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A Description of existing batch effect adjustment methods

A.1 ComBat

This method assumes the following model for the observed data x;;q:
Tijg = g + a8y + Vig + 6g€ijg,  €ijg ~ N(0,07).

Here all involved parameters are as in the Section “Methods” of the main paper. Note that
the restriction to binary target variables, which is not necessary in general for the application of

ComBat, is required for the application of our method.

The unobserved counterpart z7;, of x;;, not affected by batch effects is assumed to be

* _ T . . 2
Ti, = Qg+ aijﬁg + €ijg,  €ijg ™~ N(O,Ug).

The goal of batch effect correction via ComBat is to estimate these unobserved z7; -values. The

tjg
following transformation of the observed ;;,-values would provide the true z7; -values:
Tijg — E(l‘ijg)) .
Var(z}; + E(zF.
o (M) + B
zijg — (ag +alB, +7jg)
=y (P B o, ali, (1
39%9

=y + az;,Bg + €ijg = T34
In practice, however, the parameters involved in Eq. (1) are not known and have to be estimated.
In particular, v;4/04 and §;, are estimated using empirical Bayes to obtain more robust results.
See [1] for details on the estimation procedure. Note that in the analyses performed in the main
paper we do not include the term az;- B, in the adjustment. The first reason for this is that in the
Section “Application in cross-batch prediction” of the main paper we study cross-batch prediction.
Here the class values a;; are not known in the test data. The second reason is that using the class
values a;; together with the estimates of 8, may lead to an artificially increased class signal,
because the estimates of 8, depend on the class values a;;. This kind of mechanism is discussed
in detail, but in slightly other contexts, in the Sections “Using estimated probabilities instead of

actual classes” and “Artificial increase of measured class signal by applying SVA” of the main

paper.

A.2 SVA

The model for the observed data is given by:

m
Tijg = g+ al By + Y baZiji + €ijg, (2)
=1

Var(e;jq) = 0.



Here oy and az;- B, are as in the previous subsection and Zjj1, ..., Zijm are random latent factors
with loadings by, ..., bgm.

The unobserved, batch-free data is correspondingly:
Ti, = g+ ag;,@g +€ijg,  Var(ejg) = 0'3. (3)

Note again that in the SVA-model the batch membership is assumed to be unknown. For judging
the appropriateness of the SVA algorithm it is important to specify the model underlying SVA
as precisely as possible. Out of the following two facts it can be followed that the distribution of
the latent factors can be different for each observation—in the extreme case. Firstly, the assumed
form of the batch-free data in Eq. (3) implies that the distortions between the batches are induced
fully by the latent factors. Secondly, each observation may come from a different batch with own
mean-, covariance- and correlation-structure.

The SVA batch effect adjustment is performed by substracting Zﬁl bg1 Z;j1 from ;54

m
Tijg = Y baZii = ag + aliBy + g = i,
1=1
The latent factors are estimated as the first m right singular vectors from a singular value decom-
position (SVD). In the Section “Background” of the main paper we stressed that inhomogeneities

in datasets are not only due to batch effects, but also due to the biological signal of interest, i.e.
g;,
to be protected during factor estimation in FAbatch. In SVA, to protect the biological signal,

the term a;;3, in Eq. (2) and (3). Therefore, we noted that the biological signal of interest has
before performing the SVD on the transposed covariate matrix, the variable values are weighted
by the estimated probabilities that the corresponding variables are associated with unmeasured
confounders, but not with the binary variable representing the biological signal. The factor load-
ings are estimated by linear models. The “frozen SVA” procedure [2] is an extension of SVA [3],

which we will detail in the following subsection.

A.2.1 frozen SVA (fSVA)

In addition to describing the two algorithms gathered under the designation “frozen SVA”| in this
subsection we demonstrate that the “fast fSVA algorithm” is the addon procedure for SVA in the
vein of the Section “Addon adjustment of independent batches” of the main paper.

The by~ and the B -values are two of the batch-unspecific parameters involved in the SVA
adjustment. The B -values are implicitly involved, namely when multiplying the variable values
by the estimated probabilities that the corresponding variable is associated with unmeasured
confounders, but not with the binary variable representing the biological signal. In both frozen
SVA algorithms, when adjusting for batch effects in new observations the estimates of the bg-
values obtained on the training data are used. Also, for multiplying the variable values of a
new observation by the estimated probabilities that the corresponding variable is associated with
unmeasured confounders but not with the target variable, both algorithms use the estimates
obtained on the training data. The distinguishing feature between the two algorithms is the way

estimates of the factors Z;;; for new observations are obtained.



In the first frozen SVA algorithm, denoted as “exact fSVA algorithm” in [2], the latent factor
vector for a new observation is estimated in the following way: 1) Combine the training data
with the values of the new observation and multiply by the probabilities estimated on the training
data; 2) Re-perform the SVD on the combined data from 1) and use the right singular vector
corresponding to the new observation as the estimate of its vector of latent factors. This algorithm
is, however, not an addon procedure. In this algorithm, the estimate of the latent factor vector
for the test observation originates from a different SVD than the estimated latent factors of the
training observations. Therefore, this new estimated latent factor behaves—at least to some
extent—differently than that of the training data. As a consequence, when adjusting the new
observation a feature of addon procedures is not given: the same kind of transformation must
be performed for independent batches. This problem can be assumed to have a lower impact for
larger training datasets. Here the latent factor model estimated on the training data depends less
on whether a single new observation is included into the SVD or not. A solution to the problem of
differently behaving latent factor estimates in training and test data would be the following: for
adjusting the training data use the estimates of the latent factors (and their loadings) obtained
in the second SVD performed after including the test observation. This would, however, again
not correspond to an addon procedure, because then the adjusted training data would be changed
each time a new observation is included, which is not allowed as stated in our definition of addon
procedures given in the Section “Addon adjustment of independent batches” of the main paper.

The second frozen SVA algorithm, denoted as “fast fSVA algorithm” in [2] takes a different
approach. Here, the SVD is not re-performed entirely on the combination of the training data and
the new observation. Instead, one essentially performs a SVD for calculating the right singular
vector corresponding to the new observation, in which the left singular vectors and singular values
are fixed to the values of these parameters obtained in the SVA, which had been performed on the
training data. Thus in this adjustment, it is taken into account that the left singular vectors and
singular values are batch-unspecific parameters. The resulting estimated latent factor vector of the
new observation behaves in the same way as that of the training data, because here it originates
from the same SVD. This algorithm does correspond to an addon procedure, because the same
kind of transformation is performed for independent batches, i.e. observations in the SVA model,

without the need to change the training data.

A.3 Further batch effect adjustment methods considered in the com-

parison studies
A.3.1 Mean-centering

From each measurement the mean of the values of the corresponding variable in the corresponding
batch is substracted:

—

Tii, = Tijg — fljgs (4)

where i, = (1/n;) 3, Tijg-



A.3.2 Standardization

The values of each variable are centered and scaled per batch:

o _ Lijg — Mg
ijg — —
o2
jg

where fij4 as in (4) and o7, = [1/(n; = 1)] 32, (x4 — fi4)°-

A.3.3 Ratio-A

Each measurement is divided by the arithmetic mean of the values of the variable in the corre-

sponding batch [4]:

Xii
Ty = =2
Hig

where fi;, is that same as in (4).

A.3.4 Ratio-G

Each measurement is divided by the geometric mean of the values of the variable in the corre-

sponding batch [4]:
o Lijg
x.. = — 5
79 Hg,geom

— n;
where g geom = "{/11;” %ijg-



B Plots used in verification of model assumptions
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Fig. S1: Data values against fitted values resulting from FAbatch method. The contour lines
represent two-dimensional kernel density estimates. The dashed line mark the bisectors and the
red lines are LOESS estimates of the associations. The grey dots are in each case random subsets
of size 1000 of all values.
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Fig. S2: Data values against fitted values resulting from ComBat method. The contour lines
represent two-dimensional kernel density estimates. The dashed line mark the bisectors and the
red lines are LOESS estimates of the associations. The grey dots are in each case random subsets

of size 1000 of all values.
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Fig. S3: Deviations from fitted values resulting from FAbatch method against corresponding fitted
values. The contour lines represent two-dimensional kernel density estimates. The dashed lines
mark the horizontal zero lines and the red lines are LOESS estimates of the associations. The
grey dots are in each case random subsets of size 1000 of all values.
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Fig. S4: Deviations from fitted values resulting from ComBat method against corresponding fitted
values. The contour lines represent two-dimensional kernel density estimates. The dashed lines
mark the horizontal lines and the red lines are LOESS estimates of the associations. The grey
dots are in each case random subsets of size 1000 of all values.
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Fig. S5: Density estimates of the deviations from the fitted values divided by their standard
deviations for the FAbatch method. The dashed lines mark the vertical zero lines.
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Fig. S6: Density estimates of the deviations from the fitted values divided by their standard
deviations for the ComBat method. The dashed lines mark the vertical zero lines.
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C Visualizations of the batch effects in the used datasets:
plots of the first two principal components out of Prin-

cipal Component Analysis
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Fig. S7: Each subplot shows the first two principal components out of PCA performed on the
covariate matrix of one of the datasets used. In each case the colors distinguish the batches, and
the numbers distinguish the two classes “diseased” (2) vs. “healthy control” (1). The contour
lines represent batch-wise two-dimensional kernel estimates and the diamonds represent the batch-
wise centers of gravities of the points. The plots are arranged in ascending order according to
the strength of batch effects with respect to the following criterion: Average over the euclidean
distances between all possible pairs of points in the plot from different batches divided by the
analoguous mean over all such pairs from the same batches.

12



D Target variables of datasets used in comparison study

ColonGastricEsophagealcSNPArray: “gastric cancer” (y = 2) vs. “healthy” (y = 1)
AgeDichotomTranscr: “chronic alcoholic” (y = 2) vs. “healthy” (y = 1)

EthnicityMethyl: “Caucasian, from Utah and of European ancestry” (y = 2) vs. “Yorubian,
from Ibadan Nigeria” (y = 1)

BipolardisorderMethyl: “bipolar disorder” (y = 2) vs. “healthy” (y = 1)
PostpartumDepressionMethyl: “depression post partum” (y = 2) vs. “healthy” (y = 1)
AutismTranscr: “autistic” (y = 2) vs. “healthy” (y = 1)

BreastcTranscr: “breast cancer” (y = 2) vs. “healthy” (y =1)
BreastCancerConcatenation: “breast cancer” (y = 2) vs. “healthy” (y = 1)
IUGRTranscr: “intrauterine growth restriction” (y = 2) vs. “healthy” (y = 1)

IBSTranscr: “constipation-predominant/diarrhoea-predominant irritable bowel syndrome” (y =
2) vs. “healthy” (y =1)

SarcoidosisTranscr: “sarcoidosis” (y = 2) vs. “healthy” (y = 1)
pSSTranscr: “Sjogren’s/sicca syndrome” (y = 2) vs. “healthy” (y = 1)
AlcoholismTranscr: “alcoholic” (y = 2) vs. “healthy” (y = 1)

WestNileVirusTranscr: “severe West Nile virus infection” (y = 2) vs. “asymptomatic West

Nile virus infection” (y = 1)
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E Reasons for batch effect structures of datasets used in

comparison study

EthnicityMethyl: “To limit the potential bias due to experimental batches, samples were ran-

domized by population identity and hybridized in three batches.” [5]

BreastcTranscr: “To minimize possible processing and chip lot effects, samples were assigned
to processing batches of seven to nine pairs, and batches had similar distributions of age, race, and
date of enrollment. For array hybridization, each batch was assigned to one of two different chip
lots (A’ and ’B’) in a manner designed to ensure a balance of these same characteristics. |...]

Laboratory personnel were blind to case control status and other phenotype information.” [6]
BreastCancerConcatenation: Concatenation of five independent datasets.

IUGRTranscr: Citation from the description on the ArrayExpress-website: “[...] were col-
lected during the years of 2004-2008 and hybridized in two batches to microarrays. Samples were

randomized across arrays to control for array and batch variability.”

AlcoholismTranscr: The batch variable in the sdrf.txt-file is designated as “labeling batch”,

from which we deduced that the batch structure is due to labeling for this dataset.
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F Boxplots of the metric values for simulated datasets per

method and simulation scenario
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Fig. S8: Values of metric sepscore for all simulated datasets separated into simulation scenario
and method.
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Fig. S9: Values of metric avedist for all simulated datasets separated into simulation scenario
and method.
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Fig. S11: Values of metric pvca for all simulated datasets separated into simulation scenario and
method.
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Fig. S12: Values of metric diffexpr for all simulated datasets separated into simulation scenario
and method.
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Table S1: Means of the values of metric sepscore and of their ranks among the different methods over
all simulated datasets separated into simulation scenario and method. In each row the results are listed
in descending order according to mean performance in terms of the original values and their ranks,
respectively.

Factor induced correlations - Common Correlations

I fabatch | combat stand meanc ratiog ratioa sva none

mean vatues | g 04259 | 0.10329 | 0.10983 | 0.26425 | 0.34545 | 0.36033 | 0.40368 | 0.41272
K fabatch | combat stand meanc ratiog ratioa sva none

ean Tatis 1 2.272 2.728 4.012 5.159 5.851 7.236 7.742

Factor induced correlations - Batch-specific Correlations

I fabatch | combat stand meanc ratiog sva ratioa none

mean vatues | g 03983 | 0.06467 | 0.07055 | 0.2652 | 0.33873 | 0.34239 | 0.3529 | 0.3767
K fabatch | combat stand meanc ratiog sva ratioa none

mean Tanks |- q 184 2.168 2.648 4.022 5.807 5.818 6.485 7.868

Factor induced correlations - Batch-class-specific Correlations

1 fabatch | combat stand meanc ratiog sva ratioa none

mean vaties | g 04157 | 0.06515 | 0.07127 | 0.263 | 0.33364 | 0.34064 | 0.34989 | 0.37793
K fabatch | combat stand meanc ratiog sva ratioa none

mean ranks 1.21 2.138 2.652 4.024 | 5.698 5.841 6.515 7.922

Correlations estimated on real data - Common Correlations
| combat | fabatch stand sva meanc ratiog ratioa none
mean vatues | 09024 | 0.09931 | 0.11938 | 0.17365 | 0.21915 | 0.32436 | 0.33918 | 0.41279

pue poyjow 1od sjasejep pajenuiis Joj

K combat | fabatch stand sva meanc ratiog ratioa none
ean Tatis 1.252 1.825 2.939 4.056 | 4.928 6.215 | 6.785 8
Correlations estimated on real data - Batch-specific Correlations
! fabatch | combat stand meanc sva ratiog ratioa none 0
mean values | o 08246 | 0.09017 | 0.10397 | 0.16851 | 0.26416 | 0.32547 | 0.34139 | 0.46142 a
K fabatch | combat stand meanc sva ratiog ratioa none CDD
ean ranks |- 4 .522 1.742 2.806 3.932 | 5068 | 6.098 | 6.832 8 o
H
Correlations estimated on real data - Batch-class-specific Correlation e
- - (@]
1 combat stand fabatch | meanc ratioa ratiog sva none
mean vattes g 10634 | 0.11988 | 0.13248 | 0.146 | 0.28421 | 0.29216 | 0.30619 | 0.44789
K combat stand fabatch | meanc ratioa ratiog sva none
fiean ranks 1.444 2.616 2.809 3139 | 5574 | 6.072 | 6.346 8

syued JI9Y} PUE SONJeA JLI}oW 9} JO SuedW 3} JO SA[qR], ©)
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Table S2: Means of the values of metric avedist and of their ranks among the different methods over all simulated
datasets separated into simulation scenario and method. In each row the results are listed in descending order
according to mean performance in terms of the original values and their ranks, respectively.

Factor induced correlations - Common Correlations
1 stand combat meanc ratioa ratiog fabatch none sva
mean vatues | sz 19382 | 37.53441 | 37.58121 | 37.59354 | 37.69106 | 40.49195 | 40.95461 | 42.10377

K stand combat meanc ratioa ratiog fabatch none sva
riean ranks 1.016 2.212 3.354 3.446 4.972 6.198 6.802 8
Factor induced correlations - Batch-specific Correlations
1 ratioa meanc stand ratiog combat none fabatch sva
mean vaties | g7 40834 | 37.50749 | 37.50828 | 37.52306 | 37.57991 | 39.7664 | 39.90564 | 41.54491
K ratioa stand meanc ratiog combat none fabatch sva
mean ranks 1.228 2.768 2.934 3.448 4.622 6.354 6.646 8
Factor induced correlations - Batch-class-specific Correlations
1 ratioa meanc stand ratiog combat none fabatch sva
mean vatues | g7 30577 | 37.49533 | 37.49946 | 37.512 | 37.57149 | 39.78901 | 39.93852 | 41.58123
ks ratioa stand meanc ratiog combat none fabatch sva
riean ranks 1.228 2.752 2.878 3.498 4.644 6.358 6.642 8

Correlations estimated on real data - Common Correlations

1 stand ratioa meanc combat ratiog fabatch sva none
mean values | 37 98839 | 37.98975 | 38.01252 | 38.05134 | 38.09271 | 39.49123 | 39.82755 | 40.81266
K stand ratioa meanc combat ratiog fabatch sva none
mean ranxs 1.764 2.064 2.598 3.982 4.592 6.044 6.956 8

Correlations estimated on real data - Batch-specific Correlations
lues ratioa ratiog meanc stand combat fabatch sva none
ean vaties | 39 74457 | 39.82068 | 39.95839 | 40.1671 | 40.1761 | 40.38741 | 40.44444 | 42.62075

K ratioa ratiog meanc stand combat fabatch sva none
mean ranks 1.13 2.152 3.112 4.82 5.024 5.736 6.026 8
Correlations estimated on real data - Batch-class-specific Correlation
| ratioa ratiog meanc combat | fabatch stand sva none
fnean vatues | 38 26202 | 38.3701 | 38.66762 | 38.93779 | 38.9477 | 38.97117 | 39.28459 | 41.79299
ratioa ratiog meanc fabatch | combat stand sva none

mean ranks

1.174 2.218 3.354 4.69 4.946 5.468 6.15 8
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Table S3: Means of the values of metric klmetr and of their ranks among the different methods over all
simulated datasets separated into simulation scenario and method. In each row the results are listed
in descending order according to mean performance in terms of the original values and their ranks,
respectively.

Factor induced correlations - Common Correlations

1 combat stand fabatch | meanc ratioa ratiog sva none
mean vatues | 006141 | 0.07561 | 0.32144 | 0.4242 | 1.34917 | 1.44874 | 3.78636 | 3.96088
combat stand fabatch | meanc ratioa ratiog sva none

mean ranks |y g4q | 1,656 3.164 | 3836 | 5.002 | 5998 | 7.342 | 7.658

Factor induced correlations - Batch-specific Correlations

1 combat stand fabatch | meanc ratioa ratiog sva none
mean vatues | g 02796 | 0.03953 | 0.25008 | 0.45892 | 1.41785 | 1.56052 | 1.66582 | 2.65573
K combat stand fabatch | meanc ratioa ratiog sva none
mean Tanks g gq4 1.656 3.036 3.964 | 5.198 6.376 | 6.426 8
Factor induced correlations - Batch-class-specific Correlations
1 combat stand fabatch | meanc ratioa ratiog sva none
ean vatues | 03325 | 0.04196 | 0.25189 | 0.44475 | 1.41077 | 1.55757 | 1.61859 | 2.61917
K combat stand fabatch | meanc ratioa sva ratiog none
ean ranks g 394 1.606 3.05 3.95 5.2 6.382 | 6.418 8
Correlations estimated on real data - Common Correlations
1 combat stand fabatch sva meanc ratioa ratiog none
mean vaties | 03725 | 0.06081 | 0.09927 | 0.27584 | 0.33733 | 1.32624 | 1.44356 | 3.86244
K combat stand fabatch sva meanc ratioa ratiog none
mean Tanks g o7 1.938 2.794 4.286 | 4.704 6 7 8
Correlations estimated on real data - Batch-specific Correlations
1 combat stand fabatch | meanc sva ratioa ratiog none
mean vates | 17189 | 0.19011 | 0.23987 | 0.44967 | 0.69586 | 1.40077 | 1.53715 | 4.57746
K combat stand fabatch | meanc sva ratioa ratiog none
mean Tanks | g 389 1.888 2.748 4.066 | 4.922 5.994 7 8
Correlations estimated on real data - Batch-class-specific Correlation
1 combat stand fabatch | meanc sva ratioa ratiog none
Hean vatues | 14984 | 0.16164 | 0.23314 | 0.35449 | 0.66427 | 0.94171 | 1.0381 | 3.75182
combat stand fabatch | meanc sva ratioa ratiog none

mean ranks 1.372 1.874 2.894 3.882 5.218 5.856 6.904 8
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Table S4: Means of the values of metric pvca and of their ranks among the different methods over all
simulated datasets separated into simulation scenario and method. In each row the results are listed
in descending order according to mean performance in terms of the original values and their ranks,

respectively.
Factor induced correlations - Common Correlations

| sva fabatch | combat meanc ratioa stand none ratiog
mean vatues | g.04174 | 0.04079 | 0.03155 | 0.03139 | 0.03047 | 0.02972 | 0.02643 | 0.02634

K sva fabatch | combat meanc ratioa stand ratiog none

ean Tatis 1.69 1.88 3.874 4.086 4.752 5.386 7.044 7.288

Factor induced correlations - Batch-specific Correlations

1 sva fabatch stand combat | meanc ratioa none ratiog
mean vatues | 04362 | 0.04099 | 0.03228 | 0.02981 | 0.02956 | 0.02743 | 0.02432 | 0.02209
sva fabatch stand combat | meanc ratioa none ratiog

mean ranks 1.482 1.868 3.212 4.372 4.696 5.626 7.122 7.622

Factor induced correlations - Batch-class-specific Correlations
1 sva fabatch stand combat | meanc ratioa none ratiog
ean Vatues | 04376 | 0.04053 | 0.03172 | 0.02988 | 0.02964 | 0.02771 | 0.02459 | 0.02254

K sva fabatch stand combat | meanc ratioa none ratiog
mean ranks |- g 37 1.986 3.436 4.362 | 4.604 | 5568 | 7.154 7.52

Correlations estimated on real data - Common Correlations

| sva fabatch stand combat | meanc ratioa ratiog none

mean vates | 04484 | 0.03385 | 0.0301 | 0.02528 | 0.02505 | 0.0242 | 0.02065 | 0.01921
K sva fabatch stand combat | meanc ratioa ratiog none
mean ranks g 032 2.394 2.932 4.804 5.032 5.276 6.96 7.57

Correlations estimated on real data - Batch-specific Correlations

1 sva stand fabatch | combat | meanc ratioa ratiog none

mean vatues | 04494 | 0.03349 | 0.03294 | 0.02878 | 0.02822 | 0.02702 | 0.0229 | 0.02276
K sva stand fabatch | combat | meanc ratioa ratiog none
mean ranks g 008 2.54 2.888 4.474 4.96 5.41 7.248 7.472

Correlations estimated on real data - Batch-class-specific Correlation

1 sva fabatch stand combat | meanc ratioa ratiog none

mean vaties | .04893 | 0.03542 | 0.03463 | 0.0301 | 0.02965 | 0.02862 | 0.02497 | 0.02351
sva stand fabatch | combat | meanc ratioa ratiog none

mean ranks | gog 2.662 2.76 4.602 | 5.002 5.33 7.042 | 7.594
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Table S5: Means of the values of metric diffexpr and of their ranks among the different methods over
all simulated datasets separated into simulation scenario and method. In each row the results are listed
in descending order according to mean performance in terms of the original values and their ranks,
respectively.

Factor induced correlations - Common Correlations

| sva fabatch | combat stand meanc ratioa ratiog none
mean vates | 16971 | 0.16407 | 0.16098 | 0.16097 | 0.1603 | 0.15957 | 0.15924 | 0.15215
sva fabatch | combat stand meanc ratioa ratiog none

mean ranks 3.192 3.926 4.273 4.361 4.558 4.753 4.844 6.093

Factor induced correlations - Batch-specific Correlations

1 sva fabatch | combat stand meanc ratioa ratiog none
fmean values | g 14241 | 0.13769 | 0.13267 | 0.13246 | 0.13195 | 0.13094 | 0.13074 | 0.12615
sva fabatch | combat stand meanc ratioa ratiog none

mean ranks 3.202 3.821 4.442 4.448 4.548 4.849 4.898 5.792

Factor induced correlations - Batch-class-specific Correlations
1 sva fabatch stand combat meanc ratiog ratioa none
mean vaties g 1414 | 0.13553 | 0.12975 | 0.12949 | 0.12902 | 0.12798 | 0.12777 | 0.12367

K sva fabatch stand combat meanc ratiog ratioa none
mean ranks |- 9 936 3.801 4.477 | 4.508 4.618 4.909 | 5.015 | 5.736

Correlations estimated on real data - Common Correlations

1 sva stand combat | meanc | fabatch ratioa ratiog none

mean vaties | 16337 | 0.15697 | 0.1568 | 0.15587 | 0.15579 | 0.15554 | 0.1552 | 0.14817
K sva stand combat | meanc | fabatch | ratioa ratiog none
riean ranks 3.62 4.134 4.163 4.433 4.56 4.572 4.64 5.878

Correlations estimated on real data - Batch-specific Correlations

1 sva fabatch | combat stand meanc ratiog ratioa none

mean vatues | 16086 | 0.16064 | 0.15724 | 0.15721 | 0.15659 | 0.15598 | 0.15595 | 0.14802
fabatch sva combat stand meanc ratiog ratioa none

mean ranks 3.772 3.791 4.236 4.299 4.448 4.628 4.635 6.191

Correlations estimated on real data - Batch-class-specific Correlation

1 sva fabatch stand combat meanc ratioa ratiog none
THeat vatues | 16986 | 0.16221 | 0.158 | 0.15792 | 0.15711 | 0.15637 | 0.15621 | 0.14918
sva fabatch stand combat meanc ratioa ratiog none

mean ranks 3.58 3.689 | 4.235 | 4.314 4.528 4.755 | 4.803 | 6.096
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Table S6: Means of the values of metric skewdiv and of their ranks among the different methods over all
simulated datasets separated into simulation scenario and method. In each row the results are listed in
descending order according to mean performance in terms of the original values and their ranks, respec-
tively.

Factor induced correlations - Common Correlations

| sva ratioa meanc combat | fabatch stand ratiog none
mean vaties | 00535 | 0.0054 | 0.00547 | 0.0055 | 0.00571 | 0.00573 | 0.00651 | 0.02865
K ratioa meanc sva combat | fabatch stand ratiog none
mean ranks g 514 3.696 3.832 3.852 4.124 4.252 4.73 8
Factor induced correlations - Batch-specific Correlations
1 ratioa meanc sva stand fabatch | combat | ratiog none
mean vames | 00509 | 0.00519 | 0.00524 | 0.00543 | 0.00544 | 0.00556 | 0.00701 | 0.0246
K ratioa meanc sva fabatch stand combat ratiog none
mean ranks |3 402 3.612 3.722 3.97 4 4.08 5.214 8

Factor induced correlations - Batch-class-specific Correlations
) ratioa meanc sva combat | fabatch stand ratiog none
mean vaties | g 00515 | 0.00527 | 0.00528 | 0.00544 | 0.00548 | 0.0055 | 0.00712 | 0.02349

K ratioa meanc sva fabatch | combat stand ratiog none
mean ranks | 3 486 3.724 3.796 3.872 3.89 4.022 5.21 8
Correlations estimated on real data - Common Correlations
! sva fabatch meanc ratioa stand combat ratiog none
mean vaties | g 0p545 | 0.00571 | 0.00692 | 0.00695 | 0.00716 | 0.00722 | 0.00751 | 0.02868
K sva fabatch meanc ratioa combat stand ratiog none
mean ranks |- g o7 3.266 4.062 4.094 4.426 4.432 4.648 8
Correlations estimated on real data - Batch-specific Correlations
| sva ratioa fabatch meanc combat stand ratiog none
mean vatues | g 00552 | 0.00572 | 0.00574 | 0.00584 | 0.00591 | 0.00608 | 0.00659 | 0.02892
K ratioa sva meanc fabatch | combat stand ratiog none
mean ranks | g 599 3.762 3.832 3.848 3.956 4.47 4.54 8
Correlations estimated on real data - Batch-class-specific Correlation
1 sva fabatch ratioa meanc stand combat | ratiog none
mean vaties | 00547 | 0.00573 | 0.00573 | 0.00581 | 0.00601 | 0.00602 | 0.00674 | 0.0285
ratioa sva meanc fabatch | combat stand ratiog none

mean ranks

3.566 3.626 3.876 3.95 4.074 4.222 4.686 8
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Table S7: Means of the values of metric corbeaf and of their ranks among the different methods over
all simulated datasets separated into simulation scenario and method. In each row the results are
listed in descending order according to mean performance in terms of the original values and their
ranks, respectively.

Factor induced correlations - Common Correlations

I none | combat | meanc ratioa stand ratiog sva fabatch
mean values || 0.86018 | 0.84427 | 0.83774 | 0.83067 | 0.81446 | 0.66124 | 0.62064
K none | combat | meanc ratioa stand ratiog sva fabatch
mean ranks 1 9 3 4 5 6 7 8
Factor induced correlations - Batch-specific Correlations
1 none | combat | meanc ratioa stand ratiog sva fabatch
mean vaiues |3 | 0.87781 | 0.86351 | 0.85656 | 0.84845 | 0.82682 | 0.64111 | 0.59071
K none | combat | meanc ratioa stand ratiog sva fabatch
fiean ranks 1 2 3 4 5 6 7.006 7.994
Factor induced correlations - Batch-class-specific Correlations
1 none | combat | meanc ratioa stand ratiog sva fabatch
mean vatues |1y | 0.87943 | 0.8651 | 0.85816 | 0.85006 | 0.828 | 0.64263 | 0.59331
K none | combat | meanc ratioa stand ratiog sva fabatch
fiean ranks 1 2 3 4 5 6 7.006 7.994
Correlations estimated on real data - Common Correlations
| none | combat | meanc ratioa stand ratiog fabatch sva
mean vatues |y |1 0.86037 | 0.84442 | 0.8379 | 0.83086 | 0.81468 | 0.72987 | 0.64994
K none | combat | meanc ratioa stand ratiog | fabatch sva
mean ranks 1 9 3 4 5 6 7 N
Correlations estimated on real data - Batch-specific Correlations
lues | Bone combat | meanc ratioa stand ratiog | fabatch sva
mean vatues |y 1 (.86035 | 0.84433 | 0.83781 | 0.83078 | 0.81458 | 0.76653 | 0.69691
K none | combat | meanc ratioa stand ratiog | fabatch sva
ean Tahks 1 2 3 4 5 6 7.002 7.998
Correlations estimated on real data - Batch-class-specific Correlation
1 none | combat | meanc ratioa stand ratiog | fabatch sva
mean vatues || 0.86023 | 0.84423 | 0.83771 | 0.83071 | 0.81446 | 0.75314 | 0.68924
none | combat | meanc ratioa stand ratiog fabatch sva

mean ranks | 2 3 4 5 6.002 | 7.024 7.974
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