Supporting information for the BMC Bioinformatics article:

Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment

Roman Hornung[∗] , Anne-Laure Boulesteix, David Causeur

[∗]Corresponding author: e-mail: hornung@ibe.med.uni-muenchen.de, Phone: +4989-440077754, Fax: +4989- 440077491, Department of Medical Informatics, Biometry and Epidemiology, University of Munich, Marchioninistr. 15, D-81377, Munich, Germany

A Description of existing batch effect adjustment methods

A.1 ComBat

This method assumes the following model for the observed data x_{ijg} :

$$
x_{ijg} = \alpha_g + \mathbf{a}_{ij}^T \mathbf{\beta}_g + \gamma_{jg} + \delta_{jg} \epsilon_{ijg}, \quad \epsilon_{ijg} \sim N(0, \sigma_g^2).
$$

Here all involved parameters are as in the Section "Methods" of the main paper. Note that the restriction to binary target variables, which is not necessary in general for the application of ComBat, is required for the application of our method.

The unobserved counterpart x_{ijg}^* of x_{ijg} not affected by batch effects is assumed to be

$$
x_{ijg}^* = \alpha_g + \mathbf{a}_{ij}^T \mathbf{\beta}_g + \epsilon_{ijg}, \quad \epsilon_{ijg} \sim N(0, \sigma_g^2).
$$

The goal of batch effect correction via ComBat is to estimate these unobserved x_{ijg}^* -values. The following transformation of the observed x_{ijg} -values would provide the true x_{ijg}^* -values:

$$
\sqrt{\text{Var}(x_{ijg}^*)} \left(\frac{x_{ijg} - \text{E}(x_{ijg})}{\sqrt{\text{Var}(x_{ijg})}} \right) + \text{E}(x_{ijg}^*)
$$
\n
$$
= \sigma_g \left(\frac{x_{ijg} - (\alpha_g + \mathbf{a}_{ij}^T \mathbf{\beta}_g + \gamma_{jg})}{\delta_{jg} \sigma_g} \right) + \alpha_g + \mathbf{a}_{ij}^T \mathbf{\beta}_g
$$
\n
$$
= \alpha_g + \mathbf{a}_{ij}^T \mathbf{\beta}_g + \epsilon_{ijg} = x_{ijg}^*.
$$
\n(1)

In practice, however, the parameters involved in Eq. (1) are not known and have to be estimated. In particular, γ_{jg}/σ_{g} and δ_{jg} are estimated using empirical Bayes to obtain more robust results. See [1] for details on the estimation procedure. Note that in the analyses performed in the main paper we do not include the term $a_{ij}^T \beta_g$ in the adjustment. The first reason for this is that in the Section "Application in cross-batch prediction" of the main paper we study cross-batch prediction. Here the class values a_{ij} are not known in the test data. The second reason is that using the class values a_{ij} together with the estimates of β_g may lead to an artificially increased class signal, because the estimates of β_g depend on the class values a_{ij} . This kind of mechanism is discussed in detail, but in slightly other contexts, in the Sections "Using estimated probabilities instead of actual classes" and "Artificial increase of measured class signal by applying SVA" of the main paper.

A.2 SVA

The model for the observed data is given by:

$$
x_{ijg} = \alpha_g + \mathbf{a}_{ij}^T \boldsymbol{\beta}_g + \sum_{l=1}^m b_{gl} Z_{ijl} + \epsilon_{ijg},
$$

\n
$$
\text{Var}(\epsilon_{ijg}) = \sigma_g^2.
$$
\n(2)

Here α_g and $a_{ij}^T \beta_g$ are as in the previous subsection and Z_{ij1}, \ldots, Z_{ijm} are random latent factors with loadings b_{a1}, \ldots, b_{am} .

The unobserved, batch-free data is correspondingly:

$$
x_{ijg}^* = \alpha_g + \mathbf{a}_{ij}^T \mathbf{\beta}_g + \epsilon_{ijg}, \quad \text{Var}(\epsilon_{ijg}) = \sigma_g^2. \tag{3}
$$

Note again that in the SVA-model the batch membership is assumed to be unknown. For judging the appropriateness of the SVA algorithm it is important to specify the model underlying SVA as precisely as possible. Out of the following two facts it can be followed that the distribution of the latent factors can be different for each observation—in the extreme case. Firstly, the assumed form of the batch-free data in Eq. (3) implies that the distortions between the batches are induced fully by the latent factors. Secondly, each observation may come from a different batch with own mean-, covariance- and correlation-structure.

The SVA batch effect adjustment is performed by substracting $\sum_{l=1}^{m} b_{gl} Z_{ijl}$ from x_{ijg} :

$$
x_{ijg} - \sum_{l=1}^{m} b_{gl} Z_{ijl} = \alpha_g + \mathbf{a}_{ij}^T \mathbf{\beta}_g + \epsilon_{ijg} = x_{ijg}^*.
$$

The latent factors are estimated as the first m right singular vectors from a singular value decomposition (SVD). In the Section "Background" of the main paper we stressed that inhomogeneities in datasets are not only due to batch effects, but also due to the biological signal of interest, i.e. the term $a_{ij}^T \beta_g$ in Eq. (2) and (3). Therefore, we noted that the biological signal of interest has to be protected during factor estimation in FAbatch. In SVA, to protect the biological signal, before performing the SVD on the transposed covariate matrix, the variable values are weighted by the estimated probabilities that the corresponding variables are associated with unmeasured confounders, but not with the binary variable representing the biological signal. The factor loadings are estimated by linear models. The "frozen SVA" procedure [2] is an extension of SVA [3], which we will detail in the following subsection.

A.2.1 frozen SVA (fSVA)

In addition to describing the two algorithms gathered under the designation "frozen SVA", in this subsection we demonstrate that the "fast fSVA algorithm" is the addon procedure for SVA in the vein of the Section "Addon adjustment of independent batches" of the main paper.

The b_{gl} - and the β_g -values are two of the batch-unspecific parameters involved in the SVA adjustment. The β_g -values are implicitly involved, namely when multiplying the variable values by the estimated probabilities that the corresponding variable is associated with unmeasured confounders, but not with the binary variable representing the biological signal. In both frozen SVA algorithms, when adjusting for batch effects in new observations the estimates of the b_{ql} values obtained on the training data are used. Also, for multiplying the variable values of a new observation by the estimated probabilities that the corresponding variable is associated with unmeasured confounders but not with the target variable, both algorithms use the estimates obtained on the training data. The distinguishing feature between the two algorithms is the way estimates of the factors Z_{ijl} for new observations are obtained.

In the first frozen SVA algorithm, denoted as "exact fSVA algorithm" in [2], the latent factor vector for a new observation is estimated in the following way: 1) Combine the training data with the values of the new observation and multiply by the probabilities estimated on the training data; 2) Re-perform the SVD on the combined data from 1) and use the right singular vector corresponding to the new observation as the estimate of its vector of latent factors. This algorithm is, however, not an addon procedure. In this algorithm, the estimate of the latent factor vector for the test observation originates from a different SVD than the estimated latent factors of the training observations. Therefore, this new estimated latent factor behaves—at least to some extent—differently than that of the training data. As a consequence, when adjusting the new observation a feature of addon procedures is not given: the same kind of transformation must be performed for independent batches. This problem can be assumed to have a lower impact for larger training datasets. Here the latent factor model estimated on the training data depends less on whether a single new observation is included into the SVD or not. A solution to the problem of differently behaving latent factor estimates in training and test data would be the following: for adjusting the training data use the estimates of the latent factors (and their loadings) obtained in the second SVD performed after including the test observation. This would, however, again not correspond to an addon procedure, because then the adjusted training data would be changed each time a new observation is included, which is not allowed as stated in our definition of addon procedures given in the Section "Addon adjustment of independent batches" of the main paper.

The second frozen SVA algorithm, denoted as "fast fSVA algorithm" in [2] takes a different approach. Here, the SVD is not re-performed entirely on the combination of the training data and the new observation. Instead, one essentially performs a SVD for calculating the right singular vector corresponding to the new observation, in which the left singular vectors and singular values are fixed to the values of these parameters obtained in the SVA, which had been performed on the training data. Thus in this adjustment, it is taken into account that the left singular vectors and singular values are batch-unspecific parameters. The resulting estimated latent factor vector of the new observation behaves in the same way as that of the training data, because here it originates from the same SVD. This algorithm does correspond to an addon procedure, because the same kind of transformation is performed for independent batches, i.e. observations in the SVA model, without the need to change the training data.

A.3 Further batch effect adjustment methods considered in the comparison studies

A.3.1 Mean-centering

From each measurement the mean of the values of the corresponding variable in the corresponding batch is substracted:

$$
\widehat{x_{ijg}} = x_{ijg} - \widehat{\mu_{jg}},\tag{4}
$$

where $\widehat{\mu_{jg}} = (1/n_j) \sum_j x_{ijg}$.

A.3.2 Standardization

The values of each variable are centered and scaled per batch:

$$
\widehat{x_{ijg}^*} = \frac{x_{ijg} - \widehat{\mu_{jg}}}{\sqrt{\widehat{\sigma_{jg}^2}}},
$$

where $\widehat{\mu_{jg}}$ as in (4) and $\widehat{\sigma_{jg}^2} = [1/(n_j - 1)] \sum_i (x_{ijg} - \widehat{\mu_{jg}})^2$.

A.3.3 Ratio-A

Each measurement is divided by the arithmetic mean of the values of the variable in the corresponding batch [4]:

$$
\widehat{x_{ijg}^*} = \frac{x_{ijg}}{\widehat{\mu_{jg}}},
$$

where $\widehat{\mu_{jg}}$ is that same as in (4).

A.3.4 Ratio-G

Each measurement is divided by the geometric mean of the values of the variable in the corresponding batch [4]:

$$
\widehat{x_{ijg}^*} = \frac{x_{ijg}}{\mu_{g,geom}},
$$

where $\widehat{\mu_{g,geom}} = \sqrt[n_i]{\prod_i^{n_j} x_{ijg}}$.

B Plots used in verification of model assumptions

Fig. S1: Data values against fitted values resulting from FAbatch method. The contour lines represent two-dimensional kernel density estimates. The dashed line mark the bisectors and the red lines are LOESS estimates of the associations. The grey dots are in each case random subsets of size 1000 of all values.

Fig. S2: Data values against fitted values resulting from ComBat method. The contour lines represent two-dimensional kernel density estimates. The dashed line mark the bisectors and the red lines are LOESS estimates of the associations. The grey dots are in each case random subsets of size 1000 of all values.

Fig. S3: Deviations from fitted values resulting from FAbatch method against corresponding fitted values. The contour lines represent two-dimensional kernel density estimates. The dashed lines mark the horizontal zero lines and the red lines are LOESS estimates of the associations. The grey dots are in each case random subsets of size 1000 of all values.

Fig. S4: Deviations from fitted values resulting from ComBat method against corresponding fitted values. The contour lines represent two-dimensional kernel density estimates. The dashed lines mark the horizontal lines and the red lines are LOESS estimates of the associations. The grey dots are in each case random subsets of size 1000 of all values.

Fig. S5: Density estimates of the deviations from the fitted values divided by their standard deviations for the FAbatch method. The dashed lines mark the vertical zero lines.

Fig. S6: Density estimates of the deviations from the fitted values divided by their standard deviations for the ComBat method. The dashed lines mark the vertical zero lines.

C Visualizations of the batch effects in the used datasets: plots of the first two principal components out of Principal Component Analysis

Fig. S7: Each subplot shows the first two principal components out of PCA performed on the covariate matrix of one of the datasets used. In each case the colors distinguish the batches, and the numbers distinguish the two classes "diseased" (2) vs. "healthy control" (1). The contour lines represent batch-wise two-dimensional kernel estimates and the diamonds represent the batchwise centers of gravities of the points. The plots are arranged in ascending order according to the strength of batch effects with respect to the following criterion: Average over the euclidean distances between all possible pairs of points in the plot from different batches divided by the analoguous mean over all such pairs from the same batches.

D Target variables of datasets used in comparison study

ColonGastricEsophagealcSNPArray: "gastric cancer" $(y = 2)$ vs. "healthy" $(y = 1)$

AgeDichotomTranscr: "chronic alcoholic" $(y = 2)$ vs. "healthy" $(y = 1)$

EthnicityMethyl: "Caucasian, from Utah and of European ancestry" $(y = 2)$ vs. "Yorubian, from Ibadan Nigeria" $(y = 1)$

BipolardisorderMethyl: "bipolar disorder" $(y = 2)$ vs. "healthy" $(y = 1)$

PostpartumDepressionMethyl: "depression post partum" $(y = 2)$ vs. "healthy" $(y = 1)$

AutismTranscr: "autistic" $(y = 2)$ vs. "healthy" $(y = 1)$

BreastcTranscr: "breast cancer" $(y = 2)$ vs. "healthy" $(y = 1)$

BreastCancerConcatenation: "breast cancer" $(y = 2)$ vs. "healthy" $(y = 1)$

IUGRTranscr: "intrauterine growth restriction" $(y = 2)$ vs. "healthy" $(y = 1)$

IBSTranscr: "constipation-predominant/diarrhoea-predominant irritable bowel syndrome" ($y =$ 2) vs. "healthy" $(y = 1)$

SarcoidosisTranscr: "sarcoidosis" $(y = 2)$ vs. "healthy" $(y = 1)$

pSSTranscr: "Sjogren's/sicca syndrome" $(y = 2)$ vs. "healthy" $(y = 1)$

AlcoholismTranscr: "alcoholic" $(y = 2)$ vs. "healthy" $(y = 1)$

WestNileVirusTranscr: "severe West Nile virus infection" $(y = 2)$ vs. "asymptomatic West Nile virus infection" $(y = 1)$

E Reasons for batch effect structures of datasets used in comparison study

EthnicityMethyl: "To limit the potential bias due to experimental batches, samples were randomized by population identity and hybridized in three batches." [5]

BreastcTranscr: "To minimize possible processing and chip lot effects, samples were assigned to processing batches of seven to nine pairs, and batches had similar distributions of age, race, and date of enrollment. For array hybridization, each batch was assigned to one of two different chip lots ('A' and 'B') in a manner designed to ensure a balance of these same characteristics. [...] Laboratory personnel were blind to case control status and other phenotype information." [6]

BreastCancerConcatenation: Concatenation of five independent datasets.

IUGRTranscr: Citation from the description on the ArrayExpress-website: "[. . .] were collected during the years of 2004-2008 and hybridized in two batches to microarrays. Samples were randomized across arrays to control for array and batch variability."

AlcoholismTranscr: The batch variable in the sdrf.txt-file is designated as "labeling batch", from which we deduced that the batch structure is due to labeling for this dataset.

F Boxplots of the metric values for simulated datasets per method and simulation scenario

Fig. S8: Values of metric sepscore for all simulated datasets separated into simulation scenario and method.

Fig. S9: Values of metric avedist for all simulated datasets separated into simulation scenario and method.

Fig. S10: Values of metric klmetr for all simulated datasets separated into simulation scenario and method.

Fig. S11: Values of metric pvca for all simulated datasets separated into simulation scenario and method.

Fig. S12: Values of metric diffexpr for all simulated datasets separated into simulation scenario and method.

Fig. S13: Values of metric skewdiv for all simulated datasets separated into simulation scenario and method.

Fig. S14: Values of metric corbeaf for all simulated datasets separated into simulation scenario and method.

Table S1: Means of the values of metric sepscore and of their ranks among the different methods over all simulated datasets separated into simulation scenario and method. In each row the results are listed in descending order according to mean performance in terms of the original values and their ranks, respectively.

Factor induced correlations - Common Correlations											
	fabatch	combat	stand	meanc	ratiog	ratioa	sva	none			
mean values	0.04259	0.10329	0.10983	0.26425	0.34545	0.36033	0.40368	0.41272			
	fabatch	combat	stand	meanc	ratiog	ratioa	sva	none			
mean ranks		2.272	2.728	4.012	5.159	5.851	7.236	7.742			

Factor induced correlations - Batch-specific Correlations											
mean values	fabatch	combat	stand	meanc	ratiog	sva	ratioa	none			
	0.03983	0.06467	0.07055	0.2652	0.33873	0.34239	0.3529	0.3767			
mean ranks	fabatch $1.184\,$	combat 2.168	stand 2.648	meanc 4.022	ratiog 5.807	sva 5.818	ratioa 6.485	none 7.868			

Factor induced correlations - Batch-class-specific Correlations

mean values	fabatch	combat	stand	meanc	ratiog	sva	ratioa	none
	0.04157	0.06515	0.07127	0.263	0.33364	0.34064	0.34989	0.37793
mean ranks	fabatch	combat	stand	meanc	ratiog	sva	ratioa	none
	1.21	2.138	2.652	4.024	5.698	5.841	6.515	7.922

Correlations estimated on real data - Common Correlations

mean values	combat	fabatch	stand	sva	meanc	ratiog	ratioa	none
	0.09024	0.09931	0.11938	0.17365	0.21915	0.32436	0.33918	0.41279
mean ranks	combat .252	fabatch 1.825	stand 2.939	sva 4.056	meanc 4.928	ratiog 6.215	ratioa 6.785	none

Correlations estimated on real data - Batch-specific Correlations

Table S2: Means of the values of metric avedist and of their ranks among the different methods over all simulated datasets separated into simulation scenario and method. In each row the results are listed in descending order according to mean performance in terms of the original values and their ranks, respectively.

Factor induced correlations - Common Correlations

combat meanc ratio
a ratiog **fabatch** mean values $\begin{array}{|c|c|c|c|c|c|}\n\hline\n \text{stand} & \text{combat} & \text{meanc} & \text{ratioa} & \text{ratiog} & \textbf{fabatch} & \text{none} & \text{sva} \\
 \hline\n 37.42382 & 37.53441 & 37.58121 & 37.59354 & 37.69106 & \textbf{40.49195} & 40.95461 & 42.103\n\hline\n\end{array}$ 37.42382 37.53441 37.58121 37.59354 37.69106 40.49195

stand combat meanc ratioa ratiog fabatch 40.95461 42.10377 mean ranks stand combat meanc ratioa ratiog fabatch none sva 1.016 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline 6 & 2.212 & 3.354 & 3.446 & 4.972 & \textbf{6.198} \ \hline \end{array}$ 6.198 6.802 8

mean values	ratioa	meanc	stand	ratiog	combat	none	fabatch	sva
	37.40834	37.50749	37.50828	37.52306	37.57991	39.7664	39.90564	41.54491
mean ranks	ratioa .228	stand 2.768	meanc 2.934	ratiog 3.448	combat 4.622	none 6.354	fabatch 6.646	sva

Factor induced correlations - Batch-class-specific Correlations

mean values	ratioa	meanc	stand	ratiog	combat	none	fabatch	sva
	37.39577	37.49533	37.49946	37.512	37.57149	39.78901	39.93852	41.58123
mean ranks	ratioa .228	stand $2.752\,$	meanc 2.878	ratiog 3.498	combat 4.644	none 6.358	fabatch 6.642	sva

Correlations estimated on real data - Common Correlations

mean values	stand	ratioa	meanc	combat	ratiog	fabatch	sva	none
	37.98839	37.98975	38.01252	38.05134	38.0927	39.49123	39.82755	40.81266
mean ranks	$_{\rm stand}$.764	ratioa 2.064	meanc 2.598	combat 3.982	ratiog 4.592	fabatch 6.044	sva 6.956	none

Correlations estimated on real data - Batch-specific Correlations

mean values	ratioa	ratiog	meanc	stand	combat	fabatch	sva	none
	39.74457	39.82068	39.95839	40.1671	40.1761	40.38741	40.44444	42.62075
mean ranks	ratioa . . 13	ratiog 2.152	meanc 3.112	stand 4.82	combat 5.024	fabatch 5.736	sva 6.026	none

Correlations estimated on real data - Batch-class-specific Correlation

Table S3: Means of the values of metric klmetr and of their ranks among the different methods over all simulated datasets separated into simulation scenario and method. In each row the results are listed in descending order according to mean performance in terms of the original values and their ranks, respectively.

Factor induced correlations - Common Correlations

mean values	combat	stand	fabatch	meanc	ratioa	ratiog	sva	none
	0.06141	0.07561	0.32144	0.4242	. .34917	1.44874	.78636	3.96088
	combat	stand	fabatch	meanc	ratioa	ratiog	sva	none
mean ranks	344	656	3.164	3.836	5.002	5.998	7.342	7.658

Factor induced correlations - Batch-specific Correlations

mean values	combat	stand	fabatch	meanc	ratioa	ratiog	sva	none
	0.02796	0.03953	0.25008	0.45892	1.41785	1.56052	.66582	2.65573
mean ranks	combat .344	stand 656	fabatch 3.036	meanc 3.964	ratioa 5.198	ratiog 6.376	sva 6.426	none

Factor induced correlations - Batch-class-specific Correlations

mean values	combat	stand	fabatch	meanc	ratioa	ratiog	sva	none
	0.03325	0.04196	0.25189	0.44475	.41077	.55757	.61859	2.61917
mean ranks	combat . .394	stand - 606.	fabatch 3.05	meanc $3.95\,$	ratioa 5.2	sva 6.382	ratiog 6.418	none

Correlations estimated on real data - Common Correlations

Correlations estimated on real data - Batch-specific Correlations

Table S4: Means of the values of metric pvca and of their ranks among the different methods over all simulated datasets separated into simulation scenario and method. In each row the results are listed in descending order according to mean performance in terms of the original values and their ranks, respectively.

Factor induced correlations - Common Correlations

mean values	sva	fabatch	combat	meanc	ratioa	stand	none	ratiog		
	0.04174	0.04079	0.03155	0.03139	0.03047	0.02972	0.02643	0.02634		
	sva	fabatch	combat	meanc	ratioa	stand	ratiog	none		
mean ranks	1.69	1.88	3.874	4.086	4.752	5.386	7.044	7.288		
Factor induced correlations - Batch-specific Correlations										

mean values	sva	fabatch	stand	combat	meanc	ratioa	none	ratiog
	0.04362	0.04099	0.03228	${0.02981}$	0.02956	0.02743	0.02432	0.02209
mean ranks	sva	fabatch	stand	combat	meanc	ratioa	none	ratiog
	.482	.868	3.212	4.372	4.696	5.626	7.122	7.622

Factor induced correlations - Batch-class-specific Correlations

mean values	sva	fabatch	stand	combat	meanc	ratioa	none	ratiog
	0.04376	0.04053	0.03172	0.02988	0.02964	0.0277	0.02459	0.02254
mean ranks	sva	fabatch	stand	combat	meanc	ratioa	none	ratiog
	1.37	.986	3.436	4.362	4.604	5.568	7.154	7.52

Correlations estimated on real data - Common Correlations

Correlations estimated on real data - Batch-specific Correlations

Table S5: Means of the values of metric diffexpr and of their ranks among the different methods over all simulated datasets separated into simulation scenario and method. In each row the results are listed in descending order according to mean performance in terms of the original values and their ranks, respectively.

Factor induced correlations - Common Correlations

	sva	fabatch	combat	stand	meanc	ratioa	ratiog	none
mean values	0.16971	0.16407	0.16098	0.16097	$\,0.1603\,$	0.15957	0.15924	0.15215
	sva	fabatch	combat	stand	meanc	ratioa	ratiog	none
mean ranks	$3.192\,$	3.926	4.273	4.361	4.558	4.753	4.844	6.093

Factor induced correlations - Batch-specific Correlations

mean values	sva	fabatch	combat	stand	meanc	ratioa	ratiog	none
	.14241	0.13769	0.13267	0.13246	0.13195	0.13094	0.13074	0.12615
mean ranks	sva	fabatch	combat	stand	meanc	ratioa	ratiog	none
	3.202	3.821	4.442	4.448	4.548	4.849	4.898	5.792

Factor induced correlations - Batch-class-specific Correlations

mean values	sva	fabatch	stand	combat	meanc	ratiog	ratioa	none
	0.1414	0.13553	0.12975	0.12949	0.12902	0.12798	0.12777	${0.12367}$
mean ranks	sva	fabatch	stand	combat	meanc	ratiog	ratioa	none
	$2.936\,$	3.801	4.477	4.508	4.618	4.909	5.015	5.736

Correlations estimated on real data - Common Correlations

mean values	sva	stand	combat	meanc	fabatch	ratioa	ratiog	none
	0.16337	0.15697	0.1568	0.15587	0.15579	0.15554	0.1552	0.1481 ⁻
mean ranks	$_{\rm{sva}}$	stand	combat	meanc	fabatch	ratioa	ratiog	none
	$_{\rm 3.62}$	4.134	4.163	4.433	4.56	4.572	4.64	5.878

Correlations estimated on real data - Batch-specific Correlations

Table S6: Means of the values of metric skewdiv and of their ranks among the different methods over all simulated datasets separated into simulation scenario and method. In each row the results are listed in descending order according to mean performance in terms of the original values and their ranks, respectively.

Factor induced correlations - Common Correlations

mean values	sva	ratioa	meanc	combat	fabatch	stand	ratiog	none
	0.00535	$\,0.0054\,$	0.00547	0.0055	0.00571	0.00573	0.00651	$\hphantom{-}0.02865$
mean ranks	ratioa 3.514	meanc 3.696	sva 3.832	combat 3.852	fabatch 4.124	stand 4.252	ratiog 4.73	none

Factor induced correlations - Batch-specific Correlations

mean values	ratioa	meanc	sva	stand	fabatch	combat	ratiog	none
	0.00509	0.00519	$\hphantom{-}0.00524$	0.00543	0.00544	0.00556	0.00701	0.0246
mean ranks	ratioa 3.402	meanc 3.612	sva 3.722	fabatch $\bf3.97$	stand	combat 4.08	ratiog 5.214	none

Factor induced correlations - Batch-class-specific Correlations

mean values	ratioa	meanc	sva	combat	fabatch	stand	ratiog	none
	.00515	0.00527	0.00528	0.00544	0.00548	0.0055	0.00712	0.02349
mean ranks	ratioa 3.486	meanc 3.724	sva 3.796	fabatch 3.872	combat 3.89	stand 4.022	ratiog 5.21	none

Correlations estimated on real data - Common Correlations

mean values	sva	fabatch	meanc	ratioa	stand	combat	ratiog	none
	0.00545	0.00571	0.00692	0.00695	0.00716	0.00722	0.00751	0.02868
mean ranks	sva 3.072	fabatch 3.266	meanc 4.062	ratioa 4.094	combat 4.426	stand 4.432	ratiog 4.648	none

Correlations estimated on real data - Batch-specific Correlations

Table S7: Means of the values of metric corbeaf and of their ranks among the different methods over all simulated datasets separated into simulation scenario and method. In each row the results are listed in descending order according to mean performance in terms of the original values and their ranks, respectively.

Factor induced correlations - Common Correlations

mean values	none	combat ${0.86018}$	meanc 0.84427	ratioa 0.83774	stand 0.83067	ratiog 0.81446	sva 0.66124	fabatch 0.62064
mean ranks	none	combat	meanc	ratioa	stand	ratiog	sva	fabatch

Factor induced correlations - Batch-specific Correlations

mean values	none	combat 0.87781	meanc 0.86351	ratioa 0.85656	stand 0.84845	ratiog 0.82682	sva 0.64111	fabatch 0.59071
mean ranks	none	combat	meanc	ratioa	stand	ratiog	sva 7.006	fabatch 7.994

Factor induced correlations - Batch-class-specific Correlations

mean values	none	combat 0.87943	meanc $\;\:0.8651$	ratioa 0.85816	stand 0.85006	ratiog 0.828	sva 0.64263	fabatch $\, 0.59331 \,$
mean ranks	none	combat	meanc	ratioa	stand	ratiog	sva 7.006	fabatch 7.994

Correlations estimated on real data - Common Correlations

mean values	none	combat 0.86037	meanc 0.84442	ratioa 0.8379	stand 0.83086	ratiog 0.81468	fabatch 0.72987	sva 0.64994
mean ranks	none	combat	meanc	ratioa	stand	ratiog	fabatch	sva

Correlations estimated on real data - Batch-specific Correlations

mean values	none	combat 0.86035	meanc 0.84433	ratioa 0.83781	stand 0.83078	ratiog 0.81458	fabatch 0.76653	sva 0.69691
mean ranks	none	combat	meanc	ratioa	stand	ratiog	fabatch 7.002	sva 7.998

Correlations estimated on real data - Batch-class-specific Correlation

- [1] Johnson WE, Rabinovic A, Li C. Adjusting batch effects in microarray expression data using Empirical Bayes methods. Biostatistics. 2007;8:118–127.
- [2] Parker HS, Bravo HC, Leek JT. Removing batch effects for prediction problems with frozen surrogate variable analysis. PeerJ. 2014;2:e561.
- [3] Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics. 2007;3:1724–1735.
- [4] Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T, et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. The Pharmacogenomics Journal. 2010;10:278–291.
- [5] Moen EL, Zhang X, Mu W, Delaney SM, Wing C, McQuade J, et al. Genome-Wide Variation of Cytosine Modifications Between European and African Populations and the Implications for Complex Traits. Genetics. 2013;194:987–996.
- [6] Godfrey AC, Xu Z, Weinberg CR, Getts RC, Wade PA, DeRoo LA, et al. Serum microRNA expression as an early marker for breast cancer risk in prospectively collected samples from the Sister Study cohort. Breast Cancer Research. 2013;15:R42.