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A Description of existing batch effect adjustment methods

A.1 ComBat

This method assumes the following model for the observed data xijg:

xijg = αg + aT
ijβg + γjg + δjgεijg, εijg ∼ N(0, σ2

g).

Here all involved parameters are as in the Section “Methods” of the main paper. Note that

the restriction to binary target variables, which is not necessary in general for the application of

ComBat, is required for the application of our method.

The unobserved counterpart x∗

ijg of xijg not affected by batch effects is assumed to be

x∗

ijg = αg + aT
ijβg + εijg, εijg ∼ N(0, σ2

g).

The goal of batch effect correction via ComBat is to estimate these unobserved x∗

ijg-values. The

following transformation of the observed xijg-values would provide the true x∗

ijg-values:

√
Var(x∗

ijg)

(
xijg − E(xijg)√

Var(xijg)

)
+ E(x∗

ijg)

= σg

(
xijg − (αg + aT

ijβg + γjg)

δjgσg

)
+ αg + aT

ijβg (1)

= αg + aT
ijβg + εijg = x∗

ijg.

In practice, however, the parameters involved in Eq. (1) are not known and have to be estimated.

In particular, γjg/σg and δjg are estimated using empirical Bayes to obtain more robust results.

See [1] for details on the estimation procedure. Note that in the analyses performed in the main

paper we do not include the term aT
ijβg in the adjustment. The first reason for this is that in the

Section “Application in cross-batch prediction” of the main paper we study cross-batch prediction.

Here the class values aij are not known in the test data. The second reason is that using the class

values aij together with the estimates of βg may lead to an artificially increased class signal,

because the estimates of βg depend on the class values aij . This kind of mechanism is discussed

in detail, but in slightly other contexts, in the Sections “Using estimated probabilities instead of

actual classes” and “Artificial increase of measured class signal by applying SVA” of the main

paper.

A.2 SVA

The model for the observed data is given by:

xijg = αg + aT
ijβg +

m∑

l=1

bglZijl + εijg, (2)

Var(εijg) = σ2

g .
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Here αg and aT
ijβg are as in the previous subsection and Zij1, . . . , Zijm are random latent factors

with loadings bg1, . . . , bgm.

The unobserved, batch-free data is correspondingly:

x∗

ijg = αg + aT
ijβg + εijg, Var(εijg) = σ2

g . (3)

Note again that in the SVA-model the batch membership is assumed to be unknown. For judging

the appropriateness of the SVA algorithm it is important to specify the model underlying SVA

as precisely as possible. Out of the following two facts it can be followed that the distribution of

the latent factors can be different for each observation—in the extreme case. Firstly, the assumed

form of the batch-free data in Eq. (3) implies that the distortions between the batches are induced

fully by the latent factors. Secondly, each observation may come from a different batch with own

mean-, covariance- and correlation-structure.

The SVA batch effect adjustment is performed by substracting
∑m

l=1
bglZijl from xijg:

xijg −

m∑

l=1

bglZijl = αg + aT
ijβg + εijg = x∗

ijg.

The latent factors are estimated as the first m right singular vectors from a singular value decom-

position (SVD). In the Section “Background” of the main paper we stressed that inhomogeneities

in datasets are not only due to batch effects, but also due to the biological signal of interest, i.e.

the term aT
ijβg in Eq. (2) and (3). Therefore, we noted that the biological signal of interest has

to be protected during factor estimation in FAbatch. In SVA, to protect the biological signal,

before performing the SVD on the transposed covariate matrix, the variable values are weighted

by the estimated probabilities that the corresponding variables are associated with unmeasured

confounders, but not with the binary variable representing the biological signal. The factor load-

ings are estimated by linear models. The “frozen SVA” procedure [2] is an extension of SVA [3],

which we will detail in the following subsection.

A.2.1 frozen SVA (fSVA)

In addition to describing the two algorithms gathered under the designation “frozen SVA”, in this

subsection we demonstrate that the “fast fSVA algorithm” is the addon procedure for SVA in the

vein of the Section “Addon adjustment of independent batches” of the main paper.

The bgl- and the βg-values are two of the batch-unspecific parameters involved in the SVA

adjustment. The βg-values are implicitly involved, namely when multiplying the variable values

by the estimated probabilities that the corresponding variable is associated with unmeasured

confounders, but not with the binary variable representing the biological signal. In both frozen

SVA algorithms, when adjusting for batch effects in new observations the estimates of the bgl-

values obtained on the training data are used. Also, for multiplying the variable values of a

new observation by the estimated probabilities that the corresponding variable is associated with

unmeasured confounders but not with the target variable, both algorithms use the estimates

obtained on the training data. The distinguishing feature between the two algorithms is the way

estimates of the factors Zijl for new observations are obtained.
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In the first frozen SVA algorithm, denoted as “exact fSVA algorithm” in [2], the latent factor

vector for a new observation is estimated in the following way: 1) Combine the training data

with the values of the new observation and multiply by the probabilities estimated on the training

data; 2) Re-perform the SVD on the combined data from 1) and use the right singular vector

corresponding to the new observation as the estimate of its vector of latent factors. This algorithm

is, however, not an addon procedure. In this algorithm, the estimate of the latent factor vector

for the test observation originates from a different SVD than the estimated latent factors of the

training observations. Therefore, this new estimated latent factor behaves—at least to some

extent—differently than that of the training data. As a consequence, when adjusting the new

observation a feature of addon procedures is not given: the same kind of transformation must

be performed for independent batches. This problem can be assumed to have a lower impact for

larger training datasets. Here the latent factor model estimated on the training data depends less

on whether a single new observation is included into the SVD or not. A solution to the problem of

differently behaving latent factor estimates in training and test data would be the following: for

adjusting the training data use the estimates of the latent factors (and their loadings) obtained

in the second SVD performed after including the test observation. This would, however, again

not correspond to an addon procedure, because then the adjusted training data would be changed

each time a new observation is included, which is not allowed as stated in our definition of addon

procedures given in the Section “Addon adjustment of independent batches” of the main paper.

The second frozen SVA algorithm, denoted as “fast fSVA algorithm” in [2] takes a different

approach. Here, the SVD is not re-performed entirely on the combination of the training data and

the new observation. Instead, one essentially performs a SVD for calculating the right singular

vector corresponding to the new observation, in which the left singular vectors and singular values

are fixed to the values of these parameters obtained in the SVA, which had been performed on the

training data. Thus in this adjustment, it is taken into account that the left singular vectors and

singular values are batch-unspecific parameters. The resulting estimated latent factor vector of the

new observation behaves in the same way as that of the training data, because here it originates

from the same SVD. This algorithm does correspond to an addon procedure, because the same

kind of transformation is performed for independent batches, i.e. observations in the SVA model,

without the need to change the training data.

A.3 Further batch effect adjustment methods considered in the com-

parison studies

A.3.1 Mean-centering

From each measurement the mean of the values of the corresponding variable in the corresponding

batch is substracted:

x̂∗

ijg = xijg − µ̂jg, (4)

where µ̂jg = (1/nj)
∑

j xijg.
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A.3.2 Standardization

The values of each variable are centered and scaled per batch:

x̂∗

ijg =
xijg − µ̂jg√

σ̂2

jg

,

where µ̂jg as in (4) and σ̂2

jg = [1/(nj − 1)]
∑

i(xijg − µ̂jg)
2.

A.3.3 Ratio-A

Each measurement is divided by the arithmetic mean of the values of the variable in the corre-

sponding batch [4]:

x̂∗

ijg =
xijg

µ̂jg

,

where µ̂jg is that same as in (4).

A.3.4 Ratio-G

Each measurement is divided by the geometric mean of the values of the variable in the corre-

sponding batch [4]:

x̂∗

ijg =
xijg

̂µg,geom

,

where ̂µg,geom = nj

√∏nj

i xijg.
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B Plots used in verification of model assumptions
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Fig. S1: Data values against fitted values resulting from FAbatch method. The contour lines
represent two-dimensional kernel density estimates. The dashed line mark the bisectors and the
red lines are LOESS estimates of the associations. The grey dots are in each case random subsets
of size 1000 of all values.
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Fig. S2: Data values against fitted values resulting from ComBat method. The contour lines
represent two-dimensional kernel density estimates. The dashed line mark the bisectors and the
red lines are LOESS estimates of the associations. The grey dots are in each case random subsets
of size 1000 of all values.
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Fig. S3: Deviations from fitted values resulting from FAbatch method against corresponding fitted
values. The contour lines represent two-dimensional kernel density estimates. The dashed lines
mark the horizontal zero lines and the red lines are LOESS estimates of the associations. The
grey dots are in each case random subsets of size 1000 of all values.
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Fig. S4: Deviations from fitted values resulting from ComBat method against corresponding fitted
values. The contour lines represent two-dimensional kernel density estimates. The dashed lines
mark the horizontal lines and the red lines are LOESS estimates of the associations. The grey
dots are in each case random subsets of size 1000 of all values.
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Fig. S5: Density estimates of the deviations from the fitted values divided by their standard
deviations for the FAbatch method. The dashed lines mark the vertical zero lines.
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Fig. S6: Density estimates of the deviations from the fitted values divided by their standard
deviations for the ComBat method. The dashed lines mark the vertical zero lines.
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C Visualizations of the batch effects in the used datasets:

plots of the first two principal components out of Prin-

cipal Component Analysis
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Fig. S7: Each subplot shows the first two principal components out of PCA performed on the
covariate matrix of one of the datasets used. In each case the colors distinguish the batches, and
the numbers distinguish the two classes “diseased” (2) vs. “healthy control” (1). The contour
lines represent batch-wise two-dimensional kernel estimates and the diamonds represent the batch-
wise centers of gravities of the points. The plots are arranged in ascending order according to
the strength of batch effects with respect to the following criterion: Average over the euclidean
distances between all possible pairs of points in the plot from different batches divided by the
analoguous mean over all such pairs from the same batches.
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D Target variables of datasets used in comparison study

ColonGastricEsophagealcSNPArray: “gastric cancer” (y = 2) vs. “healthy” (y = 1)

AgeDichotomTranscr: “chronic alcoholic” (y = 2) vs. “healthy” (y = 1)

EthnicityMethyl: “Caucasian, from Utah and of European ancestry” (y = 2) vs. “Yorubian,

from Ibadan Nigeria” (y = 1)

BipolardisorderMethyl: “bipolar disorder” (y = 2) vs. “healthy” (y = 1)

PostpartumDepressionMethyl: “depression post partum” (y = 2) vs. “healthy” (y = 1)

AutismTranscr: “autistic” (y = 2) vs. “healthy” (y = 1)

BreastcTranscr: “breast cancer” (y = 2) vs. “healthy” (y = 1)

BreastCancerConcatenation: “breast cancer” (y = 2) vs. “healthy” (y = 1)

IUGRTranscr: “intrauterine growth restriction” (y = 2) vs. “healthy” (y = 1)

IBSTranscr: “constipation-predominant/diarrhoea-predominant irritable bowel syndrome” (y =

2) vs. “healthy” (y = 1)

SarcoidosisTranscr: “sarcoidosis” (y = 2) vs. “healthy” (y = 1)

pSSTranscr: “Sjogren’s/sicca syndrome” (y = 2) vs. “healthy” (y = 1)

AlcoholismTranscr: “alcoholic” (y = 2) vs. “healthy” (y = 1)

WestNileVirusTranscr: “severe West Nile virus infection” (y = 2) vs. “asymptomatic West

Nile virus infection” (y = 1)
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E Reasons for batch effect structures of datasets used in

comparison study

EthnicityMethyl: “To limit the potential bias due to experimental batches, samples were ran-

domized by population identity and hybridized in three batches.” [5]

BreastcTranscr: “To minimize possible processing and chip lot effects, samples were assigned

to processing batches of seven to nine pairs, and batches had similar distributions of age, race, and

date of enrollment. For array hybridization, each batch was assigned to one of two different chip

lots (’A’ and ’B’) in a manner designed to ensure a balance of these same characteristics. [. . . ]

Laboratory personnel were blind to case control status and other phenotype information.” [6]

BreastCancerConcatenation: Concatenation of five independent datasets.

IUGRTranscr: Citation from the description on the ArrayExpress-website: “[. . . ] were col-

lected during the years of 2004-2008 and hybridized in two batches to microarrays. Samples were

randomized across arrays to control for array and batch variability.”

AlcoholismTranscr: The batch variable in the sdrf.txt-file is designated as “labeling batch”,

from which we deduced that the batch structure is due to labeling for this dataset.
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F Boxplots of the metric values for simulated datasets per

method and simulation scenario
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Fig. S8: Values of metric sepscore for all simulated datasets separated into simulation scenario
and method.
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Fig. S9: Values of metric avedist for all simulated datasets separated into simulation scenario
and method.
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Fig. S10: Values of metric klmetr for all simulated datasets separated into simulation scenario
and method.
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Fig. S11: Values of metric pvca for all simulated datasets separated into simulation scenario and
method.
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Fig. S12: Values of metric diffexpr for all simulated datasets separated into simulation scenario
and method.

19



Design A − ComCor Design B − ComCor

Design A − BatchCor Design B − BatchCor

Design A − BatchClassCor Design B − BatchClassCor

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

no
ne

fab
at

ch

co
m

ba
t

sv
a

m
ea

nc
sta

nd
ra

tio
g

ra
tio

a
no

ne

fab
at

ch

co
m

ba
t

sv
a

m
ea

nc
sta

nd
ra

tio
g

ra
tio

a

Fig. S13: Values of metric skewdiv for all simulated datasets separated into simulation scenario
and method.
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Fig. S14: Values of metric corbeaf for all simulated datasets separated into simulation scenario
and method.
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Table S1: Means of the values of metric sepscore and of their ranks among the different methods over

all simulated datasets separated into simulation scenario and method. In each row the results are listed

in descending order according to mean performance in terms of the original values and their ranks,

respectively.

Factor induced correlations - Common Correlations

mean values
fabatch combat stand meanc ratiog ratioa sva none

0.04259 0.10329 0.10983 0.26425 0.34545 0.36033 0.40368 0.41272

mean ranks
fabatch combat stand meanc ratiog ratioa sva none

1 2.272 2.728 4.012 5.159 5.851 7.236 7.742

Factor induced correlations - Batch-specific Correlations

mean values
fabatch combat stand meanc ratiog sva ratioa none

0.03983 0.06467 0.07055 0.2652 0.33873 0.34239 0.3529 0.3767

mean ranks
fabatch combat stand meanc ratiog sva ratioa none

1.184 2.168 2.648 4.022 5.807 5.818 6.485 7.868

Factor induced correlations - Batch-class-specific Correlations

mean values
fabatch combat stand meanc ratiog sva ratioa none

0.04157 0.06515 0.07127 0.263 0.33364 0.34064 0.34989 0.37793

mean ranks
fabatch combat stand meanc ratiog sva ratioa none

1.21 2.138 2.652 4.024 5.698 5.841 6.515 7.922

Correlations estimated on real data - Common Correlations

mean values
combat fabatch stand sva meanc ratiog ratioa none

0.09024 0.09931 0.11938 0.17365 0.21915 0.32436 0.33918 0.41279

mean ranks
combat fabatch stand sva meanc ratiog ratioa none

1.252 1.825 2.939 4.056 4.928 6.215 6.785 8

Correlations estimated on real data - Batch-specific Correlations

mean values
fabatch combat stand meanc sva ratiog ratioa none

0.08246 0.09017 0.10397 0.16851 0.26416 0.32547 0.34139 0.46142

mean ranks
fabatch combat stand meanc sva ratiog ratioa none

1.522 1.742 2.806 3.932 5.068 6.098 6.832 8

Correlations estimated on real data - Batch-class-specific Correlation

mean values
combat stand fabatch meanc ratioa ratiog sva none

0.10634 0.11988 0.13248 0.146 0.28421 0.29216 0.30619 0.44789

mean ranks
combat stand fabatch meanc ratioa ratiog sva none

1.444 2.616 2.809 3.139 5.574 6.072 6.346 8
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Table S2: Means of the values of metric avedist and of their ranks among the different methods over all simulated

datasets separated into simulation scenario and method. In each row the results are listed in descending order

according to mean performance in terms of the original values and their ranks, respectively.

Factor induced correlations - Common Correlations

mean values
stand combat meanc ratioa ratiog fabatch none sva

37.42382 37.53441 37.58121 37.59354 37.69106 40.49195 40.95461 42.10377

mean ranks
stand combat meanc ratioa ratiog fabatch none sva

1.016 2.212 3.354 3.446 4.972 6.198 6.802 8

Factor induced correlations - Batch-specific Correlations

mean values
ratioa meanc stand ratiog combat none fabatch sva

37.40834 37.50749 37.50828 37.52306 37.57991 39.7664 39.90564 41.54491

mean ranks
ratioa stand meanc ratiog combat none fabatch sva

1.228 2.768 2.934 3.448 4.622 6.354 6.646 8

Factor induced correlations - Batch-class-specific Correlations

mean values
ratioa meanc stand ratiog combat none fabatch sva

37.39577 37.49533 37.49946 37.512 37.57149 39.78901 39.93852 41.58123

mean ranks
ratioa stand meanc ratiog combat none fabatch sva

1.228 2.752 2.878 3.498 4.644 6.358 6.642 8

Correlations estimated on real data - Common Correlations

mean values
stand ratioa meanc combat ratiog fabatch sva none

37.98839 37.98975 38.01252 38.05134 38.09271 39.49123 39.82755 40.81266

mean ranks
stand ratioa meanc combat ratiog fabatch sva none

1.764 2.064 2.598 3.982 4.592 6.044 6.956 8

Correlations estimated on real data - Batch-specific Correlations

mean values
ratioa ratiog meanc stand combat fabatch sva none

39.74457 39.82068 39.95839 40.1671 40.1761 40.38741 40.44444 42.62075

mean ranks
ratioa ratiog meanc stand combat fabatch sva none

1.13 2.152 3.112 4.82 5.024 5.736 6.026 8

Correlations estimated on real data - Batch-class-specific Correlation

mean values
ratioa ratiog meanc combat fabatch stand sva none

38.26292 38.3701 38.66762 38.93779 38.9477 38.97117 39.28459 41.79299

mean ranks
ratioa ratiog meanc fabatch combat stand sva none

1.174 2.218 3.354 4.69 4.946 5.468 6.15 8
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Table S3: Means of the values of metric klmetr and of their ranks among the different methods over all

simulated datasets separated into simulation scenario and method. In each row the results are listed

in descending order according to mean performance in terms of the original values and their ranks,

respectively.

Factor induced correlations - Common Correlations

mean values
combat stand fabatch meanc ratioa ratiog sva none

0.06141 0.07561 0.32144 0.4242 1.34917 1.44874 3.78636 3.96088

mean ranks
combat stand fabatch meanc ratioa ratiog sva none

1.344 1.656 3.164 3.836 5.002 5.998 7.342 7.658

Factor induced correlations - Batch-specific Correlations

mean values
combat stand fabatch meanc ratioa ratiog sva none

0.02796 0.03953 0.25008 0.45892 1.41785 1.56052 1.66582 2.65573

mean ranks
combat stand fabatch meanc ratioa ratiog sva none

1.344 1.656 3.036 3.964 5.198 6.376 6.426 8

Factor induced correlations - Batch-class-specific Correlations

mean values
combat stand fabatch meanc ratioa ratiog sva none

0.03325 0.04196 0.25189 0.44475 1.41077 1.55757 1.61859 2.61917

mean ranks
combat stand fabatch meanc ratioa sva ratiog none

1.394 1.606 3.05 3.95 5.2 6.382 6.418 8

Correlations estimated on real data - Common Correlations

mean values
combat stand fabatch sva meanc ratioa ratiog none

0.03725 0.06081 0.09927 0.27584 0.33733 1.32624 1.44356 3.86244

mean ranks
combat stand fabatch sva meanc ratioa ratiog none

1.278 1.938 2.794 4.286 4.704 6 7 8

Correlations estimated on real data - Batch-specific Correlations

mean values
combat stand fabatch meanc sva ratioa ratiog none

0.17189 0.19011 0.23987 0.44967 0.69586 1.40077 1.53715 4.57746

mean ranks
combat stand fabatch meanc sva ratioa ratiog none

1.382 1.888 2.748 4.066 4.922 5.994 7 8

Correlations estimated on real data - Batch-class-specific Correlation

mean values
combat stand fabatch meanc sva ratioa ratiog none

0.14284 0.16164 0.23314 0.35449 0.66427 0.94171 1.0381 3.75182

mean ranks
combat stand fabatch meanc sva ratioa ratiog none

1.372 1.874 2.894 3.882 5.218 5.856 6.904 8
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Table S4: Means of the values of metric pvca and of their ranks among the different methods over all

simulated datasets separated into simulation scenario and method. In each row the results are listed

in descending order according to mean performance in terms of the original values and their ranks,

respectively.

Factor induced correlations - Common Correlations

mean values
sva fabatch combat meanc ratioa stand none ratiog

0.04174 0.04079 0.03155 0.03139 0.03047 0.02972 0.02643 0.02634

mean ranks
sva fabatch combat meanc ratioa stand ratiog none

1.69 1.88 3.874 4.086 4.752 5.386 7.044 7.288

Factor induced correlations - Batch-specific Correlations

mean values
sva fabatch stand combat meanc ratioa none ratiog

0.04362 0.04099 0.03228 0.02981 0.02956 0.02743 0.02432 0.02209

mean ranks
sva fabatch stand combat meanc ratioa none ratiog

1.482 1.868 3.212 4.372 4.696 5.626 7.122 7.622

Factor induced correlations - Batch-class-specific Correlations

mean values
sva fabatch stand combat meanc ratioa none ratiog

0.04376 0.04053 0.03172 0.02988 0.02964 0.02771 0.02459 0.02254

mean ranks
sva fabatch stand combat meanc ratioa none ratiog

1.37 1.986 3.436 4.362 4.604 5.568 7.154 7.52

Correlations estimated on real data - Common Correlations

mean values
sva fabatch stand combat meanc ratioa ratiog none

0.04484 0.03385 0.0301 0.02528 0.02505 0.0242 0.02065 0.01921

mean ranks
sva fabatch stand combat meanc ratioa ratiog none

1.032 2.394 2.932 4.804 5.032 5.276 6.96 7.57

Correlations estimated on real data - Batch-specific Correlations

mean values
sva stand fabatch combat meanc ratioa ratiog none

0.04494 0.03349 0.03294 0.02878 0.02822 0.02702 0.0229 0.02276

mean ranks
sva stand fabatch combat meanc ratioa ratiog none

1.008 2.54 2.888 4.474 4.96 5.41 7.248 7.472

Correlations estimated on real data - Batch-class-specific Correlation

mean values
sva fabatch stand combat meanc ratioa ratiog none

0.04893 0.03542 0.03463 0.0301 0.02965 0.02862 0.02497 0.02351

mean ranks
sva stand fabatch combat meanc ratioa ratiog none

1.008 2.662 2.76 4.602 5.002 5.33 7.042 7.594
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Table S5: Means of the values of metric diffexpr and of their ranks among the different methods over

all simulated datasets separated into simulation scenario and method. In each row the results are listed

in descending order according to mean performance in terms of the original values and their ranks,

respectively.

Factor induced correlations - Common Correlations

mean values
sva fabatch combat stand meanc ratioa ratiog none

0.16971 0.16407 0.16098 0.16097 0.1603 0.15957 0.15924 0.15215

mean ranks
sva fabatch combat stand meanc ratioa ratiog none

3.192 3.926 4.273 4.361 4.558 4.753 4.844 6.093

Factor induced correlations - Batch-specific Correlations

mean values
sva fabatch combat stand meanc ratioa ratiog none

0.14241 0.13769 0.13267 0.13246 0.13195 0.13094 0.13074 0.12615

mean ranks
sva fabatch combat stand meanc ratioa ratiog none

3.202 3.821 4.442 4.448 4.548 4.849 4.898 5.792

Factor induced correlations - Batch-class-specific Correlations

mean values
sva fabatch stand combat meanc ratiog ratioa none

0.1414 0.13553 0.12975 0.12949 0.12902 0.12798 0.12777 0.12367

mean ranks
sva fabatch stand combat meanc ratiog ratioa none

2.936 3.801 4.477 4.508 4.618 4.909 5.015 5.736

Correlations estimated on real data - Common Correlations

mean values
sva stand combat meanc fabatch ratioa ratiog none

0.16337 0.15697 0.1568 0.15587 0.15579 0.15554 0.1552 0.14817

mean ranks
sva stand combat meanc fabatch ratioa ratiog none

3.62 4.134 4.163 4.433 4.56 4.572 4.64 5.878

Correlations estimated on real data - Batch-specific Correlations

mean values
sva fabatch combat stand meanc ratiog ratioa none

0.16086 0.16064 0.15724 0.15721 0.15659 0.15598 0.15595 0.14802

mean ranks
fabatch sva combat stand meanc ratiog ratioa none

3.772 3.791 4.236 4.299 4.448 4.628 4.635 6.191

Correlations estimated on real data - Batch-class-specific Correlation

mean values
sva fabatch stand combat meanc ratioa ratiog none

0.16286 0.16221 0.158 0.15792 0.15711 0.15637 0.15621 0.14918

mean ranks
sva fabatch stand combat meanc ratioa ratiog none

3.58 3.689 4.235 4.314 4.528 4.755 4.803 6.096
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Table S6: Means of the values of metric skewdiv and of their ranks among the different methods over all

simulated datasets separated into simulation scenario and method. In each row the results are listed in

descending order according to mean performance in terms of the original values and their ranks, respec-

tively.

Factor induced correlations - Common Correlations

mean values
sva ratioa meanc combat fabatch stand ratiog none

0.00535 0.0054 0.00547 0.0055 0.00571 0.00573 0.00651 0.02865

mean ranks
ratioa meanc sva combat fabatch stand ratiog none

3.514 3.696 3.832 3.852 4.124 4.252 4.73 8

Factor induced correlations - Batch-specific Correlations

mean values
ratioa meanc sva stand fabatch combat ratiog none

0.00509 0.00519 0.00524 0.00543 0.00544 0.00556 0.00701 0.0246

mean ranks
ratioa meanc sva fabatch stand combat ratiog none

3.402 3.612 3.722 3.97 4 4.08 5.214 8

Factor induced correlations - Batch-class-specific Correlations

mean values
ratioa meanc sva combat fabatch stand ratiog none

0.00515 0.00527 0.00528 0.00544 0.00548 0.0055 0.00712 0.02349

mean ranks
ratioa meanc sva fabatch combat stand ratiog none

3.486 3.724 3.796 3.872 3.89 4.022 5.21 8

Correlations estimated on real data - Common Correlations

mean values
sva fabatch meanc ratioa stand combat ratiog none

0.00545 0.00571 0.00692 0.00695 0.00716 0.00722 0.00751 0.02868

mean ranks
sva fabatch meanc ratioa combat stand ratiog none

3.072 3.266 4.062 4.094 4.426 4.432 4.648 8

Correlations estimated on real data - Batch-specific Correlations

mean values
sva ratioa fabatch meanc combat stand ratiog none

0.00552 0.00572 0.00574 0.00584 0.00591 0.00608 0.00659 0.02892

mean ranks
ratioa sva meanc fabatch combat stand ratiog none

3.592 3.762 3.832 3.848 3.956 4.47 4.54 8

Correlations estimated on real data - Batch-class-specific Correlation

mean values
sva fabatch ratioa meanc stand combat ratiog none

0.00547 0.00573 0.00573 0.00581 0.00601 0.00602 0.00674 0.0285

mean ranks
ratioa sva meanc fabatch combat stand ratiog none

3.566 3.626 3.876 3.95 4.074 4.222 4.686 8
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Table S7: Means of the values of metric corbeaf and of their ranks among the different methods over

all simulated datasets separated into simulation scenario and method. In each row the results are

listed in descending order according to mean performance in terms of the original values and their

ranks, respectively.

Factor induced correlations - Common Correlations

mean values
none combat meanc ratioa stand ratiog sva fabatch

1 0.86018 0.84427 0.83774 0.83067 0.81446 0.66124 0.62064

mean ranks
none combat meanc ratioa stand ratiog sva fabatch

1 2 3 4 5 6 7 8

Factor induced correlations - Batch-specific Correlations

mean values
none combat meanc ratioa stand ratiog sva fabatch

1 0.87781 0.86351 0.85656 0.84845 0.82682 0.64111 0.59071

mean ranks
none combat meanc ratioa stand ratiog sva fabatch

1 2 3 4 5 6 7.006 7.994

Factor induced correlations - Batch-class-specific Correlations

mean values
none combat meanc ratioa stand ratiog sva fabatch

1 0.87943 0.8651 0.85816 0.85006 0.828 0.64263 0.59331

mean ranks
none combat meanc ratioa stand ratiog sva fabatch

1 2 3 4 5 6 7.006 7.994

Correlations estimated on real data - Common Correlations

mean values
none combat meanc ratioa stand ratiog fabatch sva

1 0.86037 0.84442 0.8379 0.83086 0.81468 0.72987 0.64994

mean ranks
none combat meanc ratioa stand ratiog fabatch sva

1 2 3 4 5 6 7 8

Correlations estimated on real data - Batch-specific Correlations

mean values
none combat meanc ratioa stand ratiog fabatch sva

1 0.86035 0.84433 0.83781 0.83078 0.81458 0.76653 0.69691

mean ranks
none combat meanc ratioa stand ratiog fabatch sva

1 2 3 4 5 6 7.002 7.998

Correlations estimated on real data - Batch-class-specific Correlation

mean values
none combat meanc ratioa stand ratiog fabatch sva

1 0.86023 0.84423 0.83771 0.83071 0.81446 0.75314 0.68924

mean ranks
none combat meanc ratioa stand ratiog fabatch sva

1 2 3 4 5 6.002 7.024 7.974
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