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The idea of an ensemble learning approach is to obtain better predictive performance
than could be obtained from any of the constituent learning algorithms ([18, 20]). In
statistics and machine learning, ensemble methods use multiple learning algorithms that
typically allows for a more flexible structure to exist among individual alternatives.
Evaluating the prediction of an ensemble requires more computation than evaluating
the prediction of a single models; as a way to compensate for poor learning algorithms.
The majority vote to assign the sample subtype is, accordingly, more reliable than the
average of the classifiers, for example.

The set of classifiers used in this work correspond to a diverse group of classifier
families, as implemented in the Weka 3.7.12 software package [9]. The list of classifiers
are given in Table 1. Classifiers are used with their default values, and experiments are
repeated 10 times with different random seeds to provide an estimate of true value. The
average mean performance of each classifier is shown in Figure 1. As can be observed, all
classifiers attain a Kappa value greater than 0.89, which is considered an almost perfect
agreement [21]. The average agreement per subtype is also presented in Table 2.

Moreover, during the course of the refinement iterations, agreement among classifiers
increases significantly, and more importantly, in a consistent manner. The evolution of
the agreement, as measured by κ versus the final set of labels, for a typical iteration run
is shown in Figure 2.
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Table 1: List of the 24 classifiers used in the ensemble learning

Classifier Family Software Author Reference

BayesNet bayes Remco Bouckaert
NaiveBayes bayes Len Trigg, Eibe Frank [12]
NaiveBayesUpdateable bayes Len Trigg, Eibe Frank [12]
Logistic functions Xin Xu [16]
MultilayerPerceptron functions Malcolm Ware
SimpleLogistic functions Niels Landwehr, Marc Sumner [15, 22]
SMO functions Eibe Frank, Shane Legg, Stuart Inglis [17, 10, 13]
IBk lazy Stuart Inglis, Len Trigg, Eibe Frank [1]
KStar lazy Len Trigg, Abdelaziz Mahoui [4]
AttributeSelectedClassifier meta Mark Hall
Bagging meta Eibe Frank, Len Trigg, Richard Kirkby [2]
ClassificationViaRegression meta Eibe Frank, Len Trigg [7]
LogitBoost meta Len Trigg, Eibe Frank [8]
MultiClassClassifier meta Eibe Frank, Len Trigg, Richard Kirkby
RandomCommittee meta Eibe Frank
DecisionTable rules Mark Hall [14]
JRip rules Xin Xu, Eibe Frank [5]
PART rules Eibe Frank [6]
HoeffdingTree trees Richard Kirkby, Mark Hall [11]
J48 trees Eibe Frank [19]
LMT trees Niels Landwehr, Marc Sumner [15, 22]
RandomForest trees Richard Kirkby [3]
RandomTree trees Eibe Frank, Richard Kirkby
REPTree trees Eibe Frank

The family and implementation authors are given. The Reference is the source of the method
algorithm, when available.

Table 2: Average agreement of classifiers per subtype

Subtypes Agreement Agreement
(no Inc.)

Luminal A 0.8375 0.8962
Luminal B 0.8762 0.918
HER2-enriched 0.9415 0.9926
Basal-like 0.9567 0.9906
Normal-like 0.7896 0.9024

Average 0.8803 0.93996

The numbers represent the average agreement calculated across ten runs, with relation to the

final labels. The “no Inc”, in the second column, excludes samples labelled “Inconsistent” from

the calculation, while in the first column all samples are taken.
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Figure 1: Mean Final Classifier Performance, as measured by Fleriss’ κ against the final
ensemble learning labels of all samples, across the 10 different refinement runs

Figure 2: Evolution of performance of classifiers along iterations in a typical refinement
run. κ values are measured against final ensemble learning labels.
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