and how that point estimate

might change if the estimation procedure were applied to a new random dataset was explored. In

particular, a bootstrap procedure was used to estimate the distribution of these point estimates

under new random datasets (see below). In addition, tools from hypothesis testing were used to

summarize the degree to which the measured module usage differences could be explained by

random fluctuation or finite-sample effects. To evaluate the model’s performance from a

Bayesian perspective, the posterior uncertainty estimated by our MCMC inference algorithm was

reported in terms of both raw samples and coordinate-wise posterior standard deviation error

bars.

 36

 For the purposes of evaluating the procedure as an estimator that might be applied to new

random datasets, the last MCMC sample was treated as a (stochastic) point estimate. To estimate

the distribution of that point estimate under new random datasets, a bootstrap was performed: the

underlying population distributions over sequences for each group (e.g., blank, TMT) were

approximated by their empirical distributions, and sampling with replacement from those

distributions generated new random datasets. Under the assumption that the data are generated

from a stationary random process, this bootstrap procedure provides a consistent estimate of the

distribution of the quantities estimated by the model inference, one that has been well validated

in a wide range of contexts (Wasserman, 2013).

 To solve the label matching problem in the bootstrap samples, the new fits were

initialized from the first fit on the full (un-bootstrapped) dataset; this way the variations in the

bootstrap fits reflected the variations due to new random datasets and not any label matching

effects (see the model consistency section above for methods that enable independent evaluation

of label matching in fits with distinct random initializations). Figures 3-5 show the bootstrap

samples and resulting standard error estimates for the module usages in each experiment. In the

main text, all additive statistical errors and error bars are bootstrap-estimated standard errors

(±SE) unless otherwise indicated. We also computed Bayesian uncertainty estimates from

MCMC samples. In Fig. S5E we show the last 1000 sampled module usage vectors in a 1250

iteration run of our MCMC algorithm. The small variation indicates that the posterior mode

being explored by the MCMC algorithm is highly peaked.

 To summarize the degree to which the differences in module usage vector estimates

might be explained by random fluctuation and finite sample sizes, null hypotheses were

formulated in terms of asymptotic normality assumptions on the distributions of the estimates,

 37

which was validated using Probability-Probability plots (data not shown). To define a single

overall null hypothesis that the usage vectors of two populations are the same up to statistical

variation, let ! and ! denote vectors of estimated usage proportions for two populations (e.g.,

blank and TMT). We test the null hypothesis that ! - ! is distributed according to a multivariate

normal distribution

H! ∶ ! − ! ∽ Normal(0,!)

where ! is estimated from the bootstrap samples. We used a standard test statistic, Hotelling’s T-

squared statistics, for H!.

 In addition to testing overall hypotheses about whether module usage vectors are the

same in two populations, we also formulated p-values for hypotheses on the individual module

usages to bound the (estimated) Type I family-wise error rate. To define these families of

module-wise null distributions and p-values, asymptotic normality assumptions were again

employed: letting ! and ! denote the estimated module usage vectors for two populations and

letting !! and !! denote their !th coordinates, respectively, for each module ! we define the

hypothesis

H!! ∶ !! − !! ~ Normal(0,!!!)

where the !!! are estimated from the bootstrap samples. For each such hypothesis an un-adjusted

p-value was calculated using a simple Wald test. To adjust the p-values, the Holm-Bonferroni

step-down procedure was used, which is a slightly less conservative variant of the Bonferroni

correction with the same family-wise error rate guarantees.

 The p-values in the optogenetic stimulation experiment were computed differently from

the statistics described above. Let !!! denote the frequency (across the 50 trials for a single fit)

with which module ! is used at frame index ! relative to stimulus onset for ! ∈ [−1, 6] seconds

 38

(with 30 frame indices per second). We modeled each !!! as a random variable with a

distribution that may depend on the stimulus; that is, we partitioned the time relative to stimulus

onset into three subsets corresponding to times when the laser is on (0 ≤ ! < 2), times just after

the laser turns off (2 ≤ ! < 3), and all other times. The family of hypotheses that

H!i, on vs off ∶ !!!! − !!!! ~ Normal 0,!!, on vs off
! 0 ≤ !! < 2, !! ∈ −1,0 ∪ (3,6]

H!i, offset vs off ∶ !!!! − !!!! ~ Normal 0,!!, offset vs off
! 2 ≤ !! < 3, !! ∈ −1,0 ∪ (3,6]

was then tested, where each null distribution’s variance was estimated from the sample variance

across time indices. P-values were then computed using a t-test and adjusted with the Holm-

Bonferroni step-down procedure.

Technical definitions of the generative models

 In this section, the priors and generative models implemented in this paper are formally

defined following standard notation. These generative models are adaptations of models

successfully used previously to characterize structure in complex datasets (Fox et al., 2009;

Murphy, 2012).

Prior on the transition matrix

A sticky HDP prior was placed on the transition matrix ! with concentration parameters !, ! > 0

and sticky parameter ! > 0

!! ∼!!" Beta(1, !) !! = (1− !!) !!
!!!

!! ∼!!" DP(!" + !!!) ! = 1,2,…

 39

where !!" is 1 when ! = ! and is 0 otherwise and !! denotes the !th row of !. Gamma priors are

placed on ! and !, setting ! ∼ Gamma(1,1/100) and ! ∼ Gamma(1,1/100).

Generation of the discrete state sequence

Given the transition matrix, the prior on a discrete state sequence ! was

!! ∼ !!!!! ! = 2,3,… ,!

where !! is generated by the stationary distribution under !.

Prior on the autoregressive parameters

The autoregressive parameters ! = {! ! }!!!! = {! ! , ! ! ,! ! } for each state ! = 1,2,… were

sampled from a Matrix Normal Inverse-Wishart prior :

(!, !),! ∼ MNIW(!!, !!,!!,!!)

or equivalently

! ∼ InvWishart(!!, !!)
vec((!, !)) ∼ Normal(vec(!!),!⊗ !!)

where ⊗ denotes a Kronecker product and !, ! denotes the matrix formed by appending ! to !

as a column. Note that the noise covariance matrices ! ! are dense full-rank matrices, not

restricted to diagonal matrices (i.e. uncorrelated noise models), and there is more than enough

data to learn these fully general noise models. In addition, a block ARD prior(Fox et al., 2009;

Pole et al., 1994) on !! is used to encourage uninformative lags to be shrunk to zero:

!! = diag !!,… , !!" !! ∼!!" InvGamma(1/25,1/25)

Generation of the 3D pose sequence principal components

Given the autoregressive parameters and discrete state sequence, the data sequence ! was

generated according to an affine autoregression :

 40

!! ∼ Normal(! !! !!!! + ! !! , Σ(!!)) ! = ! + 1,! + 2,… ,!

where the covariance matrices ! are dense and ! denotes a vector of ! lags:

!! ≝ !!!!! !!!!!!! ⋯ !!!!! !

The alternative models are special cases of the AR-HMM and were constructed by adding

constraints. In particular, the Gaussian-emission HMM (G-HMM) corresponds to constraining

!(!) = 0 for each state index !. Similarly, the autoregressive mixture (AR-MM) and Gaussian

mixture (GMM) correspond to constraining the transition matrix to be constant across rows,

!!" = !!ʹ! = !! for each ! and !ʹ, in the AR-HMM and G-HMM, respectively.

Technical description of the inference algorithms

 As discussed above, the Gibbs sampling inference algorithm alternated between two

principal stages: updating the segmentation of the data into modules given a fixed transition

matrix and autoregressive parameters, and updating the transition matrix and autoregressive

parameters given a fixed segmentation. These fitting procedures are adaptations of those

successfully used previously to fit generative models including the AR-HMM (Fox et al., 2008;

Fox et al., 2009). Mathematically, updating the segmentation sampled the label sequence !

conditioned on the values of the data !, the autoregressive parameters !, and the transition

matrix !; that is, sampling the conditional random variable ! | !,!,!. Similarly, updating the

transition matrix and autoregressive parameters given the segmentation sampled ! ∣ ! and

! ∣ !,!, respectively.

 41

 For inference in the AR-HMM the weak limit approximation to the Dirichlet process was

used, in which the infinite model was approximated by a finite one. That is, choosing some finite

approximation parameter !, ! and ! were modeled using finite Dirichlet distributions of size !

! ~ Dir(γ/ L ,⋯ , γ/L)

!! ∼ Dir(!!!,⋯ ,!!! + !!!" ,⋯ ,!!!)

where !! denotes the !th row of the transition matrix. This finite representation of the transition

matrix allowed the state sequence ! to be resampled as a block and for large ! provides an

arbitrarily good approximation to the infinite Dirichlet process.

 Using a weak limit approximation, the Gibbs sampler for the AR-HMM iterated

resampling the conditional random variables

! !,!,! ! !,! and !,!| !

 For simplicity, throughout this section notation for conditioning on hyperparameters and

the superscript notation for multiple observation sequences is suppressed.

Sampling ! | !,!,!

 Sampling the state labels ! given the dynamical parameters, ! and !, and the data !

corresponds to segmenting the 3D video sequence and assigning each segment to a behavioral

mode that describes its statistics.

 Given the observation parameters ! and the transition parameters !, the hidden state

sequence ! is Markov with respect to a chain graph. The standard HMM backward message

passing recursions are

!! ! = ! !!!!:! !,!, !! = !)

 42

= ! !!!! = ! !! = !,!) ! !!!! !!!! = !,!) !!!!(!)
!

!!!

for ! = 1,2,… ,! − 1 and ! = 1,2,… ,!, where !!(!) = 1 and where

!!!!:! = (!!!!,!!!!,… ,!!). Using these messages, the conditional distribution of the first state

!!, marginalizing over all the future states !!:! is

! !! = ! !,!,!) ∝ ! !! = ! ! ! !! !! = !,! !!(!)

which can be sampled efficiently. Given a sampled value !!, the conditional distribution of the

second state !! is

! !! = ! !,!,!, !! = !) ∝ ! !! = ! !! = !!,!) !(!! !! = !,! !! ! .

 Therefore after passing HMM messages backward the state sequence can be recursively

sampled forwards.

Sampling !| !,!

 Sampling the autoregressive parameters ! given the state sequence ! and the data

sequence ! corresponds to updating each mode’s dynamical parameters to describe the 3D video

data segments assigned to it.

 To resample the observation parameters ! conditioned on a fixed sample of the state

sequence ! and the observations ! one can exploit conjugacy between the autoregressive

likelihood and the MNIW prior. That is, the conditional also follows the MNIW distribution:

! ! ! ,! ! !,!, !!, !!,!!,!!) = ! ! ! ,! ! !!, !!,!!,!_!)

where (!!, !!,!!,!!) are posterior hyperparameters that are functions of the elements of !

assigned to state ! as well as the preceding lagged observations:

 43

!! = !! + !!!! + (!!!!!!!!
! − !!!!!!!!

!)

!! = !!!!!! + !!!! !!

!! = !!!! + !!!!
!!

!! = !! + !

where

!!!! = !!
!:!!!!

!!! !!!! = !!
!:!!!!

!!!

!!!! = !!
!:!!!!

!!! ! = #{!: !! = !}.

 Therefore resampling !| !,! includes three steps: collecting statistics from the data

assigned to each state, forming each state’s posterior hyperparameters, and updating each state’s

observation parameter by simulating a draw from the appropriate MNIW. Simulating (!,!) ∼

MNIW(!!, !!,!!,!!) proceeds as

! ∼ InvWishart(!!, !!)

! = !! + Σ
!
! ! K!

!!! where !!" ∼!!" !(0,1).

Sampling !,!| !

 Sampling the transition parameters ! and ! given the state sequence ! corresponds to

updating the probabilities of transitions among behavioral modules to reflect the transition

patterns observed in the state sequence. Updating ! encouraged redundant behavioral modes to

be pruned from the model, while updating each !!" fit the transitions observed from state ! to

state !.

 44

 Resampling the transition parameters ! and !, which are draws from the weak limit

approximation to the (sticky) HDP, was performed using an auxiliary variable sampling scheme .

That is, !,\!" | ! was generated by first sampling auxiliary variables ! | !, !. Then !,\!" | !,!

was generated by first sampling from the marginal !| ! and then the conditional !| !, !.

 The matrix of transition counts in the sampled state sequence ! is

!!" = #{!: !! = !, !!!! = !,  ! = 1,2,… ,! − 1}.

 Suppressing conditioning notation for simplicity, the auxiliary variables

! = {!!": !, ! = 1,2,… ,!} are sampled via

!!" = !!"#
!!"

!!!
 where !!"# ∼!!" Bernoulli

!!!
!!! + !

!!! + !!!"
!!! + ! + !!!"

where Bernoulli(!) denotes a Bernoulli random variable that takes value 1 with probability !

and takes value 0 otherwise. Note that the update for the HDP-HMM without a sticky bias

corresponds to setting ! = 0 in these updates.

 Given the auxiliary variables, the update to ! is a Dirichlet-multinomial conjugate one,

where

!| ! ~ Dir(!! +!⋅!,
!
! +!⋅!,⋯ , !/! +!⋅!)

where !⋅! = !!"
!
!!! for ! = 1,2,… ,!. The update to !| !, ! is similar, with

!!| !, ! ~ Dir !!! + !!!,⋯ ,!!! + !!" + !!!" ,⋯ ,\!"#ℎ! !! + !!" .

 45

Supplemental References

Arias-Castro, E., and Donoho, D.L. (2007). Does Median Filtering Truly Preserve Edges Better

Than Linear Filtering?

Basseville, M., and Nikiforov, I.V. (1993). Detection of abrupt changes (Prentice-Hall

Publishing).

Bishop, C.M. (2006). Pattern Recognition and Machine Learning (Springer).

Fox, E.B., Sudderth, E.B., Jordan, M.I., and Willsky, A.S. (2008). An HDP-HMM for Systems

with State Persistence. In Proc International Conference on Machine Learning.

Fox, E.B., Willsky, A.S., Sudderth, E.B., and Jordan, M.I. (2009). Sharing Features among

Dynamical Systems with Beta Processes. Advances in Neural Information Processing Systems

22 (NIPS 2009), 549-557.

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2003). Bayesian Data Analysis, Second

Edition (Chapman & Hall/CRC Texts in Statistical Science). (29 July 2003).

Koller, D., and Friedman, N. (2009). Probabilistic Graphical Models (MIT Press).

Koren, Y. (2005). Drawing graphs by eigenvectors: theory and practice. Computers &

Mathematics with Applications 49, 1867-1888.

Mallat, S.G. (1989). A theory for multiresolution signal decomposition: the wavelet

representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on 11, 674-693.

Murphy, K.P. (2012). Machine Learning (MIT Press).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine Learning in Python.

The Journal of Machine Learning Research 12, 2825-2830.

 46

Perez, F., and Granger, B.E. (2007). IPython: a system for interactive scientific computing.

Computing in Science & Engineering.

Pole, A., West, M., and Harrison, J. (1994). Applied Bayesian Forecasting and Time Series

Analysis (CRC Press).

Robert, C., and Casella, G. (2013). Monte Carlo Statistical Methods (Springer Science &

Business Media).

van der Walt, S., Colbert, S.C., and Varoquaux, G. (2011). The NumPy Array: A Structure for

Efficient Numerical Computation. Computing in Science & Engineering 13, 22-30.

Wasserman, L. (2013). All of Statistics (Springer Science & Business Media).

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A

method based on time averaging over short, modified periodograms. IEEE Transactions on

Audio and Electroacoustics 15, 70-73.

Wiener, N. (2013). Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with

Engineering Applications (Martino Fine Books).

Record Raw
Depth Frames
on Microsoft

Kinect
Crop Raw

Images to ROI
Select region-

of-interest
(ROI)

Calculate
median raw
background

image

Impute
Missing
Values

Calculate X,Y,Z
position in millimeters

for each pixel

Resample pixel
positions to an even

grid in millimeters
X
Y
Z

Calculate median
real-world coordinate
background image

Subtract background
from real-world

coordinate images

A

B

C D

E

F

Background-
subtracted

Images

Per-frame
artifact removal

and iterative
median filtering

Mouse
Identification

via blob
detection

Scalar
extraction

Orientation
Correction

Ellipse Fitting

Image
extraction

Center-of-
mass

correction

Artifact Removal

G H I

J

Mouse Identification

Pose Image,
Unrotated

Pose Image,
Orientated Corrected

ROI

Mouse

D
im

en
sio

ns
Ra

nd
om

 P
ro

je
ct

io
ns

D
im

en
sio

ns
Ra

nd
om

 P
ro

je
ct

io
ns

D
im

en
sio

ns
Ra

nd
om

 P
ro

je
ct

io
ns

D
im

en
sio

ns
Ra

nd
om

 P
ro

je
ct

io
ns

B

C

D

A Live, Smoothed Posed, Smoothed

Posed, UnsmoothedLive, Unsmoothed

5 sec 5 sec

V
e
lo

c
it
y

(c
m

/s
)

+15

-15

+15

-15

+15

-15

+15

-15

S
p

in
e

H
e
ig

h
t

R
a
w

 P
ix

e
ls

V
e
lo

c
it
y

(c
m

/s
)

S
p

in
e

H
e
ig

h
t

R
a
w

 P
ix

e
ls

V
e
lo

c
it
y

(c
m

/s
)

S
p

in
e

H
e
ig

h
t

R
a
w

 P
ix

e
ls

V
e
lo

c
it
y

(c
m

/s
)

S
p

in
e

H
e
ig

h
t

R
a
w

 P
ix

e
ls

0 mm

45 mm

A
u
to

c
o
rr

e
la

ti
o
n

0 300020001000

1.0

0.8

0.6

0.4

0.2

0

Time Lag (ms)

A
u

to
c
o

rr
e

la
ti
o

nRandom Proj.
OFA
TMT Odor
Blank Odor
RorB
Optogenetics

S
p
e
c
tr

u
m

 R
a
ti
o

Frequency (Hz)

300

200

100

400

0

0 1412108642

Random Proj.
OFA
TMT Odor
Blank Odor
RorB
Optogenetics
Posed

PC1

PC
2

103.2

102.8

102.4

102.0

101.6

101.2

100.8

100.4

100

Lo
g

Co
un

ts

C

Labels

Raw

Pixels

AR Process 1 AR Process 2 AR Process 3 AR Process 4

Transition Probabilities

PC1

PC2

PC3

1

2

4

3

AR-HMM

1 sec

A
45
mm

0

Preprocess Raw
Imaging Data
- Extract image of mouse
- Correct parallax artifacts
- Align mouse along axis of spine

Model Fitting with Gibbs
Sampling to Identify
Behavioral Modules
And Transition Statistics

Dimensional
Compression
of 60x60 pixel data

Submit PCA data
to various models

- Wavelet Transformation
- Principal components analysis
- Extract 10 PCs of pixel data

E

0 2 4 6 8 10

Time (sec)

−6

−4

−2

0

2

4

6

P
C

 V
a

lu
e

Synthetic Data

Real Data
0 2 4 6 8 10

Time (sec)

−6

−4

−2

0

2

4

6

P
C

 V
a

lu
e

D

AR
 H

M
M

AR
 M

M AR

G
au

ss
ia

n
H

M
M

G
M

M
 H

M
M

G
M

M

15

20

25

30

H
el

do
ut

 L
ik

el
ih

oo
d

im
pr

ov
em

en
t o

ve
r

G
au

ss
ia

n
(n

at
s)

B

Canonical
Dataset

Extracted
Images

Extracted
Images

Principal
Components

Dimensionally-
reduced data

Training
Dataset

Test DatasetExtracted
Images

AR Observation
Emissions

State Labels

Hierarchical
Dirichlet Process

Transition
Distribution

State Labels

Transition
Matrix

AR Matrices

Duration
Distributions

Log-Likelihood
on Held-out

Test Data

Final
Iteration

AR HMM Model
Gibbs Sampling

i

ii

iii

iv

v

F
Sorted Module ID

Pe
rc

en
t T

im
e

At
 S

pe
ci

fie
d

D
ur

at
io

n
A

C
D

E

B

PC1

PC
2

103.2

102.8

102.4

102.0

101.6

101.2

100.8

100.4

100

Lo
g

Co
un

ts

Sorted Module ID

A

B

dart micromovement pause rear walk

Hand-labeled coarse behavioral class

0

5

10

15

20

25

N
u

m
b

e
r

o
f

M
o

d
u

le
s

B

A
Determining Filter Settings for Maximizing Ratio of

Recognizability over Differentiability

