
S1. Obtaining the ethnic proportions of cosmopolitan cohorts (Lee et al., 2015a) 

 

Assume that individual genotypes in the study cohort is a mixture of random genotypes from 

(not admixed from) the N ethnic groups in the reference panel with weight vector 1[ ]i NW w  . Let 

S be the vector of GWAS SNP reference allele frequencies (RAFs). Let 1[ ]i NP P   be the RAF 

matrix of the reference population ethnicities for the measured SNPs, where iP  is the RAF 

vector of the ith ethnicity of the reference panel. Under the assumption, the study cohort RAF 

vector can be expressed as a weighted sum of RAF vectors of reference population ethnicities 

with 1[ ]i NW w  : 
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 . After straightforward algebraic manipulations:  
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Linear/quadratic programming methods can be employed to estimate W  subject to constraints
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   and 0 1iw  . However, due to the large number of SNPs, even simply solving the 

linear system without constraints ( 1ˆ ( ) ( , )W Cov P Cov P S ) and substituting zero for the (very) few 

small negative proportions, can yield very accurate weights.  

 

Alternatively, when GWAS RAFs are not available, users can pre-specify the weights based on 

their prior knowledge on ethnic composition of the study cohort of interest. This option should be 

most useful when i) fairly accurate proportion information about ethnicities involved in the cohort 

is available and ii) all ethnicities in the cohort have reasonably close proxies in the reference 

panels.  

 

 

S2. Computing LD patterns for cosmopolitan cohorts (Lee et al., 2015a) 

 

Based on estimated/pre-specified weights 
1

ˆ ˆ[ ]i NW w  , we estimate the cohort genotype correlation 

matrix Σ in a three step process. First, estimate the cohort genotype covariance matrix C  of 

SNPs within a genomic region as  
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where ˆ
i  and ˆ

iC  are the estimated genotype mean (twice the RAF) vector and variance-

covariance matrix for the thi  ethnic group respectively and ̂  is the estimated cohort genotype 

mean vector computed as 
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 . Second, normalize C  to obtain the correlation matrix, Σ, by 



dividing each covariance by the product of the corresponding SNP genotype standard 

deviations. To avoid ill-conditioned mixture correlation matrix due to the highly correlated LD 

structure, we add a ridge adjustment, heuristically set to 2 / n   (where n  is the sample size of 

the reference population), to the diagonal elements of Σ (Lee et al., 2015b; Pasaniuc et al., 

2014; Pickrell, 2014). The estimated mixture LD matrix Σ is subsequently used in our imputation 

(DIST, Method S3) and gene-level joint testing procedures (JEPEG, Method S4).  

 

 

S3. Imputing summary statistics of unmeasured functional SNPs (Lee et al., 

2015b) 

 

Let Zu be the vector of Z-scores of unmeasured functional variants in the non-overlapping 

prediction window with a fixed length (0.1 mega base pairs (Mb) by default). Denote as Zm  the 

vector of Z-scores of all measured variants (including non-annotated measured variants) within 

the extended window [i.e. the prediction window with two fixed-length flanking regions (0.2 Mb 

by default)]. Let ∑u,m be the LD correlation matrix between the unmeasured and measured 

variants and ∑m,m be the LD correlation matrix among the measured variants, as estimated from 

a reference panel. ∑u,m and ∑m,m are estimated as presented in Text S2. By using the classical 

conditional mean formula (Lee et al., 2013),  Zu can be imputed as  

Zu = ∑u,m(∑m,m) −1Zm. 

The variance-covariance matrix (proxy imputation information measure) of Zu can be 

subsequently estimated as 

Iu = ∑u,m(∑m,m)−1∑u,m
T. 

To obtain imputation Z-scores with a variance of one, we normalize  Zu  using the square root of  

Iu (Pasaniuc et al., 2014). 

 

 

S4. Testing for the joint effect of eQTL/functional SNPs (Lee et al., 2015b) 

 

To test for the joint effect of eQTL/functional SNPs known to affect the expression of a gene, 

JEPEG was designed to rely solely on the measured and imputed association summary 

statistics. Based on the database-derived functional category information, JEPEG first groups 



eQTL/functional SNPs affecting the same gene into the above mentioned six categories: 1) 

SNPs directly affecting protein function/structure encoded by a gene, i.e. protein 

function/structure (PFS) (e.g. stop codons), 2) SNPs affecting expression of a gene by 

disrupting its transcription factor binding sites (TFBS), 3) SNPs affecting the gene function by 

interrupting biogenesis of an miRNA (miRNA Structure), 4) SNPs affecting miRNA–mRNA 

target interaction (miRNA Target) and non-categorized/empirically derived 5) cis- and 6) trans-

eQTLs. These functional SNPs can belong to one or more categories/genes simultaneously. To 

avoid a large number of degrees of freedom for the resulting test statistic (while simultaneously 

assessing the contribution of each functional category to the overall signal), we pool together 

statistics of all SNPs from the same functional category, in a single synthetic category score. 

This score is a weighted sum of the Z-scores associated with the SNPs in the functional 

category. The weighted sums of all functional categories influencing a gene are subsequently 

combined in a gene-level statistic by using a Mahalanobis-type statistic, which takes into 

account their multivariate correlation (as estimated from a relevant reference panel).  

 

In more detail, let Z  be the vector of measured and imputed Z-scores for m  SNPs functionally 

associated with the gene under investigation, Y  be the diagonal matrix of the square root of 

imputation information for the m  functional SNPs, S  be the weight matrix, as derived from the 

SNP annotation database, for the m  functional SNPs belonging to the k  functional categories. 

S  consists of m  column vectors representing weight scores of the k  functional categories per 

SNP, which are pre-calculated on the basis of the consensus of results from diverse prediction 

methods and stored in the JEPEG annotation database (see Text 1 in the supplementary data 

of (Lee et al., 2015b). To down-weight SNPs with low imputation information, based on Y and S , 

we compute the adjusted weight matrix by accounting for the imputation information of the 

SNPs: W SY . Let 
G  be the correlation matrix of SNP genotypes, e.g. as estimated from a 

reference panel, U  be the vector of weighted sum of Z-scores by category (i.e. the synthetic 

scores) and 
U  be the variance-covariance/correlation matrix of U . Then, in mathematical 

notation: 

U WZ  and T

U ZW W   , 

where 
Z  is the covariance/correlation matrix of Z . Given that, under the null hypothesis of no 

association between genotype and trait (H0), Z  is asymptotically distributed as a multivariate 

normal with a zero mean vector and covariance matrix 
G , it follows that: 

T

U GW W   . 



G  is estimated as shown in Text S2. Due to linkage disequilibrium, 
G  might be close to 

singular, which results in unstable estimation of the gene-based test statistic. Thus, to stabilize 

JEPEG statistic, we add the DIST ridge adjustment to the diagonal elements of 
G . Based on 

the synthetic scores of all functional categories affecting the gene and their correlation structure, 

JEPEG computes an omnibus gene-level test as 

1T

UT U U  , 

which, under H0, is asymptotically distributed as a central 2  statistic with k  df. The two-tailed p-

values associated with the normalized U can be used as a post-hoc measure to evaluate the 

contribution of each functional category to the omnibus gene signal. 

 

 

S5. Assessing the Type I error rate 

 

To compare the Type I error rate of the proposed method with that of JEPEG, we considered 

two different cosmopolitan cohort scenarios based on the 1000 Genomes haplotypic data: 1) 

30% CEU + 25% CHS + 5% PUR + 40% YRI (Cohort 1) and 2) 10% ASW + 15% CEU + 15% 

CHB + 12.5% CHS + 15% GBR + 10% MXL + 2.5% PUR + 20% YRI (Cohort 2). For each 

scenario, we simulated 100 genotypic data of 10,000 subjects for Ilumina 1M autosomal SNPs. 

Each simulation consists of 5,000 cases and 5,000 controls, for which the case-control status 

was randomly assigned (i.e. under the null hypothesis of no association). Summary statistics 

were obtained by regressing the simulated SNP genotypes on the case control status. Using the 

100 summary data sets of each cohort, we estimated empirical Type I error rates for JEPEGMIX 

and JEPEG across different nominal levels. To compute JEPEG Type I error, we simply used 

1000 Genomes Phase I Europeans as a reference population.  

 

 

 

 

 

 

  



  Fig. S1. Relative Type I error rate (the empirical Type I error rate divided by the 

nominal Type I error rate) as a function of the study cohort scenario and method used.  



Table S1. Genes with JEPEGMIX p-values deemed significant at an FDR q-value < 0.05. 

Genes from the MHC region are colored in red.  

Gene Name CHR Start Position End Position Chi-square Df JEPEG p-value 

BTN3A2 6 26,370,616 26,377,991 121.40 3 3.86E-26 

BTN2A1 6 26,459,997 26,468,545 110.68 2 9.27E-25 

OR12D3 6 29,274,486 29,408,720 94.13 2 3.63E-21 

DPCR1 6 30,919,878 30,920,890 78.14 1 9.59E-19 

KIAA1949 6 30,652,781 30,652,781 70.34 1 4.98E-17 

HLA-DRB5 6 32,485,524 32,497,943 73.17 2 1.29E-16 

HIST1H2BL 6 27,775,674 27,775,674 68.02 1 1.61E-16 

OR2B2 6 27,879,200 27,879,982 67.45 1 2.16E-16 

ZKSCAN4 6 28,219,661 28,219,695 66.73 1 3.12E-16 

NKAPL 6 28,227,436 28,228,342 68.10 2 1.63E-15 

VARS2 6 30,882,689 30,893,941 61.88 1 3.65E-15 

BTN3A1 6 26,405,816 26,415,062 61.92 2 3.59E-14 

SLC17A2 6 25,914,853 25,924,134 54.14 1 1.87E-13 

SLC39A8 4 103,184,239 103,228,734 54.42 3 9.15E-12 

HIST1H2AL 6 27,833,174 27,833,342 46.21 1 1.06E-11 

ZNF323 6 28,294,550 28,297,313 52.60 3 2.24E-11 

CYP17A1 10 104,596,981 104,596,981 41.09 1 1.46E-10 

TTYH3 7 2,698,634 2,703,979 42.72 2 5.30E-10 

SF3B1 2 198,283,305 198,283,305 38.31 1 6.02E-10 

MAD1L1 7 1,976,457 1,976,457 38.78 2 3.80E-09 

EP300 22 41,513,727 41,574,383 32.76 1 1.04E-08 

ZKSCAN8 6 28,120,898 28,120,898 30.98 1 2.61E-08 

ZKSCAN8 6 28,121,278 28,121,278 30.98 1 2.61E-08 

NMB 15 85,198,606 85,200,520 34.84 2 2.73E-08 

C10orf26 10 104,572,963 104,572,963 30.65 1 3.09E-08 

PTPRF 1 44,045,573 44,083,507 34.44 2 3.31E-08 

HIST1H1T 6 26,107,790 26,108,282 29.54 1 5.49E-08 

FURIN 15 91,424,574 91,424,574 29.01 1 7.19E-08 

GID4 17 17,948,475 17,948,475 28.85 1 7.82E-08 

HLA-C 6 31,237,124 31,239,827 28.36 1 1.01E-07 

ITIH4 3 52,852,538 52,861,211 27.21 1 1.83E-07 

HIST1H2BPS1 6 25,732,302 25,732,302 26.91 1 2.13E-07 

SYNGAP1 6 33,408,542 33,408,542 30.65 2 2.21E-07 

DRG2 17 18,011,140 18,011,140 25.51 1 4.40E-07 

SETD6 16 58,549,932 58,552,959 31.95 3 5.37E-07 

LRRC48 17 17,896,205 17,896,205 24.97 1 5.83E-07 

WBP2NL 22 42,416,056 42,423,110 24.71 1 6.66E-07 

DOC2A 16 30,021,402 30,021,402 24.27 1 8.38E-07 



MPHOSPH9 12 123,661,295 123,705,962 23.94 1 9.96E-07 

CHRNA5 15 78,880,752 78,882,925 27.43 2 1.11E-06 

DGKZ 11 46,387,868 46,387,868 23.56 1 1.21E-06 

ITIH1 3 52,820,981 52,821,011 26.99 2 1.38E-06 

SNX19 11 130,750,592 130,784,886 26.56 2 1.71E-06 

CPEB1 15 83,215,251 83,215,251 22.48 1 2.12E-06 

COBLL1 2 165,551,201 165,578,602 25.88 2 2.40E-06 

PITPNM2 12 123,471,094 123,519,112 21.88 1 2.90E-06 

PCDHA2 5 140,174,622 140,174,865 21.51 1 3.51E-06 

VRK2 2 58,316,814 58,316,814 21.34 1 3.84E-06 

NDUFA6 22 42,486,723 42,486,723 24.75 2 4.22E-06 

DNAJA3 16 4,476,089 4,484,396 24.48 2 4.83E-06 

GNL3 3 52,721,305 52,727,257 20.89 1 4.87E-06 

MOV10 1 113,237,171 113,241,052 24.43 2 4.96E-06 

ATXN7 3 63,898,497 63,982,082 24.17 2 5.66E-06 

SBNO1 12 123,806,219 123,806,219 20.37 1 6.38E-06 

SDCCAG8 1 243,493,907 243,493,907 20.14 1 7.18E-06 

ALMS1 2 73,651,967 73,828,538 23.19 2 9.21E-06 

PCNXL3 11 65,386,206 65,386,206 19.43 1 1.04E-05 

IRF3 19 50,162,909 50,162,909 19.30 1 1.11E-05 

DDHD2 8 38,095,662 38,095,662 18.88 1 1.39E-05 

OPRD1 1 29,138,975 29,138,975 18.56 1 1.64E-05 

RAI1 17 17,696,531 17,696,755 18.54 1 1.67E-05 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Canonical pathways for non-MHC genes which are enriched at a 0.05 

significance level. 

Pathway p-value 

Role of RIG1-like Receptors in Antiviral Innate Immunity 0.003 

p53 Signaling 0.01 

LXR/RXR Activation 0.02 

Granzyme A Signaling 0.04 

Glucocorticoid Biosynthesis 0.04 

RhoGDI Signaling 0.04 

NRF2-mediated Oxidative Stress Response 0.04 

Calcium Signaling 0.05 

Mitochondrial Dysfunction 0.05 

ERK/MAPK Signaling 0.05 

IL-15 Production 0.05 

Androgen Biosynthesis 0.05 

AMPK Signaling 0.05 
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