CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations using the CHARMM36 Additive Force Field

Jumin Lee,¹ Xi Cheng,¹ Jason M. Swails,² Min Sun Yeom,³ Peter K. Eastman,⁴ Justin A. Lemkul,⁵ Shuai Wei,⁶ Joshua Buckner,⁶ Jong Cheol Jeong,⁷ Yifei Qi,¹ Sunhwan Jo,⁸ Vijay S. Pande,⁴ David A. Case,² Charles L. Brooks III,⁶ Alexander D. MacKerell Jr.,⁵ Jeffery B. Klauda,⁹ and Wonpil Im^{1*}

¹Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, KS 66047, USA

²Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA

³Korean Institute of Science and Technology Information, Yuseong-gu, Daejeon 305-806, Korea

⁴Department of Bioengineering, Stanford University, Stanford, CA 94035, USA

⁵Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA

⁶Department of Chemistry and the Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA

⁷Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA

⁸Leadership Computing Facility, Argonne National Laboratory, 9700 Cass Ave Bldg. 240, Argonne, IL 60439, USA

⁹Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland, College Park, MD 20742, USA

*To whom correspondence should be addressed: Tel: +1-785-864-1993; Fax: +1-785-864-5558; e-mail: wonpil@ku.edu

Programs	Abbreviations	SA/Lipid (Å ²)	Compressibility (dyn/cm)	
	N-fsw-1	64.8 ± 0.1	222.5 ± 9.5	
NAMD	N-fsw-2	62.9 ± 0.1	227.1 ± 7.1	
	N-fsw-3	61.6 ± 0.1	242.4 ± 20.9	
	Gm-fsw-1	63.6 ± 0.1	212.6 ± 6.2	
	Gm-fsw-2	61.2 ± 0.1	213.9 ± 7.6	
	Gm-fsw-3	60.3 ± 0.1	212.4 ± 6.8	
Mixed precision	Gm-sw-1	60.6 ± 0.1 212.2 ± 20.2		
	Gm-sw-2	58.8 ± 0.2	167.7 ± 16.1	
	Gm-sw-3	58.0 ± 0.3 ^ª 51.0 ± 1.7 ^b	gel formation	
	Gd-fsw-1	63.4 ± 0.1	210.9 ± 8.4	
	Gd-fsw-2	61.1 ± 0.1	212.1 ± 8.6	
GROMACS	Gd-fsw-3	60.4 ± 0.1	228.1 ± 16.6	
Double precision	Gd-sw-1	60.4 ± 0.1	218.2 ± 13.5	
	Gd-sw-2	59.1 ± 0.1	207.0 ± 12.2	
	Gd-sw-3	58.4 ^{a,c} 49.3 ± 0.4 ^b	gel formation	
	A-0.5-1	62.6 ± 0.1	234.5 ± 17.2	
	A-0.5-2	60.2 ± 0.2	228.6 ± 18.3	
AMBER	A-0.5-3	59.2 ± 0.1 ^a 50.76 ^{b,c}	gel formation	
	A-1.0-1	62.7 ± 0.1	247.2 ± 11.8	
	A-1.0-2	59.9 ± 0.1	272.0 ± 22.3	
	A-1.0-3	58.7 ± 0.2	259.4 ± 33.8	
	O-fsw- 5	61.3 ± 0.2	250.3 ± 10.9	
OpenMM	O-fsw-10	61.6 ± 0.2	234.0 ± 21.7	
Оренини	O-fsw-15	61.4 ± 0.2	248.6 ± 16.3	
	O-fsw-100	61.6 ± 0.2	227.7 ± 12.4	
	CO-fsw-1	64.6 ± 0.2	227.8 ± 14.5	
	CO-fsw-2	62.5 ± 0.1	238.3 ± 13.3	
CHARMM/OpenMM -	CO-fsw-3	61.1 ± 0.2 240.0 ± 1		
	CO-sw-1	61.4 ± 0.3 251.8 ± 17.5		
	CO-sw-2	CO-sw-2 60.0 ± 0.2 213.2 =		
	CO-sw-3	58.9 ± 0.3	226.3 ± 25.2	

 Table S1. DPPC bilayer properties obtained from each program.

^aliquid-phase property ^bgel-phase property ^cSTE is not available because only one replica resulted in the particular phase among 5 replicas.

Lipids	Programs	SA/Lipid (Å ²) Compressibility (dyn/cm)		
	NAMD	68.7 ± 0.1	278.0 ± 13.4	
DOPC	GROMACS-mixed	68.0 ± 0.1	255.5 ± 14.8	
	GROMACS-double	68.0 ± 0.1	262.1 ± 18.5	
	AMBER	69.7 ± 0.1	301.2 ± 12.3	
	OpenMM	68.6 ± 0.2	259.5 ± 26.9	
	NAMD	65.0 ± 0.1	249.6 ± 19.7	
	GROMACS-mixed	64.1 ± 0.2	262.5 ± 18.2	
POPC -	GROMACS-double	64.1 ± 0.1	242.0 ± 9.30	
	AMBER	66.0 ± 0.1	270.3 ± 18.3	
	OpenMM	64.7 ± 0.1	274.6 ± 31.5	
	NAMD	57.8 ± 0.1	270.0 ± 15.8	
POPE -	GROMACS-mixed	56.7 ± 0.1	270.1 ± 8.8	
	GROMACS-double	56.6 ± 0.2	258.7 ± 18.2	
	AMBER	58.1 ± 0.1	254.8 ± 4.4	
	OpenMM	57.7 ± 0.1	266.4 ± 24.5	
	NAMD	56.9 ± 0.2	261.1 ± 22.8	
POPS -	GROMACS-mixed	56.0 ± 0.4	262.1 ± 33.2	
	GROMACS-double	56.2 ± 0.2	291.6 ± 41.4	
	AMBER	59.0 ± 0.1	270.5 ± 28.5	
	OpenMM	56.9 ± 0.5	274.0 ± 28.9	
- PSM -	NAMD	55.2 ± 0.2	456.4 ± 64.8	
	GROMACS-mixed	54.3 ± 0.2	445.4 ± 13.3	
	GROMACS-double	54.6 ± 0.1	417.8 ± 43.0	
	AMBER	56.6 ± 0.3	392.3 ± 49.9	
	OpenMM	55.7 ± 0.2	403.2 ± 49.9	

 Table S2. Other lipid properties obtained from each program with the optimal protocols.

Lipids -	GROMACS/NAMD		AMBER/NAMD		OpenMM/NAMD	
	A _L (%)	K _A (%)	A_L (%)	K _A (%)	A _L (%)	K _A (%)
DOPC	99.0	91.9	101.5	108.3	99.9	93.3
POPC	98.6	105.2	101.5	108.3	99.5	110.0
POPE	98.1	100.0	100.5	94.4	99.8	98.7
POPS	98.4	100.4	103.7	103.6	100.0	104.9
PSM	98.4	97.6	102.5	86.0	100.9	88.3

 Table S3.
 The bilayer property comparison between each program and NAMD.

Figure S1. The time-series of surface area per lipid properties of (A-J) DPPC bilayer, (A) GROMACS mixed precision simulations with the force-based switching function, (B) GROMACS mixed precision simulations with the potential-based switching function, (C) GROMACS double precision simulations with the force-based switching function, (D) GROMACS double precision simulations with the potential-based switching function, (E) AMBER simulations with tau-p of 0.5 ps, (F) AMBER simulations with tau-p of 1.0 ps, (G) CHARMM/OpenMM simulations with the force-based switching function, (H) CHARMM/OpenMM simulations with the potential-based switching function, (I) OpenMM simulations, (J) NAMD simulations, (K) DOPC, (L) POPC, (M) POPE, (N) POPS, and (O) PSM bilayers.

Figure S2. The S_{CD} order parameters of lipids derived from each program. (A) DOPC. (B) POPC. (C) POPE. (D) POPS. (E) PSM.