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Clarification of the motivation for the kinetic model in Eq (1)  
Eq. (1) represents the simplest kinetic scheme to describe the binding of a ligand to an IgG 
in solution. First an encounter complex is formed, which can either dissociate as the two 
reactants (IgG and antigen) diffuse away from one another, or become fixed as the ligand 
binds tightly to one of the IgG paratopes.  Furthermore, this model assumes that antigen 
binding is a quasi-irreversible process, i.e. the time scale associated with the spontaneous 
dissociation of the antigen-antibody complex is much longer than the rate of chemical 
fixation, in line with the high affinity of antigen-antibody binding in general [Kumagai2001].  
    Of course, the rate kD in eq. (1) should take into account the possibility that the 
encounter complex be formed with the antigen sitting at either paratope. In the case of a 
molecule carrying two binding sites at fixed distance this can be simply taken into account 
through a degeneracy factor of two. We argue that kD (and, more generally, k in eq. (2)) 
depend in fact on the actual configuration of the IgG. Our paper sets out to estimate this 
effect in the hypothesis that the time scale associated with large-scale conformational 
changes of an IgG molecules are much longer than the diffusive relaxation time of a small 
antigen ligand in solution.  
    More complex kinetic models involving multi-valent antigens (necessarily larger than 
what assumed in our paper) at an interface are well known in the literature (see e.g. the 
studies reported in Refs. [Sadana1997] and [Yang2003]). However, these kinetic 
schemes, besides being adapted to large antigens with multiple binding sites, assume that 
one of the reactants, either the antibody or the antigen, is immobilized on a surface, as it 
happens on surface-plasmon resonance experiments or in antibody-based biosensors.  
 
Conditions of validity of Eq. (2)  
Eq. (2) holds under quasi-stationary conditions (see for example [Houston2001]). The rate 
equations corresponding to the kinetic scheme (1) read 
 
          (i) 
 
 
         (ii) 
 
Under conditions of ligand excess, one can assume that a quasi-stationary state is quickly 
reached, where the encounter complex concentration [C*] stays practically constant. 
Letting   d[C*]/dt = 0 in eq. (i) above, one can compute [C*] as a function of the antibody 
and antigen concentrations, namely 
 
             (iii) 
 
Substituting expression (iii) in eq. (ii) and comparing with the rate equation corresponding 
to the kinetic model (2) in the main text, one immediately obtains the explicit expression for 
the effective rate k cited in the paper (immediately below eq. (2)). 
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A critical discussion of the assumption of frozen IgG conformations 
  
 

 

 

Figure 1. Schematic representation of the circular diffusional motion of a Fab arm bound to the Fc stem in an 
IgG (broken circle). The diffusion coefficient is proportional to the free rotational diffusion coefficient, with a 
proportionality constant that decreases with the Fab inclination [Iniesta1987].  
 
Our model assumes that the antigens diffuse sufficiently fast with respect to the typical 
time of large-scale conformational rearrangements of an IgG molecule. This problem might 
at first sight be attacked from the perspective of gated reactions (see for example 
[McCammon 2011]). However we find it a highly non-trivial task to model typical large-
scale conformational dynamics as a single gating rate. In order to provide an estimate of 
the maximum antigen size for which our theoretical treatment holds, we can instead 
proceed as follows.  
    We can model a Fab as a sphere of radius RFab tethered on the surface of a greater 
sphere, representing the Fc stem of the antibody molecule. Due to the great flexibility of 
the Fab-Fc link and to the large size of the Fab domain, we can assume that the typical 
time for such a Fab sphere to diffuse in a circular path on the Fc surface should provide a 
correct order of magnitude for the typical time scale of large-scale conformational re-
arrangements that we are seeking (see Fig. 1). We observe that such conformational 
dynamics is expected to be diffusive, due to the high flexibility of the hinge linker. 
Unfortunately, we cannot use our molecular dynamics scheme to extract the sought for 
time scale, as our simulations are conducted in vacuum. Therefore, we can employ our 
framework only to provide a correct sampling of the conformational ensemble (as it is 
shown in the paper by comparing to cryo-ET experiments). However, we cannot rely on 
the associated dynamics to estimate realistic time scales.  
   With reference to Fig. 1, the diffusion constant of a sphere tethered by a flexible linker on 
the surface of another sphere is given by [Iniesta1987], 
 
 
 
 
where the reduction factor f < 1 depends on the inclination of the Fab with respect to the 
Fc axis (see Fig. 1).  Taking the IgG to be in an average configuration at an inclination of 
about 45o yields f = 0.25 [Iniesta1987]. The figure of merit that quantifies the regime of 
validity of our model can be defined as the ratio Q between the time required for an antigen 
to diffuse across an IgG molecule and the time required for a Fab to diffuse along a semi-
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circular path on the Fc surface. Taking the RFc = 2RFab and taking the size of an IgG 
molecule to be one Fc diameter we get 
 
 
 
where aL is the radius of the ligand (antigen) molecule. Hence, we conclude that our theory 
is sound for antigens such that Q << 1, which translates approximately to aL << 5 nm, if we 
approximate one Fab with a sphere of radius RFab  = 5 nm. 
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