Supplementary Information

- 2
- 3 The Dendrobium catenatum Lindl. genome sequence
- 4 provides insights into polysaccharide synthase, floral
- 5 development and adaptive evolution
- 6

7	Guo-Qiang	Zhang ^{1*} ,	Qing Xu ^{2*} ,	, Chao Bian ^{3*}	, Wen-Chieh	Tsai ^{4, 5, 6*} ,	Chuan-Ming
---	-----------	-----------------------	-------------------------	---------------------------	-------------	----------------------------	------------

- 8 Yeh^{7*}, Ke-Wei Liu^{8*}, Kouki Yoshida^{9*}, Liang-Sheng Zhang^{10*}, Song-Bin Chang⁴,
- 9 Fei Chen¹¹, Yu Shi^{1, 12}, Yong-Yu Su^{1, 12}, Yong-Qiang Zhang¹, Li-Jun Chen¹, Yayi Yin¹,
- 10 Min Lin¹, Huixia Huang¹, Hua Deng¹³, Zhi-Wen Wang¹⁴, Shi-Lin Zhu¹⁴, Xiang
- 11 Zhao¹⁴, Cao Deng¹⁴, Shan-Ce Niu², Jie Huang¹, Meina Wang¹, Guo-Hui Liu¹,
- 12 Hai-Jun Yang^{1, 12}, Xin-Ju Xiao¹, Yu-Yun Hsiao⁵, Wan-Lin Wu^{1,5}, You-Yi Chen^{4, 5},
- 13 Nobutaka Mitsuda¹⁵, Masaru Ohme-Takagi^{7, 15}, Yi-Bo Luo^{2†}, Yves Van de Peer^{16,17,18†},
- 14 Zhong-Jian Liu^{1, 8, 12†}
- 15
- 16
- 17
- 18 *These authors contributed equally to this work.
- 19 Correspondence and requests for materials should be addressed to Z-J.L.
- 20 (liuzj@sinicaorchid.org), Y. V. d. P. (yves.vandepeer@psb.vib-ugent.be), Y-B.L.
- 21 (luoyb@ibcas.ac.cn).
- 22

1	Content
2	Supplementary Notes
3	Supplementary Note 1. Plant material5
4	Supplementary Note 2. Chromosome preparation5
5	Supplementary Note 3. Transposable element analysis6
6	Supplementary Note 4. Gene prediction6
7	Supplementary Note 5. Gene family annotation7
8	Supplementary Note 6. Collinearity identification and WGD time estimation
9	Supplementary Note 7. Proposed biosynthetic pathway of GM and GGM in D. catenatum stem
10	
11	Supplementary Figures 10
12	Supplementary Figure 1. Propidium iodide (PI) stained chromosomes at metaphase,
13	prometaphase and interphase stages10
14	Supplementary Figure 2. Estimation of genome size based on 17-mer distribution11
15	Supplementary Figure 3. Comparison of the lengths of scaffolds assembled using the
16	SOAPdenovo2 and Platanus software programs, respectively12
17	Supplementary Figure 4. Distribution of the sequencing depth of the assembled genome of D.
18	catenatum
19	Supplementary Figure 5. Distribution of divergence times for the complete long terminal
20	repeats (LTRs) in D. catenatum
21	Supplementary Figure 6. Gene models were supported by evidence from de novo prediction,
22	protein-based homology searches and RNA-seq data15
23	Supplementary Figure 7. Gene length distribution for seven plant species16
24	Supplementary Figure 8. Gene family expansion and contraction in different flowering plant
25	lineages, mapped on the phylogenetic tree of Figure 117
26	Supplementary Figure 9. Distribution of single nucleotide polymorphisms (SNPs) in the D.
27	catenatum genome
28	Supplementary Figure 10. Evolution of selected heat shock protein (Hsp) gene families19
29	Supplementary Figure 11. Comparison of distributions of D. catenatum and P. equestris
30	(modified from Cribb ¹⁹ and drawn by Li-Jun Chen using Photoshop 8.0.1 ²⁰)20
31	Supplementary Figure 12. Phylogenetic tree of CslA21
32	Supplementary Figure 13. Heat map showing the expression of CslA genes in four tissues of D.
33	catenatum
34	Supplementary Figure 14. The phylogenetic tree of CslD23
35	Supplementary Figure 15. Heat map showing the transcriptome expression of CslD genes in
36	four tissues of <i>D. catenatum</i> 24
37	Supplementary Figure 16. Expression levels of Arabidopsis CslA and CslD genes in response to
38	abiotic stresses
39	Supplementary Figure 17. Heat map showing the transcriptome expression of GH5 genes in
40	four tissues of <i>D. catenatum</i> 26
41	Supplementary Figure 18. The phylogenetic tree of <i>GH5</i> gene families27
42	Supplementary Figure 19. Expression levels of Arabidopsis and rice GH5 genes in response to
43	abiotic stresses
44	Supplementary Figure 20. Orthologous genes found in different plant species

-

1	Supplementary Figure 21. Venn diagram showing unique and shared gene families among
2	members of Orchidaceae, dicots and Poaceae, and M. acuminata and Ph. dactylifera
3	Supplementary Figure 22. Phylogenetic tree of Type II MADS-box genes from O. sativa (Os),
4	A. thaliana (At), P. equestris (PEQU) and D. catenatum (Dc)
5	Supplementary Figure 23. Phylogenetic tree of Type I MADS-box genes from O. sativa (Os),
6	A. thaliana (At), P. equestris (PEQU) and D. catenatum (Dc)
7	Supplementary Figure 24. Phylogenetic tree of Dendrobium based on nr ITS and plastid DNA
8	
9	Supplementary Figure 25. Pearson's correlation analysis between intron length and intronic TE
10	length for34
11	Supplementary Figure 26. Five-way Venn diagrams showing unique and shared gene families
12	among different plant species35
13	Supplementary Tables
14	Supplementary Table 1. Summary of data generated for the D. catenatum genome sequencing
15	with HiSeq 2000 ^a
16	Supplementary Table 2. Summary of the D. catenatum genome assembly with Platanus37
17	Supplementary Table 3. CEGMA evaluation for the completeness of the D. catenatum genome
18	assembly
19	Supplementary Table 4. Evaluation of the D. catenatum genome completeness using data set of
20	RNA transcripts
21	Supplementary Table 5. Statistics for repetitive elements in the D. catenatum genome
22	Supplementary Table 6. Gene models supported by differing evidence types
23	Supplementary Table 7. Statistics of gene element length for seven sequenced plant species42
24	Supplementary Table 8. Statistics for noncoding RNAs in D. catenatum
25	Supplementary Table 9. GO term enrichment results of significantly expanded gene families in
26	the <i>D. catenatum</i> lineage
27	Supplementary Table 10. KEGG pathway enrichment results for SNP-related genes
28	Supplementary Table 11. GO term enrichment results for SNP-related genes
29	Supplementary Table 12. Tandem duplicated genes in D. catenatum shown as gene pairs48
30	Supplementary Table 13. Tandem duplicated genes in P. equestris shown as gene pairs
31	Supplementary Table 14. List of the resistant genes of D. catenatum and P. equestris
32	Supplementary Table 15. Summary of orthologous gene families in 12 sequenced plant species
33	
34	Supplementary Table 16. List of the putative genes involved in GM/GGM synthesis and
35	hydrolysis in the <i>D. catenatum</i> genome
36	Supplementary Table 17. List of the 75 MADS-box genes identified in D. catenatum
37	Supplementary Table 18. Summary of the D. catenatum genome assembly obtained with
38	SOAPdenovo255
39	Supplementary Table 19. Statistics of annotation results from various prediction methods56
40	Supplementary Table 20. Statistics for gene function assignments from different databases 57
41	Supplementary Table 21. Enriched KEGG pathways for D. catenatum specific gene families.58
42	Supplementary Table 22. GO term enrichment results for Orchidaceae-specific gene families.59
43	Supplementary Table 23. KEGG pathway enrichment results for Orchidaceae-specific gene
44	families60

1	Supplementary Table 24. GO term enrichment results for monocot-specific gene families	61
2	Supplementary Table 25. KEGG pathway enrichment results for monocot-specific gene	
3	families	62
4	Supplementary Table 26. The sequences of konjac EST clones used in the CslA and CslD	
5	phylogenetic trees	63
6	Supplementary References	. 64
7		

1 Supplementary Notes

2 Supplementary Note 1. Plant material

Dendrobium catenatum is often confused with similar species such as D. scoriarum 3 W. W. Smith, D. moniliforme (Linnaeus) Swartz, D. huoshanense C. Z. Tang & S. J. 4 Cheng, and with many artificial hybrids that are cultured to produce health food^{1, 2}. 5 6 The closest sister species of *D. catenatum* is considered to be *D. scoriarum* (Supplementary Figure 24). Given that hybridisation is common in cultivation, to 7 ensure that a true *D*. *catenatum* and not a hybrid, such as *D*. *catenatum* $\times D$. 8 9 scoriarum, was used as material for genome sequencing, we collected plant samples 10 of D. catenatum from the wild as permitted by the Chinese Government, in 2010. We 11 collected wild plants from Guangnan in Yunnan, Xinning in Hunan and Langshan in 12 Hunan, China. The characteristics of the collected plants were consistent with those of D. catenatum as described in the Flora of China 25¹ and The Dendrobiums³, 13 14 morphologically confirming that our samples were indeed *D. catenatum*. We also 15 conducted molecular biological identification: nuclear and plastid markers were subjected to phylogenetic analysis, which suggested that the samples from all three 16 17 origins were the same species and were sisters to D. scoriarum, confirming at the molecular level that our samples were *D. catenatum* (Supplementary Figure 24). 18 The plants from Guangnan were used as material for genome sequencing. 19 20

21 Supplementary Note 2. Chromosome preparation

22 The newly growing root tips were excised and treated with 2 mM 8-

hydroxyquinolino for 3 h at 15 $^{\circ}$ C. The root tips were then fixed in freshly prepared

24 Carnoy's solution (3:1 (v/v) 95 % ethanol/glacial acetic acid) and stored at -20 °C. The

25 fixed material was washed with distilled water and digested with an enzyme mixture

containing 1% pectinase solution (Sigma), 1% pectolyase Y23 and 1% Cellulase RS

27 (Yakult) in 10mM citrate buffer (40 mM citric acid, 60 mM tri-sodium citrate, pH 4.5)

for 30–40 min. Next, we carefully rinsed fragile meristem with distilled water,

squashed in a drop of 45 % acetic acid and removed the coverslip after freezing in

liquid nitrogen. The slides were dried at 42°C and rinsed with Carnoy's solution and
95 % ethanol. Finally, chromosomes were stained with 10 µg/ml propidium iodide
(PI) of 15 µl VECTASHIELD® Mounting Media (Vector Laboratories, Burlingame,
United States) and chromosome morphology could be observed under the
fluorescence microscope (Nikon eclipse 80i). The images of chromosome
complements or interphase cells were captured with a CCD camera (Nikon DS Ri1)
and then analyzed with Nikon NIS-Elements software (Supplementary Figure 1).

9 Supplementary Note 3. Transposable element analysis

10 The percentage of genes lacking transposable elements (TEs) within introns was 13.69% for D. catenatum, which is lower than for banana (Musa acuminata; 65.45%), 11 12 date palm (Phoenix dactylifera; 58.74%), rice (Oryza sativa; 52.21%) and 13 Arabidopsis thaliana (90.10%). Given that this large proportion of TEs occurs in 14 combination with an extraordinary long average intron length, we hypothesised a 15 correlation between these parameters. A detailed distribution of the TE rate in introns (Supplementary Figure 5) also shows an extra peak of approximately 50% in the TE 16 17 ratio in the introns of *D. catenatum*, which is not present in other species. To explore how the accumulation of TEs affects the length of introns, we conducted a Pearson's 18 19 correlation analysis on four plant species (Supplementary Figure 25). We found that 20 the longer the average intron, the stronger the correlation between intron length and 21 intronic TE length, culminating in an almost complete correlation in *D. catenatum*. 22 Therefore, we conclude that the increased intron length observed in *D. catenatum* is 23 mainly the result of intronic TE insertion. We observed a higher-than-average percentage of transposable elements (TEs) in the genome of D. catenatum compared 24 to other plant species. This was shown (Supplementary Note 4 and Supplementary 25 **Table 7**) to cause the overall great intron length in the *D. catenatum* genome. 26 27

21

28 Supplementary Note 4. Gene prediction

29 MAKER⁵ was used to generate a consensus gene set based on *de novo* prediction,

homology annotation with CEGMA⁶ and other sequenced monocots, and RNA-seq 1 2 gene prediction. These results were integrated into a final set of 28,910 protein-coding genes for annotation (Supplementary Table 19). D. catenatum was found to have a 3 longer average gene length than most other sequenced plants, but similar to that of P. 4 equestris (Supplementary Figure 7 and Table 7), because both species have a long 5 6 average intron length. Therefore, this feature might be a unique characteristic of Orchidaceae. We were able to generate functional assignments for 83.15% of the D. 7 *catenatum* genes from at least one of the public protein databases (Supplementary 8 9 **Table 19**).

10

11 Supplementary Note 5. Gene family annotation

12 Gene family clustering was performed based on the set of 28,910 predicted genes 13 from D. catenatum with the protein-coding genes of seven other monocots (P. equestris, S. bicolor, B. distachyon, O. sativa, M. acuminata and Ph. dactylifera), 14 15 three dicots (*Po. trichocarpa*, *A. thaliana* and *V. vinifera*) and the outgroup *Am.* trichopoda. This analysis yielded 13,530 gene families in D. catenatum, containing 16 17 21,857 predicted genes (75.6% of the total genes identified; Supplementary Figure 20 and Supplementary Table 15). A four-way comparison of Orchidaceae, dicots, 18 19 Poaceae, *M. acuminata* and *Ph. dactylifera* (Supplementary Figure 21) uncovered 10,052 gene families to be shared by all species, with 2,859 gene families unique to 20 21 Orchidaceae, which is fewer than for the dicots (3,884) or Poaceae (5,668). Two five-22 way comparisons were also performed to show the number of species-specific gene 23 families, and also uncovered more gene families in Poaceae (Supplementary Figure 26). 24 For the D. catenatum-specific gene families, we conducted a GO/KEGG 25 enrichment analysis and found enrichment of the KEGG pathways 'Tyrosine 26 27 metabolism', 'Fatty acid metabolism' and 'Glycolysis/Gluconeogenesis'

28 (Supplementary Table 21). On further analysis of the Orchidaceae- and monocot-

29 specific gene families, Orchidaceae-specific gene families were found to be enriched

for GO terms associated with transcription (Supplementary Table 22) and the 1 2 pathways 'GPI-anchor biosynthesis' (Supplementary Table 23), whereas the monocot-specific gene families were enriched for the GO terms 'ADP binding,' 3 'defence response', 'solute:hydrogen antiporter activity', 'two-component response 4 regulator activity' and the KEGG pathways 'RNA polymerase', 'Pyrimidine 5 metabolism', 'Purine metabolism', 'Flavonoid biosynthesis' and 'Stilbenoid, 6 diarylheptanoid and gingerol biosynthesis' (Supplementary Tables 24 and 25). 7 We constructed a phylogenetic tree based on a concatenated sequence alignment of 8 9 677 single-copy gene families from *D. catenatum* and 11 other plant species by using PhyML⁷ software with Maximum Likelihood method (**Figure 1**). 10 11 Supplementary Note 6. Collinearity identification and WGD time estimation 12 A total of 14,289 D. catenatum genes reside on scaffolds of fewer than 20 genes, of 13 which approximately 4,982 genes are located on scaffolds with fewer than five genes; 14 15 all are of limited use for the intragenome detection of collinearity. Therefore, we believe the collinearity of the genome is likely to constitute a substantial 16

17 underestimate.

For every paralogue in the *D. catenatum* genome, we filtered out all of the tandem gene pairs and then calculated the K_s value for each pair. A correction was performed using the method described by Maere et al.⁹. Divergence time estimates were based on histogram peak K_s values of the youngest pairs and a molecular clock of λ =6.5 $\times 10^{-9}$ synonymous substitutions per site per year⁸.

23

Supplementary Note 7. Proposed biosynthetic pathway of GM and GGM in *D*. *catenatum* stem

The biosynthetic pathway we proposed for GM and GGM was modified from the one proposed for *Amorphophallus konjac*¹⁰. GM or GGM biosynthesis is generated from sucrose produced by photosynthesis in the *D. catenatum* leaf and/or stem. The enzymes indicated in red are highly expressed in the stems (**Figure 3**,

Supplementary Figure 16 and 19). The topology of Csl proteins is unknown. The 1 CslA and CslD enzymes may contain multiple transmembrane domains 2 (Supplementary Table 16) and probably have catalytic sites (indicated in pink) in 3 4 either cytosolic or the luminal side of Golgi membrane. In case the catalytic site is located in the Golgi apparatus, NDP-sugar transporters are necessary for the 5 transportation of NDP-sugars from the cytoplasm to the Golgi apparatus¹¹. There are 6 7 19 putative NDP-sugar transporter genes in the D. catenatum genome (Supplementary Table 16). The Glc and Man in GGM backbone can be modified 8 with galactose (Gal) side chains in α -1,6-linkage¹². In addition, GGM also contains 9 side branching points at the C6 position of $Glc^{13,14}$ or Man^{15} by β -1,6-linkage. 10 However, the glycosyltransferase (GT) family genes responsible for this branching 11 formation are still unknown. Furthermore, the O-2 positions of some Man of GGM 12 are modified with acetyl groups¹⁴ and Reduced Wall Acetylation (RWA) gene acts as a 13 probable acetyl-CoA transporter¹⁶. Three putative RWA genes were found in the D. 14 catenatum genome (Supplementary Table 16). This acetylation has been proved to 15 be essential for GGM medicinal activity in some *Dendrobium* species¹⁷. Mannan 16 synthesis-related (MSR) proteins have a single transmembrane domain and have been 17 demonstrated to be localized in the Golgi apparatus. It is involved in GM or mannan 18 synthesis in an unknown manner¹². A previous study hypothesized that MSR may be 19 involved in the synthesis of primer of GM, which is important for the initiation of GM 20 synthesis such as xylans, a hemicellulosic polysaccharide^{16, 18}. One *MSR* candidate 21 gene, highly expressed in stem, was isolated from the D. catenatum genome 22 (Supplementary Table 16). It would be interesting to know whether this MSR gene 23 also plays an important role in the biosynthesis of GM or GGM. 24

1 Supplementary Figures

2 3

4 Supplementary Figure 1. Propidium iodide (PI) stained chromosomes at

5 **metaphase, prometaphase and interphase stages.** A metaphase complement of 2n =

6 38 chromosomes (red pseudo-colored) with sizes of approximately 2 μ m (a). Small

7 dots (indicated only some by arrowheads) consistently showed constitutive

- 8 heterochromatin at prometaphase chromosomes (b and c) and interphase nuclei (c).
- 9 Bar represents 10 µm.

Supplementary Figure 2. Estimation of genome size based on 17-mer 2

distribution. The first peak appearing at 21 is caused by the high amount of 3

4 heterozygosity. Genome size can be estimated using the position of the second peak:

the total number of K-mers is 46,613,336,744, and the position of the second peak is 5

6 at 42; therefore, the genome size of *D. catenatum* is estimated to be 1,109,841,351

- (=46,613,336,744/42). 7
- 8

- 2 Supplementary Figure 3. Comparison of the lengths of scaffolds assembled using
- 3 the SOAPdenovo2 and Platanus software programs, respectively
- 4

- 2 Supplementary Figure 4. Distribution of the sequencing depth of the assembled
- 3 genome of *D. catenatum*. Mapping all of the paired-end reads to the assembly reveals
- 4 that 97% of the sequence has a coverage depth greater than five.

1 Supplementary Figure 5. Distribution of divergence times for the complete long

2 terminal repeats (LTRs) in *D. catenatum*. The results indicate that a burst of LTR

3 activity occurred during the last five million years. MYA, million years ago.

catenatum has, on average, longer genes than most other sequenced plant species.

⁵ See text for details.

3 flowering plant lineages, mapped on the phylogenetic tree of Figure 1. Expanded

4 gene families are shown in green, while contracted gene families are shown in red.

5 MRCA, most recent common ancestor.

6

1

2 Supplementary Figure 9. Distribution of single nucleotide polymorphisms (SNPs)

3 in the *D. catenatum* genome. The heterozygous SNP rate for the whole genome was

estimated at 6.28×10^{-3} , whereas the SNP rate in exons was estimated to be 4.98×10^{-3} .

5 Thousandths at each bar indicate the SNP ratio in each region.

2 Supplementary Figure 10. Evolution of selected heat shock protein (*Hsp*) gene

- **families.** Hsp70 gene products localizing in the cytoplasm have more members in *D*.
- *catenatum* than in *P. equestris* (11 vs. 3). Red branches represented Hsp genes of *D*.
- *catenatum* while blue branches represent *P. equestris.*

Supplementary Figure 11. Comparison of distributions of *D. catenatum* and *P.* 3

- equestris (modified from Cribb¹⁹ and drawn by Li-Jun Chen using Photoshop 8.0.1²⁰). 4
- D. catenatum is found in subtropical and temperate regions and has a much wider 5
- distribution than P. equestris. 6

1

2 Supplementary Figure 12. Phylogenetic tree of *CslA*. The AkCslA3 gene with

3 proved glucomannan synthase activity is indicated by a red arrowhead. The light and

4 deep blue triangles indicate rice (labeled LOC) and A. thaliana (AT), respectively. The

5 green and pink dots represent D. catenatum (Dca) and P. equestris (PEQU),

6 respectively. All sequences used here are longer than 200 amino acids. The konjac

7 EST sequences are provided in Supplementary Table 26. Bootstrap values are shown
8 on each branch.

- 2 Supplementary Figure 13. Heat map showing the expression of *CslA* genes in
- 3 four tissues of *D. catenatum*. Genes shown in dark cyan are highly expressed, genes
- 4 shown in light cyan are lowly expressed.

1

2 Supplementary Figure 14. The phylogenetic tree of *CslD*. The konjac putative CslD genes (EST clones) were included to search orthologues in the D. catenatum 3 genome. The konjac sequences were labeled by red arrowheads. The light and deep 4 blue triangles indicate rice (labeled LOC) and A. thaliana (AT), respectively. The 5 green and pink dots represent D. catenatum (Dca) and P. equestris (PEQU). The 6 sequences used here are longer than 150 amino acids. The konjac EST sequences 7 were provided in **Supplementary Table 26**. Bootstrap values were shown on each 8 branch. 9

3 Supplementary Figure 15. Heat map showing the transcriptome expression of

CslD genes in four tissues of *D. catenatum*. Genes shown in dark cyan are high-

5 expressed, in contrast, light cyan represent that these genes are low-expressed.

Supplementary Figure 16. Expression levels of Arabidopsis *CslA* and *CslD* genes in response to abiotic stresses. The microarray data were from the study performed by Kilian et al.²¹. The expression levels of *CslA7* (a), *CslA10* (b), *CslD2* (c) and *CslD3* (d) under cold, osmotic, salt and drought stresses were retrieved from the Arabidopsis eFP Browser²² (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). The color scale bar in each image shows the absolute expression levels for the individual gene. (We acknowledge the permission of Professor Nicholas Provart to use the images.)

3 Supplementary Figure 17. Heat map showing the transcriptome expression of

- 4 GH5 genes in four tissues of D. catenatum. Genes shown in dark cyan are high-
- 5 expressed, in contrast, light cyan represent that these genes are low-expressed.
- 6

3 Supplementary Figure 18. The phylogenetic tree of GH5 gene families. The GH5

genes of barley (HvMAN1) and tomato (LeMAN2 and LeMAN4) with proved 4

mannanase activities were included and labeled by red arrowhead. The subclade 5

containing these mannanase genes was indicated by red color. The light and deep blue 6

7 triangles indicate rice (labeled LOC) and A. thaliana (AT), respectively. The green

and pink dots represent D. catenatum (Dca) and P. equestris (PEQU). The sequences 8

9 used here are longer than 200 amino acids. Bootstrap values were shown on each

10 branch.

33 Supplementary Figure 19. Expression levels of Arabidopsis and rice *GH5* genes

34 **in response to abiotic stresses.** The microarray data of Arabidopsis and rice were

35 obtained from Kilian *et al.*²¹ and Jain *et al.*²³, respectively. Expression levels of

AtMAN1 (a) and Os03g61280 (b) under cold, osmotic, salt and drought stresses were

37 retrieved from the Arabidopsis eFP Browser²² (http://bar.utoronto.ca/efp/cgi-

38 bin/efpWeb.cgi) and Rice eFP Browser (http://bar.utoronto.ca/efprice/cgi-

39 bin/efpWeb.cgi). The color scale bar in each image shows the absolute expression

40 level for each individual gene. (We acknowledge the permission of Professor Nicholas

41 Provart to use the images.)

Supplementary Figure 20. Orthologous genes found in different plant species.
Core-multi: genes that have orthologues in all other species and might have
paralogues in other species. Core-single copy: genes that have orthologues in all
other species and no other paralogues. Thus these genes are single copy in all species.
Unique: Unique gene family for this particular species. Other orthologues: genes are
not included in the other mentioned categories. Unclustered genes: genes that are
unclustered into any family.

Number of gene families

2 Supplementary Figure 21. Venn diagram showing unique and shared gene

3 families among members of Orchidaceae, dicots and Poaceae, and M. acuminata

4 and *Ph. dactylifera*. Numbers represent total shared or unique families. A total of

5 10,052 families were found in all categories. Comparison of the four categories

6 revealed that 2,859 gene families were unique to Orchidaceae and 5,668 were unique

- 7 to Poaceae. Note: when a gene family was found in only one species of a category, we
- 8 considered the family to be specific to that category.

1

3 Supplementary Figure 22. Phylogenetic tree of Type II MADS-box genes from

- 4 O. sativa (Os), A. thaliana (At), P. equestris (PEQU) and D. catenatum (Dc).
- 5 Phylogenetic analysis indicates that most type II MADS-box genes have duplications
- 6 in *D. catenatum*, except for those in the B-PI clade. Among these clades, *ANR1*,
- 7 StMADS11, MIKC*, and Bs contain more members than in P. equestris. Both P.
- 8 equestris and D. catenatum lost members in the FLC, AGL12, and AGL15 clades.

Supplementary Figure 23. Phylogenetic tree of Type I MADS-box genes from *O*. *sativa* (Os), *A. thaliana* (At), *P. equestris* (PEQU) and *D. catenatum* (Dc). The results
indicate that *ANR1* (with three members), *StMADS11* (three members), *MIKC** (three
members), and *Bs* (two members) contain more members than in *P. equestris* (two
members in *ANR1* and one member in other three clades, respectively). Both P.
equestris and *D. catenatum* lost members in the Mβ clades. 28 Type I MADS-box genes
including 15 Mα and 13 Mγ members exist in the *D. catenatum* genome.

2 Supplementary Figure 24. Phylogenetic tree of *Dendrobium* based on nr ITS and

- 3 **plastid DNA.** Phylogenetic analysis indicates that *D. catenatum* is sister to *D.*
- 4 *scoriarum* and is an independent species. Numbers at nodes indicate Bayesian
- 5 posterior probabilities and bootstrap values. "-" indicates that a node receives weak
- 6 (<50) support in both ML and MP analyses.
- 7

Supplementary Figure 25. Pearson's correlation analysis between intron length and intronic TE length for *Arabidopsis thaliana* (a), *Phoenix dactylifera* (b), *Musa acuminate* (c), *Dendrobium catenatum* (d). The results show that the longer the average intron, the stronger the correlation between intron length and intronic TE length, leading to an almost complete correlation in *D. catenatum*.

1 Supplementary Tables

2 Supplementary Table 1. Summary of data generated for the *D. catenatum*

3 genome sequencing with HiSeq 2000^a

Insert size (bp)	Read type	Total data (Gb)	Sequence depth (X)
180	PE 100 bp	35.95	32.68
500	PE 90 bp	53.72	48.84
800	PE 100 bp	25.70	23.36
2000	MP 100 bp	30.95	28.14
5000	MP 100 bp	23.39	21.26
10,000	MP 90 bp	3.69	3.35
20,000	MP 90 bp	2.26	2.06
Total		175.66	159.69

4 ^aPE, paired-end; MP, mate-pair.

1 Supplementary Table 2. Summary of the *D. catenatum* genome assembly with

2 Platanus

	Scaffold	Number	Contig	Number
	Length (bp)		Length (bp)	
Max length	2,592,627		288,536	
N10	1,139,106	70	87,703	847
N20	830,336	175	64,976	2,132
N30	636,735	315	51,190	3,801
N40	497,537	494	41,112	5,886
N50	391,462	723	33,094	8,479
N60	294,893	1,019	25,946	11,739
N70	210,351	1,424	19,133	16,018
N80	119,683	2,049	12,484	22,153
N90	15,394	3,978	5,113	33,556
Total_length	1,008,546,262		955,235,028	
number>=500 bp		72,903		105,732
number>=2000 bp		14,450		45,850
GC ratio	0.327		0.346	

3

1 Supplementary Table 3. CEGMA evaluation for the completeness of the *D*.

catenatum genome assembly

-	Number	Completeness	Total	Average	Orthology (%)
		(%)			
Complete	231	93.15	346	1.50	32.47
Group 1	60	90.91	81	1.35	21.67
Group 2	52	92.86	78	1.50	32.69
Group 3	58	95.08	84	1.45	31.03
Group 4	61	93.85	103	1.69	44.26
Partial	242	97.58	405	1.67	39.26
Group 1	63	95.45	88	1.40	23.81
Group 2	54	96.43	92	1.70	40.74
Group 3	60	98.36	97	1.62	36.67
Group 4	65	100.00	128	1.97	55.38

1 Supplementary Table 4. Evaluation of the *D. catenatum* genome completeness

2 using data set of RNA transcripts

Data set	Number	Total length	Covered by assembly	With >90% sequence in one scaffold		Covered byWith >90% sequenceWith >50% sequenceassemblyin one scaffoldone scaffold		% sequence in scaffold
			(%)	Number	Percentage	Number	Percentage	
>200 bp	32,571	40,232,920	93.43	26,109	80.16	29,428	90.35	
>500 bp	24,054	37,553,793	94.31	19,655	81.71	22,606	93.98	
>1,000 bp	16,529	31,953,475	94.70	13,438	81.30	15,671	94.80	

3

1 Supplementary Table 5. Statistics for repetitive elements in the *D. catenatum*

2 genome^a

3
-

	RepBase TEs		TE Proteins De novo		Combined TEs		Es	
	Length (bp)	% in Genome	Length (bp)	% in Genome	Length (bp)	% in Genome	Length (bp)	% in Genome
DNA	14,119,342	1.20	12,286,880	1.05	60,007,381	5.11	71,186,132	6.06
LINE	33,207,011	2.83	76,796,121	6.53	140,798,500	11.98	169,998,018	14.46
SINE	80,012	0.01	0	0.00	1,392,811	0.12	1,457,837	0.12
LTR	105,535,338	8.98	130,748,856	11.12	526,202,517	44.77	537,358,505	45.72
Other	9,456	0.00	0	0.00	0	0.00	9,456	0.00
Unknown	62,119	0.01	0	0.00	29,518,345	2.51	29,579,608	2.52
Total	154,558,706	13.15	219,581,674	18.68	740,790,020	63.02	788,949,662	67.12

⁴ ^aRepbase transposable elements (TEs): the result of RepeatMasker based on Repbase;

5 TE proteins: the result of RepeatProteinMask based on Repbase; *De novo*: repeats

6 found with the *de novo* library; Combined: combined results of the Repbase TEs, TE

7 proteins and *De novo* repeats.

	>=20% Overlap		>=50%	>=50% Overlap		>=80% Overlap	
	No.	Ratio (%)	No.	Ratio (%)	No.	Ratio (%)	
De novo (single)*	2,350	8.13	3,616	12.51	5,464	18.9	
De novo (more)**	820	2.84	753	2.6	712	2.46	
Homologue (single)	1,273	4.4	1,095	3.79	969	3.35	
Homologue (more)	515	1.78	598	2.07	781	2.7	
RNA	1,288	4.46	1,562	5.4	2,804	9.7	
D+H	7,043	24.36	5,925	20.49	3,879	13.42	
D+R	1,215	4.2	1,644	5.69	2,982	10.31	
H+R	664	2.3	1,168	4.04	2,375	8.22	
D+H+R	13,638	47.17	12,062	41.72	7,743	26.78	

1 Supplementary Table 6. Gene models supported by differing evidence types

2 *(single) indicates that the genes were predicted by only one annotation method.

3 **(more) indicates that the genes were annotated by at least two methods.

1 Supplementary Table 7. Statistics of gene element length for seven sequenced

2 plant species

		Average	Average	Average	Average	Average
Spacing	Protein-coding	gene	CDS	exon	exon	intron
Species	gene number	length	length	per	length	length
		(bp)	(bp)	gene	(bp)	(bp)
D. catenatum	28,910	10,192.33	1002.25	4.13	242.77	2575.18
P. equestris	29,431	9644.63	897.62	3.93	228.27	2922.24
Z. mays	38,510	3965.59	1101.62	4.54	242.75	637.83
S. bicolor	27,159	2942.10	1261.01	4.85	259.90	436.44
O. sativa	40,745	2439.30	1117.21	4.18	266.99	415.17
Phy. heterocycla	31,987	4244.98	1210.22	5.28	229.03	440.95
A. thaliana	26,637	1909.57	1242.78	5.23	237.50	157.54

Type of 1	noncoding	Сору	Average length	Total length	% of
DNA		number	(bp)	(bp)	genome
miRNA		49	125.02	6,126	0.00052
tRNA		310	75.35	23,357	0.00199
	rRNA	248	235.25	58,342	0.00496
	18S	107	390.24	41,756	0.00355
rΡNΔ	28S	26	146.85	3,818	0.00033
110102.1	5.8S	14	147.57	2,066	0.00018
	5S	101	105.96	10,702	0.00091
	snRNA	144	117.74	16,955	0.00144
	CD-box	34	108.65	3,694	0.00031
snRNA	HACA-	1	166.00	166	0.00001
51111111	splicing	109	120.14	13,095	0.00111
	scaRNA	0	0.00	0	0.00000

1 Supplementary Table 8. Statistics for noncoding RNAs in *D. catenatum*

1 Supplementary Table 9. GO term enrichment results of significantly expanded

GO ID	GO Term	Class	P-value	Adjusted <i>P</i> -value
GO:0015074	DNA integration	BP	2.03E-216	3.76E-214
GO:0006259	DNA metabolic process	BP	2.64E-181	4.89E-179
GO:0090304	Nucleic acid metabolic process	BP	3.13E-92	5.79E-90
GO:0003964	RNA-directed DNA polymerase	MF	1.06E-70	1.96E-68
	activity			
GO:0006278	RNA-dependent DNA replication	BP	1.06E-70	1.96E-68
GO:0006952	Defence response	BP	3.48E-57	6.43E-55
GO:0043531	ADP binding	MF	1.92E-55	3.56E-53
GO:0003723	RNA binding	MF	9.04E-40	1.67E-37
GO:0043170	Macromolecule metabolic process	BP	1.90E-38	3.51E-36
GO:0044260	Cellular macromolecule metabolic	BP	2.49E-37	4.60E-35
	process			
GO:0006950	Response to stress	BP	5.26E-28	9.74E-26
GO:0004523	Ribonuclease H activity	MF	4.05E-25	7.49E-23
GO:0003676	Nucleic acid binding	MF	5.27E-23	9.76E-21
GO:0044238	Primary metabolic process	BP	5.45E-23	1.01E-20
GO:0016772	Transferase activity, transferring	MF	1.13E-13	2.10E-11
	phosphorus-containing groups			
GO:0004190	Aspartic-type endopeptidase	MF	1.23E-12	2.27E-10
	activity			
GO:0046983	Protein dimerisation activity	MF	1.06E-11	1.96E-09
GO:0034645	Cellular macromolecule	BP	3.07E-10	5.68E-08
	biosynthetic process			
GO:0008152	Metabolic process	BP	5.77E-10	1.07E-07
GO:0008270	Zinc ion binding	MF	1.67E-06	0.00030842
GO:0016740	Transferase activity	MF	7.92E-06	0.00146498
GO:0016788	Hydrolase activity, acting on ester	MF	5.57E-05	0.01029978
	bonds			
GO:0009616	Virus-induced gene silencing	BP	0.0001058	0.01958041
GO:0005488	Binding	MF	0.0001069	0.01976832

2 gene families in the *D. catenatum* lineage

3

1 Supplementary Table 10. KEGG pathway enrichment results for SNP-related

2 genes

Map ID	Map title	P-value	Adjusted P-value	
map01110	Biosynthesis of secondary	3.34E-08	4.27E-06	
imporrio	metabolites			
map04075	Plant hormone signal transduction	7.00E-07	8.97E-05	
map01100	Metabolic pathways	2.03E-05	0.002604	
map00943	Isoflavonoid biosynthesis	0.000167	0.021423	

3

GO_ID	GO_Term	Class	P value	Adjusted P value	GO level
GO:0005488	Binding	MF	1.72E-34	4.52E-31	2
GO:0003824	Catalytic activity	MF	1.31E-33	3.42E-30	2
GO:0005515	Protein binding	MF	1.94E-24	5.08E-21	3
GO:0008152	Metabolic process	BP	6.34E-18	1.66E-14	2
GO:0030554	Adenyl nucleotide binding	MF	4.04E-16	1.06E-12	6
GO:0032559	Adenyl ribonucleotide binding	MF	1.42E-15	3.72E-12	7
GO:0005524	ATP binding	MF	3.82E-15	1.00E-11	8
GO:0016740	Transferase activity	MF	4.68E-15	1.23E-11	3
GO:0004713	Protein tyrosine kinase activity	MF	4.49E-13	1.18E-09	7
GO:0016773	Phosphotransferase activity, alcohol group as acceptor	MF	4.49E-12	1.18E-08	5
GO:0000166	Nucleotide binding	MF	1.42E-11	3.72E-08	4
GO:0036094	Small molecule binding	MF	1.62E-11	4.25E-08	3
GO:0046914	Transition metal ion binding	MF	2.45E-11	6.41E-08	6
GO:0016301	Kinase activity	MF	2.96E-11	7.75E-08	5
GO:0016310	Phosphorylation	BP	4.58E-11	1.20E-07	6
GO:0006468	Protein phosphorylation	BP	5.36E-11	1.41E-07	6
GO:0004672	Protein kinase activity	MF	5.89E-11	1.54E-07	6
GO:0017076	Purine nucleotide binding	MF	2.07E-10	5.42E-07	5
GO:0006796	Phosphate-containing compound metabolic process	BP	5.28E-10	1.38E-06	5
GO:0032555	Purine ribonucleotide binding	MF	5.36E-10	1.40E-06	6
GO:0016787	Hydrolase activity	MF	5.76E-10	1.51E-06	3
GO:0043412	Macromolecule modification	BP	6.15E-10	1.61E-06	4
GO:0006464	Protein modification process	BP	6.47E-10	1.69E-06	5
GO:0055114	Oxidation-reduction process	BP	1.13E-09	2.97E-06	3
GO:0035639	Purine ribonucleoside triphosphate binding	MF	1.87E-09	4.91E-06	7
GO:0046872	Metal ion binding	MF	3.71E-09	9.73E-06	5
GO:0043169	Cation binding	MF	4.47E-09	1.17E-05	4
GO:0016705	Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen	MF	6.20E-09	1.62E-05	4
GO:0016772	transferring phosphorus- containing groups	MF	1.72E-08	4.51E-05	4
GO:0016491	Oxidoreductase activity	MF	2.45E-08	6.41E-05	3
GO:0005506	Iron ion binding	MF	4.39E-08	0.000115	7
GO:0044238	Primary metabolic process	BP	1.52E-07	0.000397	3

1 Supplementary Table 11. GO term enrichment results for SNP-related genes

GO:0020037	Heme binding	MF	4.55E-07	0.001193	4
GO:0046906	Tetrapyrrole binding	MF	5.91E-07	0.001549	3
GO:0043086	Negative regulation of catalytic activity	BP	6.66E-07	0.001745	5
GO:0042802	Identical protein binding	MF	9.41E-07	0.002466	4
GO:0016798	Hydrolase activity, acting on glycosyl bonds	MF	1.25E-06	0.003269	4
GO:0043170	Macromolecule metabolic process	BP	1.34E-06	0.003503	3
GO:0019222	Regulation of metabolic process	BP	1.53E-06	0.003998	3
GO:0008017	Microtubule binding	MF	2.18E-06	0.005704	б
GO:0006950	Response to stress	BP	2.61E-06	0.006825	3
GO:0070011	Peptidase activity, acting on L- amino acid peptides	MF	7.18E-06	0.018805	5
GO:0006508	Proteolysis	BP	8.11E-06	0.021247	5
GO:0008233	Peptidase activity	MF	8.49E-06	0.022255	4
GO:0004553	Hydrolase activity, hydrolysing O-glycosyl compounds	MF	8.61E-06	0.02256	5

- 1 Supplementary Table 12. Tandem duplicated genes in *D. catenatum* shown as
- 2 gene pairs
- 3 See separate Excel file.
- 4
- 5 Supplementary Table 13. Tandem duplicated genes in *P. equestris* shown as gene
- 6 pairs
- 7 See separate Excel file.
- 8
- 9

- 1 Supplementary Table 14. List of the resistant genes of *D. catenatum* and *P.*
- 2 equestris

	D. catenatum	P. equestris
CC_NBS	14	7
CC_NBS_LRR	13	8
NBS_LRR	47	17
NBS	83	47

1 Supplementary Table 15. Summary of orthologous gene families in 12 sequenced

2 plant species

3										
Species ^a	Genes	Unclu	Genes in	Family	Unique	Unique	Common	Common	Single	Average
		stered	families	number	families	families	families	families	сору	genes per
		genes				genes		genes		family
A. thaliana	26,637	3,614	23,023	12,517	741	2,844	5,238	9,921	677	1.839
Am. trichopoda	25,933	7,247	18,686	12,149	996	4,388	5,238	7,108	677	1.538
B. distachyon	26,415	3,555	22,860	14,987	386	1,133	5,238	9,447	677	1.525
D. catenatum	28,910	7,053	21,857	13,530	629	2,533	5,238	8,381	677	1.615
M. acuminata	34,241	8,632	25,609	12,497	540	1,361	5238	13,165	677	2.049
O. sativa	35,402	10,699	24,703	16,056	972	2,616	5,238	9,305	677	1.539
Ph. dactylifera	23,890	6,280	17,610	10,660	428	1,339	5,238	8,958	677	1.652
P. equestris	29,431	7,955	21,476	13,617	621	2,799	5,238	8,167	677	1.577
Po. trichocarpa	40,984	7,544	33,440	14,122	1,200	3,843	5,238	13,929	677	2.368
S. bicolor	27,160	3,661	23,499	15,306	338	929	5,238	9,645	677	1.535
Sp. polyrrhiza	18,357	5,076	13,281	9,942	260	781	5,238	7,044	677	1.336
V. vinifera	25,328	6,007	19,321	12,551	617	1,797	5,238	8,711	677	1.539

4 ^a, unique families, families only contained in one species.

1 Supplementary Table 16. List of the putative genes involved in GM/GGM

2 synthesis and hydrolysis in the *D. catenatum* genome

~	
3	
·	

Function	Gene ID	Name	Protein	Phylogenetic	Signal	TMD	Sequence
			length (aa)	classification	peptide		type
Nucleotide-sugar	Dca005389	DcaNST/TPT1	349	Ia: URGT ^{*1}	No	10	Full
transport	Dca012954	DcaNST/TPT2	340	Ia: URGT	No	10	Full
	Dca021203	DcaNST/TPT3	348	Ia: URGT	No	10	Full
	Dca005907	DcaNST/TPT4	332	Ib: URGT	No	10	Full
	Dca016070	DcaNST/TPT5	335	Ib: URGT	No	10	Full
	Dca017392	DcaNST/TPT6	349	Ic: unknown	No	10	Full
	Dca024394	DcaNST/TPT7	352	Ic: unknown	No	10	Full
	Dca002549	DcaNST/TPT8	343	II: UTR ^{*2}	No	8	Full
	Dca010609	DcaNST/TPT9	332	II: UTR	No	9	Full
	Dca005243	DcaNST/TPT10	403	III: GONST ^{*3}	No	9	Full
	Dca001640	DcaNST/TPT11	378	III: GONST	No	10	Full
	Dca006839	DcaNST/TPT12	404	III: UTR	No	9	Full
	Dca008480	DcaNST/TPT13	430	III: GONST	No	10	Full
	Dca017354	DcaNST/TPT14	350	III: GONST	No	10	Full
	Dca006012	DcaNST/TPT15	381	V: unknown	No	10	Full
	Dca011003	DcaNST/TPT16	339	V: GONST	No	9	Full
	Dca019884	DcaNST/TPT17	356	V: unknown	No	10	Full
	Dca013292	DcaNST/TPT18	356	VI: unknown	No	10	Full
	Dca015521	DcaNST/TPT19	318	VI: unknown	No	10	Full
GM/GGM backbone	Dca005598	DcaCslA1	536	GT2 family CslA	No	5	Full
synthesis	Dca006365	DcaCslA2	499	GT2 family CslA	Yes	5	Full
	Dca006366	DcaCslA3	522	GT2 family CslA	No	5	Full
	Dca006368	DcaCslA4	588	GT2 family CslA	Yes	5	Full
	Dca007032	DcaCslA5	556	GT2 family CslA	No	5	Full
	Dca007033	DcaCslA6	302	GT2 family CslA	No	4	Fragment
	Dca007034	DcaCslA7	564	GT2 family CslA	No	6	Full
	Dca007035	DcaCslA8	599	GT2 family CslA	Yes	5	Full
	Dca008185	DcaCslA9	528	GT2 family CslA	No	5	Full
	Dca013434	DcaCslA10	550	GT2 family CslA	No	5	Full
	Dca013437	DcaCslA11	549	GT2 family CslA	No	5	Full
	Dca018319	DcaCslA12	227	GT2 family CslA	No	0	Fragment
	Dca022357	DcaCslA13	543	GT2 family CslA	No	5	Full
	Dca000406	DcaCslD1	581	GT2 family CslD	No	6	Fragment
	Dca000653	DcaCslD2	215	GT2 family CslD	No	0	Fragment
	Dca000880	DcaCslD3	1153	GT2 family CslD	No	8	Full
	Dca008382	DcaCslD4	1215	GT2 family CslD	No	7	Full
	Dca011977	DcaCslD5	1150	GT2 family CslD	Yes	7	Full

	Dca012337	DcaCslD6	980	GT2 family CslD	No	7	Fragment
	Dca018361	DcaCslD7	383	GT2 family CslD	No	0	Fragment
	Dca019887	DcaCslD8	1172	GT2 family CslD	No	7	Full
	Dca024133	DcaCslD9	1140	GT2 family CslD	No	7	Full
Mannan- synthesis	Dca004648	Dca MSR1	413	O-FucT ^{*4}	No	1	Full
related							
Acetylation	Dca002655	DcaRWA1	546	Acetyl-CoA T ^{*5}	No	14	Full
	Dca004270	DcaRWA2	545	Acetyl-CoA T	No	14	Full
	Dca014073	DcaRWA3	545	Acetyl-CoA T	No	14	Full
GM/GGM endolytic	Dca005404	DcaGH5-1	469	Mannase	No	1	Full
hydrolysis	Dca007362	DcaGH5-2	432	Mannase	Yes	0	Full
	Dca012577	DcaGH5-3	461	Mannase	Yes	0	Full
	Dca014087	DcaGH5-4	421	Mannase	Yes	0	Full
	Dca014977	DcaGH5-5	411	Mannase	Yes	0	Full
	Dca015452	DcaGH5-6	429	Mannase	Yes	0	Full
	Dca018119	DcaGH5-7	445	Mannase	No	1	Full
	Dca019242	DcaGH5-8	442	Mannase	Yes	0	Full
	Dca019243	DcaGH5-9	439	Mannase	Yes	0	Full
	Dca027272	DcaGH5-10	236	Mannase	No	0	Fragment
	Dca002938	DcaGH5-11	549	Cellulase	Yes	0	Full
	Dca025213	DcaGH5-12	524	Cellulase	Yes	0	Full
	Dca005521	DcaGH5-13	300	Unknown	No	0	Fragment
	Dca018566	DcaGH5-14	426	Unknown	No	1	Fragment

1 The prediction of signal peptide and transmembrane domain (TMD) was performed by Phobius

2 (http://phobius. sbc.su.se/). The Nucleotide sugar transporter/triosephosphate translocator family

3 (NST/TPT) genes were divided into six groups based on the classification by Rautengarten et al.

4 ²⁴. URGT: UDP-rhamnose/UDP-galactose transporter^{*1}. UTR: UDP-galactose/UDP-glucose

5 transporter^{*2}. GONST: Golgi-localised nucleotide-sugar transporter^{*3}. GDP-fucose protein O-

6 fucosyltransferase^{*4}. Acetyl-CoA T: acetyl-CoA transporter^{*5}.

1 Supplementary Table 17. List of the 75 MADS-box genes identified in *D*.

2 catenatum

Gene ID	Name	ORF	Protein length (22)	Туре	Subfamily	Pseudogene
Dca006090	DcMADS1	201	96	MIKC	Be	(,)
Dca006092	DeMADS2	687	228		Bs	
Dca021261	DCMADS2	741	226	MIKC	D3 F	
Dca021201	DcMADS3	762	253	MIKC	SOUA	
Dca01/289	DcMADS5	702	253	Type I	Ma	
Dca014283	DcMADS5	192	148	MIKC ^c		\checkmark
Dea012372	DcMADS7	255	84	MIKC	C/D	·
Dca012374	DcMADS8	753	250		SOC1	
Dea002134		579	192	MIKC	ANR 1	
Dea002134	DeMADS10	624	207		AND 1	1
Dca002135		024 051	207	MIKC	ANR 1	
$D_{ca002130}$	DeMADS12	228	75	MIKC	Re	\checkmark
$D_{ca} 01/821$	DeMADS12	220 186	7 <i>5</i> 61	MIKC		
Dea014621	DeMADS13	555	194	Turna I	AGLO	v
Dea0022131	DeMADS14	555	104			
Dea003941	DeMADS15	075	224	Tuno I	D_AP3	
Dea002732	DCMADS10	1039	332		Γ	
Dca003023	DCMADS17	135	244		E	
Dca003026	DCMADS18	68/ 952	228		SQUA	/
Dca003027	DCMADS19	852	283	MIKC	SQUA	v
Dca028043	DCMADS20	459	152	MIKC		
Dca000690	DCMADS21	633	210	MIKC	B_bl	
Dca02/568	DcMADS22	621	206	Type I	Μα	
Dca014095	DcMADS23	708	235	Type I	Μα	
Dca018107	DcMADS24	579	192	MIKC	OsMADS32	
Dca027941	DcMADS25	678	225	Type I	Μα	
Dca011228	DcMADS26	354	117		E	
Dca003978	DcMADS27	750	249	Type I	Μγ	,
Dca000888	DcMADS28	561	186	MIKC ^c	AGL6	\checkmark
Dca000889	DcMADS29	483	160	MIKC ^c	AGL6	
Dca019204	DcMADS30	1191	396	Type I	Μα	
Dca019205	DcMADS31	726	241	Type I	Μα	
Dca013716	DcMADS32	687	228	MIKC ^c	StMADS11	
Dca018192	DcMADS33	657	218	MIKC ^c	B_AP3	
Dca028556	DcMADS34	594	197	Type I	Μγ	
Dca022563	DcMADS35	771	256	Type I	Μγ	
Dca018025	DcMADS36	747	248	Type I	Μγ	
Dca016199	DcMADS37	840	279	MIKC*		
Dca016201	DcMADS38	930	309	$MIKC^*$		

Dca014620	DcMADS39	642	213	MIKC ^c	SOC1	
Dca022549	DcMADS40	957	318	Type I	Μγ	
Dca019113	DcMADS41	642	213	MIKC ^c	B_AP3	
Dca017703	DcMADS42	366	121	MIKC ^c	SQUA	
Dca012304	DcMADS43	687	228	MIKC ^c	StMADS11	
Dca000568	DcMADS44	534	177	Type I	Μγ	
Dca006211	DcMADS45	693	230	Type I	Μα	
Dca024877	DcMADS46	690	229	MIKC ^c	StMADS11	
Dca021832	DcMADS47	447	148	Type I	Μα	
Dca021833	DcMADS48	435	144	Type I	Μα	
Dca021834	DcMADS49	159	52	Type I	Μα	\checkmark
Dca021835	DcMADS50	306	101	Type I	Μα	
Dca025806	DcMADS51	891	296	Type I	Μγ	
Dca007552	DcMADS52	348	115	Type I	Μα	
Dca000972	DcMADS53	858	285	Type I	Μγ	
Dca007676	DcMADS54	903	300	Type I	Μγ	
Dca007911	DcMADS55	228	75	MIKC ^c	AGL6	\checkmark
Dca007912	DcMADS56	831	276	MIKC ^c	SOC1	\checkmark
Dca006775	DcMADS57	708	235	Type I	Μα	
Dca006778	DcMADS58	405	134	Type I	Μα	
Dca018003	DcMADS59	696	231	MIKC ^c	ANR1	
Dca002059	DcMADS60	738	245	MIKC ^c	SQUA	
Dca003078	DcMADS61	672	223	MIKC ^c	C/D	
Dca005316	DcMADS62	903	300	Type I	Μγ	
Dca018065	DcMADS63	732	243	MIKC ^c	E	
Dca016730	DcMADS64	732	243	MIKC ^c	E	
Dca016731	DcMADS65	213	70	MIKC ^c	E	\checkmark
Dca019717	DcMADS66	594	197	Type I	Μγ	
Dca012472	DcMADS67	669	222	MIKC ^c	B_AP3	
Dca025329	DcMADS68	321	106	Type I	Μγ	
Dca027465	DcMADS69	186	61	MIKC*		\checkmark
Dca027466	DcMADS70	219	72	MIKC^*		\checkmark
Dca016433	DcMADS71	534	177	Type I	Μα	
Dca100001	DcMADS72	702	233	MIKC ^c	C/D	
Dca100002	DcMADS73	705	234	MIKC ^c	C/D	
Dca100003	DcMADS74	720	239	MIKC ^c	AGL6	
Dca100004	DcMADS75	750	249	MIKC ^c	AGL6	

 \checkmark , represents this gene has been confirmed to be a pseudogene.

1 Supplementary Table 18. Summary of the *D. catenatum* genome assembly

2 obtained with SOAPdenovo2

	Scaffol	d	Contig	
	Length (bp)	Number	Length (bp)	Number
Max length	877,183		91,298	
N10	244,122	385	19,843	3,963
N20	176,768	1,007	14,350	10,171
N30	136,595	1,823	11,014	18,435
N40	104,922	2,881	8,603	29,087
N50	80,559	4,262	6,641	42,800
N60	59,509	6,092	5,024	60,690
N70	40,171	8,668	3,589	84,991
N80	22,185	12,879	2,267	121,038
N90	7,287	22,166	1,085	186,167
Total_length	1,266,461,387		1,034,236,810	
number>=200 bp		152,316		399,107
number>=2000				
bp		35,958		131,334
GC ratio	0.283		0.344	

3

1 Supplementary Table 19. Statistics of annotation results from various prediction

2 methods

Gene set		Protein coding gene	Average gene length	Average CDS length	Average exon per	Average exon length	Average intron length
		number	(nh)	(bb)	gene	(nh)	(up)
De novo	AUGUSTUS ¹³	59,666	6528.212	722.50	3.12	231.56	2738.46
	Glimmer ¹⁴	47,655	16276.84	647.25	4.12	157.28	5017.17
Homologue	A. thaliana	24,593	6369.03	814.76	3.51	232.20	2213.81
	O. sativa	28,882	5892.98	781.940	3.25	240.49	2270.06
	P. equestris	41,596	4580.33	682.28	2.84	240.34	2119.88
	S. bicolor	26,286	6001.77	788.92	3.42	230.64	2153.53
	Z. mays	26,959	5701.55	764.15	3.30	231.56	2146.65
RN	JA-seq	24,626	12326.16	1114.50	4.40	253.05	2443.94
M	AKER	30,791	10254.91	989.99	4.25	232.98	2628.63
Fii	nal set	28,910	10192.33	1002.25	4.13	242.77	2575.18

3

- 1 Supplementary Table 20. Statistics for gene function assignments from different
- 2 databases

		Number	Percent (%)
Total		28,910	
Annotated	InterPro	18,700	64.68
	GO	13,436	46.48
	KEGG	14,826	51.28
	SwissProt	15,730	54.41
	TrEMBL	24,040	83.15
Unannotated		4,791	16.57

1 Supplementary Table 21. Enriched KEGG pathways for *D. catenatum* specific

2 gene families

Map ID	Map Title	<i>P</i> -value	Adjusted <i>P</i> -value
map00350	Tyrosine metabolism	1.98E-09	1.23E-07
map00071	Fatty acid metabolism	1.12E-08	6.93E-07
map00010	Glycolysis / Gluconeogenesis	4.10E-05	0.002542
map00563	Glycosylphosphatidylinositol	0.000236	0.014633
	(GPI)-anchor biosynthesis		

3

1 Supplementary Table 22. GO term enrichment results for Orchidaceae-specific

2 gene families.

GO_ID	GO_Term	Class	<i>P</i> -value	Adjusted P-value
GO:0003682	Chromatin binding	MF	1.08E-07	6.96E-05
GO:0006355	Regulation of transcription, DNA-	BP	4.77E-06	0.003067
	dependent			
GO:0010468	Regulation of gene expression	BP	8.86E-06	0.005698
GO:0019219	Regulation of nucleobase-	BP	1.43E-05	0.009205
	containing compound metabolic			
	process			
GO:0003700	Sequence-specific DNA binding	MF	3.07E-05	0.019718
	transcription factor activity			
GO:0003677	DNA binding	MF	5.50E-05	0.035343

3

- 1 Supplementary Table 23. KEGG pathway enrichment results for Orchidaceae-
- 2 specific gene families

Map ID	Map Title	<i>P</i> -value	Adjusted <i>P</i> -value
map00563	Glycosylphosphatidylinositol	0.000242	0.020111
	(GPI)-anchor biosynthesis		

1 Supplementary Table 24. GO term enrichment results for monocot-specific gene

2 families

GOID	GO Term	Class	<i>P</i> -value	Adjusted P-value
GO:0043531	ADP binding	MF	6.35E-17	6.61E-15
GO:0006952	Defence response	BP	2.05E-15	2.13E-13
GO:0050896	Response to stimulus	BP	2.99E-11	3.11E-09
GO:0015299	Solute:hydrogen antiporter activity	MF	1.93E-05	0.002005
GO:0000156	Two-component response regulator	MF	3.31E-05	0.003442
	activity			
GO:0000160	Two-component signal transduction	BP	7.74E-05	0.008047
	system (phosphorelay)			

3

1 Supplementary Table 25. KEGG pathway enrichment results for monocot-

Map ID	Map Title	<i>P</i> -value	Adjusted P-value
map03020	RNA polymerase	1.51E-12	1.51E-11
map00240	Pyrimidine metabolism	1.05E-10	1.05E-09
map00230	Purine metabolism	2.56E-10	2.56E-09
map00941	Flavonoid biosynthesis	0.001048	0.010484
map00945	Stilbenoid, diarylheptanoid and gingerol	0.00191	0.019102
	biosynthesis		

2 specific gene families

1 Supplementary Table 26. The sequences of konjac EST clones used in the *CslA*

2 and *CslD* phylogenetic trees

CslA	AkEST1	TFFHSDTFLFLTISHHHLPEQVCRPAGPPMLLIAICFVRAWQLIFNLEVTDVDELPALEAGSDG
		QIHVLHGGPILPPSRLIQRRDPPHSGRSVEAKEGVGGGAYFLLHGEVVVQGHFLYPSHQALV
		RVHEPPAGLDEGDVGVEGEEGDGAPEEVGLRLEVGVEDGHVVAVPDVAALHPLLEGARLVP
		$eq:loss_loss_loss_loss_loss_loss_loss_loss$
		${\tt LVVRSGIWTRTMGYAELPISTSSLMGSHLVPPLRPPAKELDEEDDDAHVHTLHEQHQRHGQA}$
		QHHGTRSRGTMTGARTCCHTSPICPARSSRPPLGMPPAAGSSTRGAPSCTAPHARRRPTTGPE
		PAGLRLLCLSCVRFRPPPLFLILVRFSSVLHLSFYVRKNS
	AkEST2	RRKGSRSCRCGEGLCHLLASSSFGKIIAHIVTFIFYCVVIPITVFVPEVEIPKWGAIYIPSVITLL
		NAVGTPRSIHLLVFWILFENVMSVHRTKATFIGLLEAGRVNEWVVTEKLGDALKAKAAAAA
		$\label{eq:stress} ASVNNNKASKKPPPRFRIGDRLHVLELGVGAFLFFCACYDVAFGKNHFFIYLFLQASFAFVV$
		VWCRESVDXXRSAXSXRDAYYEYVVRRRRTTYT
	AkEST3	$\label{eq:log_lambda} LPDLVLDVDPLARPPLALHLHQVLDNGVGGVIKDLNYDAIGRPGQPTCSANGELVHLLLVV$
		${\tt HGGFGRGPVGYAELPISTSSLMGSHLYRLSGRRPKSLTRSDDDAHRTHATDEQHQRHRTRH}$
		STTATRSEGTMTGARTCCHTSPISPGHGSSRPPSELASGQPGSSTERRSILHRSPRPSPTHHRSRPSPTHRSRPSPTHHRSRPSPTHRSPTHR
		TRGLPPPLFILCSFSAPLPCF
CslD	AkEST1	TGSLAVPREPLDAAIVAEAISVISCFYEDKTEWGRRVGWIYGSVTEDVVTGYRMHNRGWRS
		$\label{eq:constraint} VYCVTKRDAFRGTAPINLTDRLHQVLRWATGSVEIFFSRNNALFASRRMKFLQRVAYFNVGM$
		$\label{eq:construct} YPFTSIFLIVYCTLPAMSLFSGKFIVQSLSVMFLTFLLVITITLCLLAILEIRWSGITLHDWWRNE TO THE STATE STATE$
		$\label{eq:construction} QFWLIGGTSAHPAAVLQGLLKVIAGVDISFTLTSKPATDDNDDAFAELYVVKWSFLMVPPITI$
		MMINMIAIAVGVARTS
	AkEST2	KRHCTMASNNALKTSRSARLASSPSSLSASDVRPSVAGPLRPTVTFGRRTSSGRYVSYSRDDLIGTER STARLASSPSSLSASDVRPSVAGPLRPTVTFGRRTSSGRYVSYSRDDLIGTER STARLASSPSSLSASDVRPSVAGPLRPTVTFGRRTSSGRYVSTARLASSPSSLSASDVRPSVAGPLRPTVTFGRRTSSGRYVSTARLASSPSSLSASDVRPTVTFGRRTSSGRYVSTARLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPTVTFGRRTSSGRYVSTARLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSLSASDVRPSVAGPLASSPSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSSLSASDVRPSVAGPLASSPSLSTASDVRPSVAGPLASSPSLSASDVRPSVAGPTASSPSLSASDVRPSVASDVASSPSLSVASDVAGPLASSPSLSASDVRPSVASSPSLSASDVRP
		${\tt DSELGSGEFASYHVHIPATPDNQPAETAPVDTSISARVEEQYVSNSLFTGGFNSVTRAHLMDK}$
		VIESEASHPQMAGAKGSSCAIPGCGARVMSDERGNDILPCECDFKICAECFADAVKGGEGVC
		eq:pgckepykstdmdevvnnagrpalslppppagmtkmerrlslmrsakltrsqtgdfdhnr
		WLFETKGTYGYGNAFWPKENGGGSDGGSSSGNGQPSELMSKPWRPLTRKLKIPAAILSPYR
		$eq:list_list_list_list_list_list_list_list_$
		$\label{eq:vlkekfeap} VLKEKFEAPGAHNPTGKSDLPGIDVFVSTADPEKEPPLVTANTILSILAADYPVEKLACYVSD$
		$\label{eq:dggalltfeam} DGGALLTFEAMAEAASFANTWVPFCRKHDIEPRNPESYFSLKKDPYKNKLRPDFVKDRRRV$
		KREYDEFKVRINGLPDSIRRRSDAYHAREEIKAMKLQRETAGDEPLESVKIPKATWMADGTHFPROFILESVKIPKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATWFPROFILESVKATATTATTATATATATATATATATATATATATATATAT
		WPGTWTIPSAEHSRGDHAGIIQVMLKPPSDVPLHGDSDEARLLDLSDVDIRLPMLVYVSREK
		RPGYDHNKKAGAMNALVRASAIMSNGPFILNLDCDHYIYNSQALREGMCFMMDRGGDRIC
		${\tt YVQFPQRFEGIDPSDRYANNNTVFFDVNMRALDGLQGPVYVGTGCLFRRIALYGFDPPRSKD}$
		HSPGCCSCCFPRSRKGLVAXXXXXXXXXXXGDELINISQEIWKLKHAH
	AkEST3	QFWLIGGTSAHLAAVLQGLLKVIAGIEISFTLTSKSAGDDVDDEFADLYVVKWTSLMIPPITIIF
		VNIIAIAVGFSRTIYSELPQWSRLLGGVXXXXVLAHLYPFAKGLMGRRGRTPTIVFVWSGLIAI
		TISLLWVAIKPPSGASQIGGSFTFP

1 Supplementary References

2	1.	Wu, Z., Raven, P. H. & Hong, D. ed. Flora of China 25, Orchidaceae (Beijing:
3		Science Press & St. Louis: Missouri Botanical Garden Press. 2009).
4	2.	Liu, Z. J. et al. Recent developments in the study of rapid propagation of
5		Dendrobium catenatum Lindl. with a discussion on its scientific and Chinese
6		names. Plant Sci. J. 29 (6): 763-772 (2011).
7	3.	Wood, H. P. The Dendrobiums (A. R. G. Gantner Verlag Ruggell/Liechtenstein.
8		2006).
9	4.	Kapitonov, V. V. & Jurka, J. A universal classification of eukaryotic transposable
10		elements implemented in Repbase. Nat. Rev. Genet. 9, 411-412; author reply 414
11		(2008).
12	5.	Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database
13		management tool for second-generation genome projects. BMC Bioinformatics
14		12 , 491 (2011).
15	6.	Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core
16		genes in eukaryotic genomes. Bioinformatics 23, 1061-1067 (2007).
17	7.	Guindon, s. et al. New algorithms and methods to estimate maximum-likelihood
18		phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 58, 307-321
19		(2010).
20	8.	Gaut, B. S., Morton, B. R., McCaig, B. C. & Clegg, M. T. Substitution rate
21		comparisons between grasses and palms: synonymous rate differences at the
22		nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl
23		Acad. Sci. USA 93, 10274–10279 (1996).
24	9.	Maere, S. et al. Modeling gene and genome duplications in eukaryotes. Proc.
25		Natl Acad. Sci. USA 102, 5454–5459 (2005).
26	10.	Gille, S. et al. Deep sequencing of voodoo lily (Amorphophallus konjac): an
27		approach to identify relevant genes involved in the synthesis of the hemicellulose
28		glucomannan. Planta 234, 515-526 (2011).

1	11.	Reyes, F. & Orellana, A. Golgi transporters: opening the gate to cell wall
2		polysaccharide biosynthesis. Curr. Opin. Plant Biol. 11, 244-251 (2008).
3	12.	Xing, X. et al. A review of isolation process, structural characteristics, and
4		bioactivities of water-soluble polysaccharides from Dendrobium plants.
5		Bioactive Carbohydrates and Dietary Fibre 1, 131–147 (2013).
6	13.	Katsuraya, K.et al. Constitution of konjac glucomannan: chemical analysis and
7		¹³ C NMR spectroscopy, <i>Carbohydr. Polym.</i> 53 , 183–189 (2003).
8	14.	Wang, J.H., Zha, X.Q., Luo, J.P. & Yang, X.F. An acetylated
9		galactomannoglucan from the stems of Dendrobium nobile Lindl. Carbohydr.
10		<i>Res.</i> 345 , 1023–1027 (2010).
11	15.	Vieira, M.C. & Gil A.M. A solid state NMR study of locust bean gum
12		galactomannan and Konjac glucomannan gels. Carbohydr. Polym. 60, 439-448
13		(2005).
14	16.	Rennie E.A & Scheller H.V. Xylan biosynthesis. Curr. Opin. Biotechnol. 26,
15		100–107 (2014).
16	17.	Hsieh, Y.S. et al. Structure and bioactivity of the polysaccharides in medicinal
17		plant Dendrobium huoshanense. Bioorgan. Med. Chem. 16, 6054–6058 (2008).
18	18.	Wang, Y., Mortimer, J.C., Davis, J., Dupree, P. & Keegstra, K. Identification of
19		an additional protein involved in mannan biosynthesis. Plant J. 73, 105–117
20		(2013).
21	19.	Cribb P.J. The Genus Paphiopedilum, 2nd edn. Natural History Publications,
22		Kota Kinabalu and Kew (1998).
23	20.	URL: http://www.photoshop.com/
24	21.	Kilian, J. et al. The AtGenExpress global stress expression data set: protocols,
25		evaluation and model data analysis of UV-B light, drought and cold stress
26		responses. Plant Journal 50 (2), 347-363 (2007).
27	22.	Winter, D. et al. An "Electronic Fluorescent Pictograph" browser for exploring
28		and analyzing large-scale biological data sets. PLoS ONE 2(8), e718 (2007).
29	23.	Jain, M. et al. F-box proteins in rice. Genome-wide analysis, classification,

1	temporal and spatial gene expression during panicle and seed development, and
2	regulation by light and abiotic stress. Plant Physiology 143(4), 1467–1483
3	(2007).
4	24. Rautengarten, C. et al. The Golgi localized bifunctional UDP-rhamnose/UDP-
5	galactose transporter family of Arabidopsis. Proc. Natl Acad. Sci. USA 111(31),
6	11563–11568 (2014).