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A Posterior
The posterior distribution given the model (1), (2), the priors (3) and data
Y is

π(Θ|Y,x)

∝

 J∏
j=1

nj∏
i=1

|Σjxij |−1/2 exp

(
−1

2
(Yij − µjxij )

>Σ−1
jxij

(Yij − µjxij )

)
πjxij

 ·
 J∏

j=1

K∏
k=1

π
ajk
jk |Σθk |−

1
2 exp

(
−1

2
(µjk − θk)

>Σ−1
θk

(µjk − θk)

)

|Σjk|−
νk+d+1

2 |Ψk|
νk
2

2
νkd

2 Γd(
νk
2 )

exp
(
−tr(ΨkΣ

−1
jk )/2

) ·
(

K∏
k=1

exp

(
−1

2
(θk − tk)

>S−1
k (θk − tk)

)
|Ψk|

nΨk
−d−1

2 exp
(
−tr(H−1

k Ψk)/2
)

|Σθk |−
nθk

2 exp
(
−tr(QkΣ

−1
θk

)/2
)

exp(−λkνk)
)
. (1)

B Sampling from the posterior distribution
We use a Markov Chain Monte Carlo (MCMC) algorithm to generate samples
from the posterior distribution of the parameters [1]. In each iteration we
draw a value of each of the parameters Θ and of x. The backbone of our
algorithm is a Gibbs sampler, but we need a Metropolis-Hastings step to
sample νk. We also use Metropolis-Hastings steps to enable label-switching—
which improves the mixing of the Gibbs sampler—and to turn on and off
mixture components in the extended model with absent clusters.

In a Gibbs sampler samples from the full posterior distribution is obtained
by successively sampling from the conditional posterior distributions of each
of the variables given all other variables. First we sample the component
assigment variables, x, fixing all other parameters. The posterior from which
we sample is a multinomial distribution with

π(xij = k| . . .) ∝ N(Yij;µjk,Σjk)πjk∑K
h=0N(Yij;µjh,Σjh)πjh

,
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where ‘. . .’ denotes conditioning on all parameter except the one of interest.
Let njk denote the number of i such that xij = k and let Y.jk denote

the vector joining all Yij such that xij = k. The following Gibbs steps are
derived from the posterior distribution (1)

πj| . . . ∼ D(a+ nj1, . . . , a+ njK), (2)
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Here NC denotes the canonical parameterization of the normal distribution,
which means that if x ∼ NC(b,Q), then π(x) ∝ exp

(
−1

2
x>Qx + b>x

)
.

To handle the non-standard conditional distribution of νk, we utilize a
Metropolis-Hastings (MH) algorithm. A proposal ν∗k is generated by sampling
ν∗k ∼ νk+Z, where Z is uniformly distributed on {−r,−r+1, . . . , r} for some
r ∈ N+. Hence the transition density q(νk, ν∗k) = q(νk|ν∗k) is constant on its
support. The proposed ν∗k is accepted with probability
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where π(νk) denotes the posterior distribution of νk given all other parameters
and data. Using (1) we get that

α(νk, ν
∗
k) = min

(
1,

J∏
j=1

Γd(
νk
2

)

Γd(
ν∗k
2

)

(
2d|Σjk||Ψk|−1

) νk−ν∗k
2 exp (λk(ν

∗
k − νk))

)
.

3



If ν∗k is accepted it will be the new sample, otherwise the new sample will be
νk. The parameter r is updated adaptively to get a desired acceptance rate
of 0.3, according to an algorithm by Roberts and Rosenthal [2].

B.1 Label switching

An issue that frequently occurs, especially with poor starting values, is that a
cluster {µjk1

,Σjk1 , πjk1} is incorrectly assigned to the latent cluster k1 when it
clearly should belong to k2. When the number cells is large the first row of (1)
will dominate the posterior so that {µjk1

,Σjk1 , πjk1} or {µjk2
,Σjk2 , πjk2} does

not change much at all in the updating step and thus in practice the clusters
will never move close enough to each other in order to switch locations.

To remedy this issue, we introduce an extra MH step where labels can be
switched between clusters in each sample j in each iteration. The proposed
MH algorithm has a symmetric transition kernel, where two labels k1 and k2

are sampled from {1, . . . , K} with equal probability. The proposed switch is
accepted with probability

α(k1, k2) = min

(
1,
π(µjk2 |θk1 ,Σθk1

)π(µjk1|θk2 ,Σθk2
)

π(µjk1|θk1 ,Σθk1
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)

π(Σjk1|Ψk2 , νk2)π(Σjk2|Ψk1 , νk1)

π(Σjk1|Ψk1 , νk1)π(Σjk2|Ψk2 , νk2)

)
. (3)

B.2 Cluster activation and deactivation

In the extended model where components can be absent in some samples we
use a reversible jump MH-algorithm [3] to enable changes to the dimension
of the model. We use the indicator variable Zj to keep track of which com-
ponents that are active; Zjk = 1 if component k is active in sample j and
Zjk = 0 otherwise.

Activation or deactivation is proposed as the last step of each iteration
of the MCMC algorithm. Throughout the activation/deactivation step the
component assignment variables xij are integrated out of the posterior.

A deactivation of an active component is proposed with probability pd and
an activation of a component that is not active is proposed with probability
pa. The component that is proposed to be deactivated/activated is chosen
randomly among the clusters that are active or not active respectively with
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equal probability. The probability of proposing to deactivate component k
in sample j is

q(Zjk = 1→ 0) =
pd∑K
l=1 Zjl

.

The probability of proposing to activate component k in sample j is

q(Zjk = 0→ 1) =
pa

K −∑K
l=1 Zjl

.

If an activation step is proposed it is necessary to generate parameters
for the new component; they are obtained in the following way:

π∗jk ∼ Beta(α, β),

µ∗jk ∼ N(θk,Σθk),

Σ∗jk ∼ IW (Ψk, νk).

Here α and β is chosen so that the probability π∗jk is typically close to zero.
The transition density qkj(µ

∗
jk,Σ

∗
jk, π

∗
jk) is the joint density of these new

parameters when they are sampled as above. For the remaining components
we keep the mean and covariance parameters, µ∗jl = µjl and Σ∗jl = Σjl for
l 6= k, but the probabilities πj have to be modified. In the reversible jump
algorithm this is done in a dimension matching transform. When activating
a cluster we set π∗jl = (1 − π∗jk)πjl for l 6= k in the transform and when
deactivating a cluster we set π∗jl = πjl/(1− πjk) for l 6= k.

In order to make the Markov chain reversible it is necessary to add the
Jacobian of the variable change in the dimension matching transform as a
factor in the acceptance probability. Let Θ∗ denote the set of parameters in
the proposed model and let Θ denote the set of current parameters. In an
activation step we get [4]∣∣∣∣∣ ∂(Θ∗)

∂
(
Θ, π∗jk,µ

∗
jk,Σ

∗
jk

)∣∣∣∣∣ = (1− π∗jk)
∑K
l=1 Zjl ,

and in a deactivation step the Jacobian is the inverse.
We are now ready to define the acceptance probability for a proposed

Θ∗ which implies activation of component k in sample j. The acceptance
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probability equals
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where π(Θ∗|Y) is the posterior distribution (1) with xij integrated out. This
can be written as
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The acceptance probability for a deactivation step is obtained from the same
expression but with inverse ratio.

When we extend the model and introduce Zj the posterior changes so
that the sampling of the other variables has to be modified. As an example
the conditional distribution of Ψk changes to

W

(Hk +
J∑
h=1

ZhkΣ
−1
jk

)−1

, ν∗ + νk

J∑
h=1

Zhk

 .

We do not display all the changes since they are notationally complicated
but otherwise straightforward, except for the label switching step. Suppose
we propose to change k1 to k2 where k1 is an inactive cluster. Then the
acceptance probability (3) changes to

α(k1, k2) = min

(
1,
π(µjk2

|θk1 ,Σθk1
)π(Σjk2|Ψk1 , νk1)

π(µjk2
|θk2 ,Σµk2

)π(Σjk2|Ψk2 , νk2)

)
. (5)

C Merging latent clusters
The merging of latent clusters is done in a hierarchical fashion. In each step
we have a number of latent super clusters comprising of one or more latent
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clusters. The corresponding super components in each sample are mixtures
of Gaussians, a representation which is hard to work with. It is useful to
instead use the data perspective, i.e. to consider the soft clustering of the
data induced by the GMM of each sample.

For each sample we define super cluster k from the probabilities for each
of the data points in that sample to belong to any of the components linked
to the latent super cluster k. We denote cluster k in sample j by Γk,j =
(Yij, wijk)

nj
i=1, where wijk is the probability that Yij belongs to super cluster

k. The parameter wijk can be estimated from the sampling of xij.
To determine candidates for the subsequent merger, Bhattacharyya dis-

tance is computed between all pairs of current clusters in each sample. To do
this we approximate each Γk,j with a Gaussian distribution with parameters

µ(kj) =

nj∑
i=1

wijkYij, Σ(kj) =

nj∑
i=1

wijk(Yij − µ(kj))(Yij − µ(kj))>

and use formula (4), so

dbhat(Γk,j,Γl,j) = 1/8 · (µ(kj) − µ(lj))>Σ̄
−1

(µ(kj) − µ(lj))

+ 1/2 · log

(
|Σ̄|/

√
|Σ(kj)||Σ(lj)|

)
,

where Σ̄ = (Σ(kj) + Σ(lj))/2. The candidates for the subsequent merger are
the pair of clusters (k, l)—which among those pairs who have not previously
been evaluated for merging—has highest minimal value of exp(−dbhat(Γkj,Γlj))
across samples j. It is natural to consider exp(−dbhat) instead of dbhat when
comparing Bhattacharyya distances since exp(−dbhat) is an upper bound of
the misclassification probability between the components [5].

If minj(exp(−dbhat(Γkj,Γlj))) > h1 latent clusters k and l are immediately
merged. On the other hand, if h1 > minj(exp(−dbhat(Γkj,Γlj))) > h2, they
are merged only if the resulting cluster does not have sufficient evidence of
being multimodal. Finally, if minj(exp(−dbhat(Γkj,Γlj))) < h2 they are not
merged and the procedure is stopped.

To evaluate multimodality of potential mergers we apply Hartigan’s dip
test of unimodality [6] to the projection of the merged cluster onto the coordi-
nate axes which have 1-dimensional Bhattacharyya overlap below a threshold
h(1) and to the projection onto Fisher’s discriminant coordinate separating
the two clusters, namely u = (Σ(kj) + Σlj)−1(µ(kj) − µ(lj)) [7]. Hartigan’s
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dip statistic is computed from the empirical distribution function, which can
readily be computed for these soft clusters from (Yij, wijk)

nj
i=1. If for any of

the projections in any of the samples where the total weight of the cluster∑nj
i wijk is at least 10, we get a p-value below the threshold hd we do not

merge.
To determine the thresholds h1, h2 and hd we use results from two exper-

iments performed by Hennig [8]. Synthetic data were generated from distri-
butions which naturally represent a single cluster and a number of Gaussian
components were fitted to the data. For different criteria, threshold values
for merging the components to one cluster in 95% of the cases, were then
reported. The experiments were performed over a range of different dimen-
sions and number of data points. To determine h1, h2 and hd, we consider
only results for distributions of dimension two to five and for at least 100
and at most 500 points, since for most of the flow cytometry samples in the
data sets studied in Section a small cluster containing 1% of the data points
would have about 100–200 data points.

In the first experiment two components were fitted to data generated from
a unimodal mixture of two Gaussian distributions with the property that if
the means were further apart the density would be bimodal. In the second
experiment six Gaussian components were fitted to data generated from uni-
form distributions on hypercubes. The merging of the six components were
made in a hierarchical procedure similar to ours.

When Bhattacharyya distance was used as merging criterion the thresh-
old for exp(−dbhat) varied between 0.40 and 0.53 for the relevant 2- and
5-dimensional data sets in the first experiment. For the second experiment
we considered four combinations of dimension and number of data points and
for these the thresholds were 0.12, 0.17, 0.01 and 0.11 respectively. This lead
us to use h1 = 0.47 as the soft threshold and h2 = 0.08 as the soft threshold.

Hartigan’s dip test was also evaluated as a criterion for merging, but only
the first of the experiments is relevant for our use of it, since we only use the
dip test to evaluate proposed mergers and not select candidates for merging.
Only projections onto Fisher’s discriminant coordinate were considered in
the experiment. The threshold for the p-value varied between 0.15 and 0.41,
so we chose hd = 0.28. It should be noted that this cannot be translated into
a significance level since the tests are done in a data-dependent way.

The threshold h(1) was set based on the results in the first experiment for
one-dimensional data sets. For data sets with 50 data points, the threshold
for exp(−dbhat) was 0.201, for data sets with 200 points it was 0.39 and for
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data sets with 500 data points it was 0.49. Therefore we let h(1) be dependent
on the weight of the cluster in the following way:

h(1)(w) =


0.201 if w ≤ 50

0.390 if 50 < w ≤ 200

0.490 if w > 200.

D Simulation study

D.1 Data generation

In this section the method for generating the small synthetic dataset is pre-
sented. The Additional file article_simulatedata.py contains the method
for generating the large synthetic dataset. The four latent means are

θ1 = [0, 0, 0], θ2 = [0,−2, 1], θ3 = [1, 2, 0], θ4 = [−2, 2, 1.5].

Each µjk in the simulation is generated by

µjk = θk + Zjk, k = 1, 2, 3, 4

Zjk ∼ N(0,Σµk),

where

Σµ1 =

1.27 0.25 0
0.25 0.27 −0.001

0 −0.001 0.001

 , Σµ2 =

 0.06 0.04 −0.03
0.04 0.05 0
−0.03 0. 0.09

 ,
Σµ3 =

0.44 0.08 0.08
0.08 0.16 0
0.08 0 0.16

 , Σµ4 = 0.01I.

The covariance matrices are generated through

Σjk ∼ IW ((νk − 3)Ψk, νk), k = 1, 2, 3, 4,

where

Ψ1 = 0.1I, Ψ2 = 0.1

2.0 0.5 0
0.5 2.0 0.5
0 0.5 2.0

 ,
Ψ3 = 0.1

 2.0 −0.5 1.0
−0.5 2.0 −0.5
1.0 −0.5 2.0

 , Ψ4 = 0.1

1.0 0.3 0.3
0.3 1.0 0.3
0.3 0.3 1.0

 ,
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and νk = 100 for all k. Finally, πj = [0.49, 0.3, 0.2, 0.01] if all clusters are
present. If one or two clusters are not present the ratio of the probabilities
for the present clusters remains the same.

D.2 Priors

The priors are set to represent non informative priors; the priors are set equal
for all classes. The exact values are:

Sk = 106Id, tk = 0,

Hk = 10−6Id, nψk = d,

Qk = 10−6Id, nθk = d,

lk = 0.01,

for k = 1, 2, 3, K with K = 4 for the small dataset and K = 11 for the
large dataset. For the small dataset the outlier component was not used for
inference.

D.3 Initialization for small dataset

Before running the MCMC sampler to get samples from the posterior distri-
bution, we utilize the following initialization to get suitable initial parameter
values. First we set all mean parameters µjk and θk to 0 and all covariance
and precision matrices Σjk, Σθk and Ψk to I. Then after letting the MCMC
sampler run for 5000 iterations, without the option of turning off components,
we link all the components across samples through the following procedure:

1. The first sample is left unchanged.

2. For the second sample the components are first sorted by π2, so we get
ordered components (µ2(i),Σ2(i), π2(i)) for i = 1, 2, 3, 4, where π2(1) ≥
π2(2) ≥ π2(3) ≥ π2(4). Then the first component (µ2(1),Σ2(1), π2(1)) is
matched to the component k whose mean µ1k is closest to µ2(1). If for
example we have that µ13 is closest to µ2(1) we set (µ23,Σ23, π23) =
(µ2(1),Σ2(1), π2(1)). This is repeated for (µ2(i),Σ2(i), π2(i)), i = 2, 3, 4,
but indices which have already been assigned to components are ex-
cluded from consideration.
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3. For the remaining samples we proceed as for the second sample, with
the exception that the matching of µj(k) is now done to the average of
the j−1 previously matched clusters means, namely (j−1)−1

∑j−1
l=1 µlk

for k = 1, 2, 3, 4.

D.4 Initialization for large dataset

Before starting the actual MCMC sampler, we run an initialization scheme
that is designed to make the sampler jump out of local maxima of the likeli-
hood. The method we use does not give a reversible Markov chain and thus
cannot be part of the actual MCMC run. We do the following steps about
ten times for each GMM without updating the latent parameters:

1. Sample x,µ,Σ,πj using the regular Gibbs sampler for ten iterations.

2. Calculate the likelihood for the current parameters µ,Σ,πj. Randomly
select a cluster (µk,Σk, πjk) and then select a dimension d1 at random.
Remove the cluster (µk,Σk, πjk) and the cluster closest to it in d1, draw
two random points and use them as initial points for two new clusters.
Run the Gibbs sampler for ten iterations. If the new parameters has
higher likelihood then the old keep the new, otherwise go back to the
old.

3. Calculate the likelihood for the current parameters µ,Σ. Randomly
select a cluster (µk,Σk, πk), with a probability of choosing cluster k
proportional to 1

πjk
so that the smaller the cluster the more likely it is

to be chosen. Remove µk, draw a random point and use it as µk and
set Σk to the old Σk times ten. Then run the Gibbs sampler for ten
iterations. If the new parameters has higher likelihood then the old
keep the new otherwise go back to the old.

The two last steps works quite well for destroying clusters that have been
stuck in the wrong shape or removing small clusters that is at the wrong
location of the space.

11



E Flow cytometry data analysis

E.1 Dataset details

E.1.1 healthyFlowData

Here follows a description of the dataset healthyFlowData: how it was ob-
tained and how it was preprocessed before we downloaded it from the R
package healthyFlowData.

Antibodies against CD45, CD19, CD3, CD8 and CD4 linked to fluo-
rochromes were used to mark the PBMC and when passed through the flow
cytometer the expression of these markers were measured along with front
and side scatter. A standard transformation called compensation was used to
remove effects of spectral overlap [9]. Following this the data was transformed
using the function asinh(y/c), where c was chosen to minimize Bartlett’s
statistic, with the purpose to stabilize variance between markers; functions
for this transformation are available in the R package flowVS [10]. Mea-
surements corresponding to lymphocytes were selected using front and side
scatter by fitting a bivariate normal distribution and filtering based on a like-
lihood threshold using the norm2Filter function in the flowCore R package
(Azad, personal communication). This resulted in between 6172 and 19,554
cell measurements for each sample. Since all lymphocytes are CD45+, only
the other four markers were retained.

E.2 Priors

Priors should be set depending on the application, since they specify our
tolerance to variation. However, to simplify this process we want to be able
to translate prior parameters between data sets with different number of
samples, cells and components. To do this, we consider the sampling scheme
(2). Looking at the sampling of θk, we see that the effect of Sk decreases
proportionally to the number of samples J . Thus we set Sk = I · sk/J for
those k for which we want an informative prior on location. Based on the
sampling of µjk we see that Σθk should be proportional to 1/njk, thus from
the sampling of Σθk , nθk should be proportional to njk. The value njk can
be estimated by n/K, where n is the total number of cells across samples.
Furthermore, Qk should be proportional to J .

Moving over to shape variation, from the sampling of Σjk we see that Ψk

should be proportional to njk and from the sampling of Ψ we see that to
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achieve this nΨk
should also be proportional to njk. Furthermore Hk should

be proportional to 1/J . In summary,

nθk = ntk · n/K, nΨk
= npk · n/K,

Qk = qk · J, Hk = hk/J,

Sk = sk/J · I,

where the parameters ntk, npk, qk, hk and sk can be reused across data sets of
different sizes and with different number of components. Note that Sk should
only be set as above when informative priors on latent locations of clusters
are wanted. For the flow cytometry data sets considered in this work we use
ntk = 0.75, npk = 0.25, hk = 103 and qk = 10−3 for all components k. Sk
was uninformative in most cases and set to 106, but for the rare phenotype
in the GvHD data set we used sk = 0.012.

E.3 Point estimates

During the production iterations of the MCMC sampler we get samples of

Θ(r) =
(
µ

(r)
jk ,Σ

(r)
jk ,θ

(r)
k ,Ψ

(r)
k , ν

(r)
k ,π

(r)
j

)
, r = 1, . . . , R.

We use the means of µ(r)
jk ,Σ

(r)
jk ,θ

(r)
k and Ψ

(r)
k /(ν

(r)
k − d− 1) to get point esti-

mates of sample component and latent cluster means and covariance matrices;
the means of π(r)

j are used to get point estimates of the mixing proportions.

E.4 Quality control

E.4.1 Convergence

We assess the convergence of the MCMC sampler in BayesFlow by looking
at trace plots for θk and νk, where k ∈ {1, . . . , K}. The trace plots for the
first accepted run of healthyFlowData and GvHD are shown in Fig. S1 and
Fig. S2 respectively.

E.4.2 Unimodality

We want to detect if the distribution of data assigned to a single component
or super component is not unimodal, since it indicates that the latent cluster
maybe should be divided into two or more components. To do this we use

13



0.1

0.9

θ1

0.1

0.9

θ2

0.1

0.9

θ3

0.1

0.9

θ4

0.1

0.9

θ5

0.1

0.9

θ6

0.1

0.9

θ7

0.1

0.9

θ8

0.1

0.9

θ9

0.1

0.9

θ10

0.1

0.9

θ11

0.1

0.9

θ12

0.1

0.9

θ13

0.1

0.9

θ14

0.1

0.9

θ15

0.1

0.9

θ16

0.1

0.9

θ17

0.1

0.9

θ18

0.1

0.9

θ19

0.1

0.9

θ20

0.1

0.9

θ21

0.1

0.9

θ22

0.1

0.9

θ23

0.1

0.9

θ24

0.0 0.5 1.0 1.5 2.0
×104

0.1

0.9

θ25

0.0 0.5 1.0 1.5 2.0
×104

102

103

ν

0.0 0.5 1.0 1.5 2.0
×104

0
100
200
300
400
500
600

r

Figure S1: Trace plots of latent means θk for k = 1, . . . , 25, ν and MH sam-
pling interval r, for the first accepted BayesFlow run on healthyFlowData.
Burn-in iterations are plotted on gray background. As can be seen the clus-
ters 20-25 were turned of during the burn-in iterations.
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Figure S2: Trace plots of latent means θk for k = 1, . . . , 25, ν and MH
sampling interval r, for the first accepted BayesFlow run on GvHD. Burn-in
iterations are plotted on gray background.
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psw pa=pd
Burn-in phase 1a 0.1 0
Burn-in phase 1b 0.1 0
Burn-in phase 2a 0.1 0
Burn-in phase 2b 0.1 0.1
Burn-in phase 3 0 0.1
Production phase 0 0.1

Table S1: Simulation parameters for MCMC sampling for real flow cytometry
data. During the phase 1a, the prior parameters nθ and nΨ are increased by a
factor of 100. After phase 1b, outlying sample components are turned off, i.e.
sample components which are closer in Bhattacharyya distance to another
latent component than the one to which they are connected.

Hartigan’s dip test [6] of unimodality for the one-dimensional marginal dis-
tributions. For cluster–dimension combinations which give dip tests below
0.28 (our threshold for merging clusters) we consider histograms of quantiles
of the clusters as shown in Fig. S3 (usual histograms are less useful since
the clusters are soft). When there are tendencies of bimodality it can be ac-
cepted when it seems unlikely that dividing the cluster further would result
in a new interesting population. This can for example be the case if this
tendency exist in a single sample and it is not in the midrange of expression
(around 0.5) where important splits between positive and negative cells are
often made.

E.4.3 Eigenvectors

Thanks to that we explicitly model component shapes we can find patterns
among the shapes by studying the eigenvectors of the sample component
covariance matrices, as in Fig. S4.

E.5 Parameters and convergence for ASPIRE

As recommended, we first standardize the pooled data and then use the pa-
rameter values s = 150 log(d + 1)/d, m = d + 2, κ0 = 0.05 and α = γ = 1.
To decide κi we tried four different recommended values, {0.1, 0.25, 0.5, 1}.
The highest mean likelihood during the production iterations was obtained
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Figure S3: Histograms of quantiles of soft clusters in one dimension. Only
dimension–cluster combinations which gives dip tests below 0.28 are shown.
Evaluating these is part of the quality control and all the above have been
seen as acceptable. Even if there are tendencies of bimodality it can be
accepted when it seems likely that the cluster consists of a single population
based on the expression.
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Figure S4: The two first eigenvectors scaled by their corresponding eigenval-
ues of the 19 active components in the first accepted run for the healthyFlow-
Data dataset. For most components the eigenvectorsj—i.e. the shapes—are
very similar across samples, but we can for example also see that for some
components there are two groups of shapes.

for κi = 0.1 for both healthyFlowData and GvHD (see Fig. S5), thus we
used results from this run as the final results. However, we observed that the
likelihood increased monotonically when decreasing κi, so for healthyFlow-
Data we also explored additional, smaller values of κi, namely 0.05, 0.25 and
0.01. We noted a continued increase in mean likelihood and noted that this
was accompanied by a decrease in the number of latent components and an
increase in the number of mixture components corresponding to each latent
component. For κi = 0.01, essentially all data points (> 99.99%) were as-
signed to the two largest latent components. This led us to stick to the value
κi = 0.1.
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Figure S5: Trace plot of likelihoods for ASPIRE runs with different κi. The
shaded areas show burn-in iterations.
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E.6 GvHD scatterplots

E.7 Individual GMM models with EM for healthyFlow-
Data

The variation between flow cytometry samples is systematized in the hierar-
chical model, results of this can be seen in Fig. 12 and Fig. 13 (a). For com-
parison, we fit Gaussian mixture models using the expectation-maximization
algorithm to each flow cytometry sample separately. In this case there are no
clear correspondences among the mixture components between samples, as
seen in Fig. S7. When the data set was studied previously with an algorithm
matching populations found by separate analysis of the samples, this was
only done with a coarse partition of the cell measurements, with four cell
populations [9].
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Figure S6: Gated events according to BayesFow run 1, ASPIRE and
HDPGMM of the twelve samples in the GvHD dataset, projected onto the
two first dimensions.
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Figure S7: Component parameter representations of inferred mixture com-
ponents in independent Gaussian mixture models of three flow cytometry
samples. The two samples depicted in the two right columns are techni-
cal replicates. Note that there is no correspondence between colors between
columns.
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