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Supplementary Note 

Single molecule detection 

A hypothesis test for the presence of a single molecule is performed for each camera pixel. In 
this test 𝐻! is the presence of a single molecule, i.e. the intensity of the single molecule being 
non-zero (𝜃! ≠ 0), and 𝐻! is the absence of a single molecule, i.e. the intensity being equal to 
zero (𝜃! = 0): 
 

𝐻!:𝜃! = 0,   𝜃!",  
𝐻!:𝜃! ≠ 0,   𝜃!". 

 
The intensity 𝜃! and background   𝜃!" are generally unknown and have to be estimated. The 
background needs to be estimated, but does not need to be tested (nuisance parameter), in 
contrast to the intensity. Values, intensity and background, are found by Maximum Likelihood 
Estimation (MLE), one estimate for each of the two hypotheses. The Maximum Likelihood 
values found by this procedure are used as input for the likelihood ratio test. The MLE procedure 
is described in earlier work (Smith et al., 2010). The position of the hypothetical emitter is fixed 
at the center of the pixel. Averaging over multiple positions inside the pixel area did not lead to 
an appreciable improvement. Including the position in the MLE procedure as an additional fit 
(nuisance) parameter led to a less robust behavior. 
 
The Image Formation Model 

The Point Spread Function (PSF) is approximated by a Gaussian distribution, which is known to 
be a valid approach in the context of 2D single emitter localization(Stallinga and Rieger, 2010): 
 

𝑃𝑆𝐹 𝑥,𝑦 =
1

2  𝜋  𝜎!!  
𝑒
! !
!!!!

[ !!!! !! !!!! !]
. 

 
This PSF must be integrated over the pixel area to arrive at the expected photon count at each 
pixel 𝑘: 

𝜇! = 𝜃!Δ𝐸 𝑥! − 𝑥! Δ𝐸 𝑦! − 𝑦! + 𝜃!", 
 
with 

ΔE 𝑢 =
1
2 erf

u+ 12
2  𝜎!

− erf
𝑢 − 12
2  𝜎!

   , 

 
where (𝑥! ,𝑦!) are the pixel coordinates in unit ( 𝑝𝑖𝑥𝑒𝑙 ) of pixel 𝑘, (𝑥!,𝑦!) is the location of the 
center of the PSF in unit 𝑝𝑖𝑥𝑒𝑙  and, 𝜎! is the PSF width, depending on  the numerical aperture 
( 𝑁𝐴 ), magnification ( 𝑀 ), pixel size ( Δ𝑝 )and the wavelength of the light ( 𝜆 ). 
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Generalized Likelihood Ratio Test Statistic 
The hypothesis test that best approximates the optimal Neyman-Pearson test (Kay, 1998) is the 
Generalized Likelihood Ratio Test (GLRT), where the Maximum Likelihood estimates of the 
parameter vectors (𝜃) for the two hypotheses are used instead of their true values (𝜃). The GLRT 
Statistic (𝑇!) is given by:  
 

𝑇! = 2 log
max
!!
!  ,!!"

!
𝑃   𝜃!!  ,𝜃!"! ; 𝑥   

max
!!"
!

𝑃 0,𝜃!"! ; 𝑥   
  

                            = 2 log
𝑃   𝜃!!, 𝜃!"! ; 𝑥
𝑃 0, 𝜃!"! ; 𝑥

, 

 
 
where 𝑃 𝜃!!, 𝜃!"! ; 𝑥  is the maximum likelihood of the measured data (𝑥) under hypothesis, 𝐻! 
and 𝑃   0, 𝜃!"! ; 𝑥  is the maximum likelihood of the measured data (𝑥) under hypothesis, 𝐻!. 
Here 𝑃(. ) is the likelihood function, which described the noise model of the camera used. We 
assume Poisson noise, which is a good assumption for EMCCD cameras (Smith et al., 2010), and 
can be easily be modified for sCMOS (Huang et al., 2013). The two MLE fits that are performed 
for each pixel must include photon counts from surrounding pixels where the size of this 
subregion depends on the width of the PSF (𝜎!). We choose the size of this subregion as small as 
possible without jeopardizing the localization precision (Smith et al., 2010),  𝑠 = 3(2𝜎! + 1). 
For pixels near the border of the image that do not have enough neighbors to fill the subregion no 
MLE and therefore no GRLT is performed. 
 
Up to now we have calculated the GRLT statistic (𝑇!) per pixel, but this value by itself does not 
have a useful meaning. As for any other test statistic its value can be converted into a false 
positive probability (P!"   = P(H!;H!)). This is done using the probability distribution of the test 
statistic. We have found (proof in the next section) that for this specific problem the false 
positive probability is given by: 𝑃!"   = 2𝐶𝐷𝐹(− 𝑇!   ) , where CDF is the cumulative 
distribution function of the standard normal distribution defined by: 
 

𝐶𝐷𝐹 𝑥 =   
1
2 1+ erf

𝑥
2  

. 

 
The distribution of the Generalized Likelihood Ratio Test Statistic 
Any hypothesis test returns a so-called p-value that measures the likelihood of the current value 
of the test statistic to be a false positive, i.e. that the value is wrongly classified as signal where it 
should have been background (probability of 𝐻! (signal) given 𝐻! (background)). Using this p-
value we decide if the measured difference is significant or not. Apart from the false positive 
probability, which is the distribution of 𝑇!  under the null hypothesis H! (P!"   = P(H!;H!)), we 
can also calculate the detection probability, which is the distribution of 𝑇!  under H!(P! =
P(H!;H! )). Below we show that the false positive probability is given by:   𝑃!"   =
2𝐶𝐷𝐹(− 𝑇!   ). 
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The GLRT uses estimated parameters instead of the true parameters and therefore we have to 
derive the distribution of the test statistic based on the properties of the estimator. The GRLT is 
formulated using MLE which is unbiased (if it exists and is unrestricted) and asymptotically 
attains, as the number of data points go to infinity (𝑛 → ∞), the minimal possible variance in the 
parameter estimate, the so called Cramer Rao Lower Bound (CRLB)4. Using this property we 
can derive the distribution of our test statistic. The CRLB is given by the inverse of the Fisher 
information matrix (Kay, 1993):  
 

𝐼 𝜃 = −𝐸
𝜕! log𝑃 𝜃; 𝑥

𝜕𝜃! , 

 
where the 𝐸 ∙  is the expectation operation and 𝑃 𝜃; 𝑥  is the likelihood of the parameters (𝜃) 
given the data (𝑥); and for an MLE that attains the CRLB (𝑛 → ∞) we can make the following 
Taylor expansion around the true value (𝜃): log𝑃 𝜃; 𝑥 = − !

!
𝜃 − 𝜃 !𝐼 𝜃 𝜃 − 𝜃 + 𝑐 𝜃 , 

which is consistent with the fact that in expectation the second derivative results in the Fisher 
information. This is an important expression, because equivalently: 
 

𝑃 𝜃; 𝑥 = 𝑃 𝜃; 𝑥 exp −
1
2 𝜃 − 𝜃 !𝐼 𝜃 𝜃 − 𝜃 , 

 
which shows us that for large data records (𝑛 → ∞) the MLE is normally distributed with a 
covariance equal to that of the CRLB.  
 
In our problem there are two unknown parameters that have to be estimated (𝜃!,  𝜃!") but only 
one parameter to test (𝜃!;𝐻!:𝜃! = 0,𝐻!:𝜃! ≠ 0), which means that we can make a separation of 
𝜃 into the parameters we need to estimate, but do not need to test (nuisance parameters, 𝜃!) and 
parameters we need to estimate and test (parameters of interest, 𝜃!) as the concatenated vector 
𝜃 = 𝜃!    ;   𝜃! . Here we test for 𝐻!:𝜃! = 𝜃!! ,𝐻!:𝜃! ≠ 𝜃!!, where the parameters to be tested are 
𝜃!   against 𝜃!!.We need two MLEs (𝜃! = 𝜃!!;𝜃!

! ,  𝜃! = [𝜃!!;𝜃!!]), because there are nuisance 
parameters that have to be estimate under both hypotheses (𝐻!,𝐻!). The GLRT statistic follows 
as 

𝑇! = 2 log     
𝑃 𝜃!!,𝜃!!; 𝑥
𝑃 𝜃!! ,𝜃!

!; 𝑥
. 

 
The MLE under 𝐻! is unrestricted (𝜃!) and therefore independent of which hypothesis is true, 
we will find that 𝐸 𝜃!! = 𝜃!  and 𝐸 𝜃!! = 𝜃! , however the MLE under 𝐻!  is restricted 
(constrained to 𝜃!   = 𝜃!!  ) and therefore if 𝐻! is true we obtain a biased estimate, 𝐸 𝜃!! ≠ 𝜃!, 
and only if 𝐻! is true we have that 𝐸 𝜃!! = 𝜃!. Asymptotically (as 𝑛 → ∞), we can make the 
following second order Taylor expansion around the MLE 𝜃! for 𝑃 𝜃!! ,𝜃!; 𝑥 . This expansion is 
valid because the MLE under 𝐻!  (𝜃!) will maximize the likelihood independent of which 
hypothesis is true: 
 

𝑃 𝜃!! ,𝜃!; 𝑥 = 𝑃 𝜃!!,𝜃!!; 𝑥 exp −
1
2

𝜃!!

𝜃!!
−

𝜃!!
𝜃!

!

𝐼 𝜃!!,𝜃!!
𝜃!!

𝜃!!
−

𝜃!!
𝜃!

. 
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However we need,  𝑃 𝜃!! ,𝜃!

!; 𝑥 , instead of 𝑃 𝜃!! ,𝜃!; 𝑥 , which is the maximum of 𝑃 𝜃!! ,𝜃!; 𝑥   
for 𝜃!. To be able to perform the maximization of 𝑃 𝜃!! ,𝜃!; 𝑥  to 𝜃!we introduce a short hand 
notation, where we factorize the Fisher information matrix according to test and nuisance 
parameters as we have done for the parameter vector: 
 

𝐼 𝜃! =
I!!!! 𝜃

! I!!!! 𝜃!

I!!!! 𝜃
! I!!!! 𝜃!

, 

 
the Fisher information matrix is symmetric, and therefore the partitioned Fisher information 
matrix following symmetry properties: I!!!! 𝜃

! = I!!!! 𝜃
! !

,   I!!!! 𝜃! = I!!!! 𝜃! ! , 
I!!!! 𝜃

! = I!!!! 𝜃! !
. Using this short hand notation and the symmetry properties we obtain 

the maximum by setting the gradient equal to zero  
 

∂ log 𝑃 𝜃!! ,𝜃!; 𝑥   
𝜕𝜃!

= I!!!! 𝜃
! 𝜃!! − 𝜃!! + I!!!! 𝜃! 𝜃!! − 𝜃!   

                                                                                  = 0, 
 
and solving for 𝜃! =   𝜃!!. We find that the maximum is obtained at 
 

𝜃!! =   𝜃!! − I!!!! 𝜃! !!I!!!! 𝜃
! 𝜃!! − 𝜃!! . 

 
After back substitution into 𝑃 𝜃!! ,𝜃!; 𝑥  we find that  
 

𝑃 𝜃!! ,𝜃!; 𝑥 = 𝑃 𝑥,𝜃!!,𝜃!! exp −
1
2 𝜃!! − 𝜃!!

! I!!!! 𝜃
!

− I!!!! 𝜃! I!!!! 𝜃! !!I!!!! 𝜃
! (𝜃!! − 𝜃!!) , 

 
which can be simplified using the block inversion lemma because 
 

𝐼 𝜃! !!

!!!!
=    I!!!! 𝜃

! − I!!!! 𝜃! I!!!! 𝜃! !!I!!!! 𝜃
!

!!
. 

 
We observe that after quite some linear algebra we have obtained exactly what we have 
expected: the covariance of the parameters 𝜃! is given by the upper right block ∙ !!!!    of the 
inverse of the Fisher information matrix which is the CRLB for the parameters (𝜃!). Note that 
the covariance is dependent on both the nuisance and the test parameters. 
 
After substitution of this expression into the GLRT statistic we find that the limit form follows as 
 

𝑇! = 2 log     
𝑃 𝜃!!,𝜃!!; 𝑥
𝑃 𝜃!! ,𝜃!

!; 𝑥
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          = 2 log     
𝑃 𝜃!!,𝜃!!; 𝑥

𝑃 𝜃!!,𝜃!!; 𝑥 exp − 12 𝜃!! − 𝜃!!
! 𝐼 𝜃! !!

!!!!

!!
𝜃!! − 𝜃!!

  

          = 𝜃!! − 𝜃!!
! 𝐼 𝜃! !!

!!!!

!!
𝜃!! − 𝜃!! . 

 
Asymptotically, 𝐸 𝜃!!;𝜃!! = [𝜃!;   𝜃!], and therefore we may replace the values in the Fisher 
matrix, if 𝐻!  is true: 

            𝑇! = 𝜃!! − 𝜃!!
! 𝐼 [𝜃!;   𝜃!] !!

!!!!
!! 𝜃!! − 𝜃!! , 

 
and if 𝐻! is true  (𝐸 𝜃!!;𝜃!

! = [𝜃!!;𝜃!]  ): 
 

            𝑇! = 𝜃!! − 𝜃!!
! 𝐼 [𝜃!!;𝜃!]

!!

!!!!

!!
𝜃!! − 𝜃!! .  

 
We observe that under all circumstances, independent of the true hypothesis (𝐻!), we have that 
𝑇! ≥ 0, which is in agreement with what we expect, since the MLE under hypothesis 𝐻!, 𝜃!, 
always results a higher likelihood (𝑃 𝜃!!,𝜃!!; 𝑥 ≥ 𝑃 𝜃!! ,𝜃!

!; 𝑥 ), as there are additional fit 
parameters present.  
 
 
Now that the distribution of the GLRT is obtained using the limit form and based on the fact that 
the MLE of 𝜃 is asymptotically (𝑛 → ∞) normally distributed: 
 

𝜃!!
! ~        

  𝑁 𝜃!! , 𝐼 [𝜃!!;𝜃!]
!!

!!!!
          𝑢𝑛𝑑𝑒𝑟      𝐻!

𝑁 𝜃! , 𝐼 [𝜃!;𝜃!] !!
!!!!                     𝑢𝑛𝑑𝑒𝑟      𝐻!

  , 

 
Here 𝑖 denotes the true hypothesis 𝐻!, 𝑁(𝜇, Σ) denotes the normal distribution with mean 𝜇, the 
true parameter vector, and covariance Σ, which is the estimation uncertainty. 
 
We continue by observing that the limit form of 𝑇!  under both hypotheses is of the form: 
 

𝑇! =   𝑥!Σ!!𝑥, 
 
where 𝑥~  𝑁(𝜇, Σ). The covariance matrix Σ is symmetric and positive semi-definite and can 
hence be factorized as Σ = 𝐿𝐿!. Defining the variable 𝑧   =   𝐿!!𝑥 we find that:  
 

𝑇! = 𝑥!𝐿!!𝐿!!𝑥 = 𝑧!𝑧. 
 
The variable 𝑧 is normally distributed with identity covariance. If a random variable 𝑧! follows a 
normal distribution with a non-zero mean and identity covariance (𝑧!~𝑁 𝜇, 𝐼 ) then its square 
(𝑧!!𝑧! ) follows a non-central chi-square distribution (𝜒!!(𝛿) ) with 𝑡  degrees of freedom 
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(𝑟𝑎𝑛𝑘 𝐼 = 𝑡) and a non-centrality parameter (Ravishanker and Dey, 2001) (𝛿 = 𝜇!𝜇).	  The non-
central chi-square distribution simplifies to a central chi-square distribution when the mean of 
the normal distribution is zero (  𝑧!~𝑁 0, 𝐼 →   𝑧!!𝑧!~𝜒!! ). Putting everything together we find 
that the test statistic follows a non-central chi-square distribution under 𝐻! and a central chi-
square distribution under 𝐻! (as then the mean of the test parameter is zero): 
 

𝑇!   ~        
𝜒!!                  𝑢𝑛𝑑𝑒𝑟    𝐻!
𝜒!!(𝛿)        𝑢𝑛𝑑𝑒𝑟    𝐻!

  , 

 
where the non-centrality parameter (𝛿) is given by: 
 

𝛿 = 𝜃! − 𝜃!!
! 𝐼 𝜃!;𝜃! !!

!!!!
!!   𝜃! − 𝜃!! . 

 
In our particular problem the only test parameter is the intensity of the single molecule (𝜃! = 𝜃!). 
This allows for a couple of simplifications and using these we can derive a simple equation 
for  𝑇!  in terms of the normal distribution. This is possible because we can use the fact that the 
square root of a random variable having a chi-square distribution with one degree of freedom is 
normally distributed (Ravishanker and Dey, 2001). However, we have to be careful: since 𝑇!   is 
always positive there are two possible values that could be the source of the obtained value 
of    𝑧 = 𝑇! . Therefore, the probability of a false positive detection if a significance boundary 𝛾 
is placed on 𝑇!  follows as:  
 

𝑃!" = 𝑃 𝑇! > γ  ;H!   
                = 𝑃(𝑧   > 𝛾  ;𝐻!)+ 𝑃 𝑧 ≤   −   𝛾;𝐻!  

=
1
2𝜋

𝑑𝑧

! !

!!

+ 𝑑𝑧
!

!

𝑒𝑥𝑝 −
𝑧!

2  

= 1+ 𝑒𝑟𝑓 − 𝛾 2   
=   2𝐶𝐷𝐹 − 𝛾   ,                                                                             

  
where CDF is the so called cumulative distribution function of the standard normal distribution 
function. Therefore, reversely, the significance boundary can be calculated from the false 
positive rate by: 
 

  𝛾   = 𝐶𝐷𝐹!! 𝑃!" 2 ! 
 
Similarly, the detection probability 𝑇!~  𝜒!!(𝛿) can be transformed into  𝑧 = 𝑇!   ~  𝑁( 𝛿, 1), 
where the detection probability can be calculated as: 
 

𝑃! = 𝑃 𝑇! > 𝛾;𝐻!   
                =   𝑃(𝑧   >    𝛾 −    𝛿  ;𝐻!)+ 𝑃 𝑧 ≤ − 𝛾 − 𝛿;𝐻!   

                =
1
2𝜋

𝑑𝑧

! !

!!

+ 𝑑𝑧
!

!

𝑒𝑥𝑝 −
𝑧 − 𝛿

!

2   
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                = 1−
1
2 𝑒𝑟𝑓

− 𝛿 + 𝛾 2
2

− 𝑒𝑟𝑓
− 𝛿 − 𝛾 2

2
.   

 
 
 

Multiple Comparison Problem  

Now we are able to calculate the false positive probability as a function of the outcome of 𝑇!  and 
based on this value we can make the decision if a pixel is significant or not, 𝐻! versus 𝐻!, 
respectively. Recall that for instance a   𝑃!" = 0.05 means that there is a 5% probability that the 
current value is a false positive (decide  𝐻!, while actually the hypothesis 𝐻! is true). 
 
For a single test a probability of 5% for a false positive might seem acceptable, however, if we 
perform many tests simultaneously the actual number of false positives can be extremely large. 
In our case we have to compute millions of tests (256x256 pixels for 1000 frames already results 
in more than 65 million hypothesis tests) which results in millions of false positives, which is not 
acceptable in practice. In the field of statistics this problem is known as the multiple comparison 
problem (Miller, 1981). In the case of performing multiple hypotheses simultaneously, we would 
like to have a control on the probability that a positive declared test is false ( #false 
positives/(#true positives+#false positives)), instead of the probability that a test gives a false 
positive (#false positives/#hypothesis tests). 
 
False Discovery Rate Control 

There exist a number of approaches to overcome this multiple comparison problem and they are 
all based on adjusting the p-values for the number of hypothesis tests executed simultaneously. 
The method of choice to overcome the multiple comparison problem is the procedure for so-
called False Discovery Rate (FDR) control devised by Benjamini and Hochberg (Benjamini and 
Hochberg, 1995). The FDR is defined as the expected value of the proportion of false positives 
among total positives (FDP). This FDP is an (unobserved) random variable: 
  

𝐹𝐷𝑃 =
𝑉

𝑉 + 𝑆, 
 
where 𝑉 and S are two random variables with outcome equal to the number of false positives and 
true positives, respectively. Therefore, 
 

𝐹𝐷𝑅 = 𝐸 𝐹𝐷𝑃 ≤ 𝛼, 
 
where the 𝐸 ∙  is the expectation operation and 𝛼 is the value at which the FDR is controlled. 
The proof for independent tests can be found in reference 9, appendix A. 
 
In our case the pixel tests are not independent because the PSF extends over multiple pixels. 
Therefore we apply a modified version of the FDR(Benjamini and Yekutieli, 2001). The 
procedure to control the FDR consists of the following steps:  
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1. The 𝑃!" values for the pixels 1,2,⋯ ,𝑚  (𝑃!,… ,𝑃!  ) are ordered from  smallest p-value to  
highest:  0 ≤ 𝑃 ! …   ≤ 𝑃(!). 

2. Find the largest 𝑘 for which  𝑃(!) ≤ 𝑘 𝑚  𝑐 𝑚 𝛼, where 𝑚 is the total number of tests 
and 𝑐 𝑚 =    1 𝑖!

!!! , and 𝛼 is the FDR.  
3. Finally, declare all 𝐻(!)  significant for 𝑖 = 1… 𝑘 and calculate the adjusted p-values 

using  𝑃(!)∗ = 𝑚  𝑐 𝑚 𝑘 𝑃!. 

This procedure returns the adjusted false positive probabilities, 𝑃(!)∗ , and these adjusted 
probabilities are declared significant using a user defined significance level which equals the 
value at which the FDR is controlled. The probabilities below the target FP are the regions where 
single molecules are detected. 

 
Receiver operating characteristic 

For a statistical detection approach like the GLRT it is possible to present an alternative 
performance measure to Fig. 2 called a receiver operating characteristic (ROC). A ROC is 
created by plotting the true positive rate against the false positive rate for varying threshold 
settings. From such ROC curve the sensitive of a detection algorithm can be judged, as the true 
positive rate for different false positive rates are plotted. For the GLRT the ROC curve is shown 
in Fig. S1 for varying background (𝑏𝑔) and constant single molecule intensities (𝐼).  
 

 
Figure S1 | Receiver operating characteristic (ROC) of the GLRT for varying background (bg) 
and single molecule intensities (I) relevant to the simulation presented in Fig 1. The average and 
standard deviations are calculated over 512  samples, where an area of 13x13  [pixel] and 
σ!"# =   1.39 [pixel] is used. 
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