

Cell viability of CD8⁺ T cells differentiated in IL-2 or IL-2+IL-4 is not altered by 1,25D3 (100 nM or 1 μ M). Total cell numbers were counted on days 0 and 4 during CD8⁺ T cells differentiation in IL-2 or IL-2+IL-4 in the presence or absence of 100 nM or 1 μ M 1,25D3. Data (mean±SEM) are from five experiments. **p<0.01 compared to the IL-2 group on day 4.

Supplementary Figure 2

b.

Groups	IL-2+IL-4+ TCR	IL-2+IL-4+ TCR+ 100 nM 1,25D3	IL-2+IL-4+ TCR+ 1 μM 1,25D3	
IFN- γ^+	14.5±0.3	14.7±0.3	15.1±0.4	
IL-13 ⁺	31.1±3.6	30.2±2.6	28.7±3.2	
IFN- γ^+ /IL-13 ⁺	4.6±1.4	4.6±1.2	4.6±1.7	
IFN-γ ⁻ /IL-13 ⁻	49.8±5	52.5±6.8	51.6±4.9	

Presence of 1,25D3 only during the antigen re-stimulation phase does not alter IFN-γ and IL-13 production in CD8⁺ T cells differentiated in IL-2 or IL-2+IL-4. (a) Representative results of intracellular staining and (b) data (mean±SEM) showing percent positive cells (four independent experiments) for IFN-γ and IL-13 expression in CD8⁺ T cells differentiated in IL-2 or IL-2+IL-4 with SIINFEKL (T cell receptor, TCR) restimulation. 1,25D3 (100 nM or 1 µM) was added for 4 hours only during the antigen restimulation phase.

Supplementary Figure 3

1,25D3 treatment of CD8⁺ T cells alters CYP11A1 protein levels. Representative results of a CYP11A1 western blot of CD8⁺ T cells differentiated in IL-2 or IL-2+IL-4 in the presence of absence of 100 nM or 1 μ M 1,25D3. * calculated molecular weight (MW) for CYP11A1 (13363-1-AP, Proteintech, Chicago, IL): 60 kDa, observed MW: 49 kDa

Genomic structure of *Cyp11a1* and localization of VDR binding sites in the *Cyp11a1* promoter region. Exons are displayed in black and smaller grey boxes represent 5` and 3` untranslated regions (UTR). VDR binding sites in the *Cyp11a1* promoter and respective *Cyp11a1*-specific primers are depicted relative to the location of the CYP11A1 coding region.

1,25D3-mediated VDR recruitment to the *Cyp11a1* promoter region is altered in CD8⁺ T cells differentiated in IL-2 or IL-2+IL-4 in the presence or absence of 100 nM or 1 μ M 1,25D3. (a-e) A representative experiment of the percent input immunoprecipitated by the VDR and the negative control IgG antibody. qPCR was performed using 5 *Cyp11a1* promoter-specific primers [(a) VDR 6+7, (b) VDR 4+5, (c) VDR 3, (d) VDR 2, (e) VDR1] covering seven VDR binding sites. Data were analyzed via the percent input methodology: (2^ (CT of total input – CT of specific IP)) x100.

Supplementary Figure 6

Genomic structure, localization, and linkage disequilibrium (r^2 plot) of the genotyped *CYP11A1* polymorphisms. In the upper panel, the genomic structure and localization of the genotyped tagging polymorphisms within the *CYP11A1* locus are depicted. Arrows indicate transcriptional direction. Exons are displayed in black and smaller grey boxes represent 5` and 3` untranslated regions (UTR). In the lower panel, linkage disequilibrium (r^2 plot) corresponding to the respective tagging bins (bins 1-5) of *CYP11A1* is shown with r^2 >0.80. Tagging SNPs (MAF≥0.03) are underlined. In addition, rs6161 and rs113084 (MAF≤0.005) were genotyped as they lead to an amino acid change (marked in black box).

	% of positive cells											
	IL-2	IL-2+	IL-2+	IL-2+	IL-2+	IL-2+	IL-2+	IL-2+	IL-2+	IL-2+	IL-2+	IL-2+
		VitD	VitD	IL4	IL-4+	IL-4+	TCR	TCR+	TCR+	IL-4+	IL-4+	IL-4+
		(100nM)	(1µM)		VitD	VitD		VitD	VitD	TCR	TCR+	TCR+
					(100nM)	(1µM)		(100nM)	(1µM)		VitD	VitD
											(100nM)	(1µM)
IFN- γ^+	3.3	3.1	4.3	1.6	2.2	2.7	79.8	76.8	76.2	16.8	24.5	30.6
	±2	±1.3	±2.1	±0.8	±1	±1.2	±6.6	±5.3	±5.1	±5.6	±4.8	±5
IL-13 ⁺	0.4	0.2	0.2	9.7	4.6	3.8	0.2	0.1	0.1	23.8	11.3	8.3
	±0.2	±0.1	±0.1	±2.9	±1.1	±0.9	±0.3	±0.2	±0.1	±9.3	±4.8	±3.7
IFN- γ^+	0.1	0	0	0.2	0.2	0.2	0.7	0.4	0.4	5.8	4	3.5
IL-13+	±0.1			±0.2	±0.1	±0.2	±0.7	±0.5	±0.3	±1.9	±1.3	±1.2
IFN-y	96.2	96.8	95.8	88.4	92.7	92.9	20.1±	22.6	23.7	48.9	55.1	53.9
IL-13 ⁻	±2	±1.3	±2.1	±3.2	±1.3	±1.3	5.8	±4.3	±4.5	±6.9	±8.9	±6.5

Supplementary Table 1: IFN-γ and IL-13 expression in CD8⁺ T cells differentiated in IL-2 or IL-2+IL-4 in the presence of 1,25D3.

Supplementary Table 2: Description of *CYP11A1* polymorphisms and their respective rs numbers, position within the gene, allele frequencies, linkage disequilibrium and genotyped tagging SNPs.

rs number	Position in the	Minor allele	$LD^{2}(r^{2})$	Tagging	Tagging
	gene structure	frequency (MAF) ¹	with	SNP	block
			tagging SNP		
rs12917557	promoter	0.45	0.90	rs11632698	4
rs7163158	promoter	0.11	1.0	rs4432229	1
rs3825944	promoter	0.17	1.0	rs2073475	2
rs3803463	promoter	0.07	1.0	rs1484215	3
rs4432229	promoter	0.11			1
rs4077581	promoter	0.28	0.92	rs2279357	5
rs4278698	promoter	0.11	1.0	rs4432229	1
rs8039957	promoter	0.11	1.0	rs4432229	1
rs4886595	promoter	0.14			
rs9806234	promoter	0.27			
rs16968478	promoter	0.21			
rs16968477	promoter	0.16	0.89	rs2073475	2
rs2073475	promoter	0.18			2
rs1130841	exon 1	0.005			
rs7174179	intron 1	0.27	1.0	rs2279357	5
rs1843090	intron 1	0.27	1.0	rs2279357	5
rs1484215	intron 2	0.08			3
rs12916123	intron 2	0.27	1.0	rs2279357	5
rs11632698	intron 2	0.37			4
rs6161	exon 5	0.005			
rs2279357	intron 8	0.27			5
rs900798	downstream	0.30	0.80	rs2279357	5
rs2959002	downstream	0.27	0.97	rs2279357	5
rs2959003	downstream	0.30	0.80	rs2279357	5
rs900802	downstream	0.29	0.87	rs2279357	5
rs11635047	downstream	0.37	0.95	rs11632698	4
rs2279356	downstream	0.27	0.89	rs2279357	5

¹ Minor allele frequency (MAF) = based on the HapMap CEU population

 2 LD = linkage disequilibrium

Supplementary Table 3: In silico analyses for putative regulatory functions for

Tagging bin	SNP	Location	Major allele ¹	Minor allele ¹	Major allele ²	Minor allele ²	RegulomeDM Score ³	Histone modifications ³	beta-score (p-value) ⁴
	rs8039957	promoter	SP1	SP1	3	8	6	weak Repressed PolyComb	-0.04 (0.0780)
	rs4278698	promoter	SP1, Tra-1	REV-Erb A	5	4	no data	no data	-0.04 (0.1380)
1	rs4432229	promoter	CEBPa	HNF1C	4	6	4	active TSS	-0.04 (0.0780)
	rs7163158	promoter	REV-Erb A, COUP	REV-Erb A, COUP, ARP1, SP1	16	18	6	weak transcription	-0.06 (0.0223)
	rs4886595	promoter	CEBPα, -β, Oct-1, NF-EM5, MyoD	CEBPα, -β, Oct-1	10	13	3a	quiescent/low	-0.06 (0.0028)
2	rs12917557	promoter	NF-κB, PTF1β, SP1	NF-κB, PTF1β, GCN4, SP1	6	7	5	quiescent/low	-0.01 (0.6262)
	rs11632698	intron 2	GR, CEBPα	СЕВРα	13	17	2a	quiescent/low	-0.04 (0.1380)
	rs11635047	downstream					5	quiescent/low	0.01 (0.7371)

asthma-associated CYP11A1 SNPs.

SNPs in bold letters indicate tagging SNPs

¹Different predicted transcription factor (TF) binding sites depending on the genotype using Matinspector (www.genomatix.de).

²Different predicted TF binding sites depending on the genotype using Alibaba (www.gene-regulation.com).

³Putative regulatory function based on regulomeDB, predicted histone modifications are based on data available from naive primary CD8⁺ cells from peripheral blood.

2a: TF binding + matched TF motif + matched DNase footprint + DNase peak

3a: TF binding + any motif + DNase peak

4: TF binding + DNase peak

5: TF binding + DNase peak

6: Other

⁴Allele-specific gene expression analyses in EBV-transformed lymphoblastoid cell lines of unrelated samples of the HapMap population (http://app3.titan.uio.no/biotools).

Primer name	Sequence (5'3')
Gata3 forward	GACTCTTCCCACCCAGCAGC
Gata3 reverse	CCATCTCGCCGCCACAG
Gata3 probe	CAAGGCACGATCCAGCACAG
<i>Tbx21</i> (LifeTechnologies pre-designed assay)	Mm00450960_m1
<i>Cyp11a1</i> forward	TGATGACCTATTCCGCTTTTCC
Cyp11a1 reverse	GGTTGAGCATGGGGACACTG
Cyp11a1 probe	ATGCTGGAGGAGATCGTGGA
<i>Vdr</i> forward	AGAAGGCTCCGATGACCCC
<i>Vdr</i> reverse	AAGGTAAAAGACTGGTTGGAGCG
<i>Vdr</i> probe	CCGCTCTCCATGCTGCCCCACC
18SrRNA forward	AGTCCCTGCCCTTTGTACACA
18SrRNA reverse	GATCCGAGGGCCTCACTAAAC
18SrRNA probe	CGCCCGTCGCTACTACCGATTGG

Supplementary Table 4: qPCR primers used for gene expression experiments.

Supplementary Table 5: *Cyp11a1* promoter-specific primers used for VDR ChIP experiments.

Primer name	Primer sequence (5'3)
VDR_1fwd	CTGGGGCTACACCGTGATTC
VDR_1rev	CTTTTAAGATCCCCCTGCCTC
VDR_2fwd	CTTGCTAGAACCCAGTGTAATGAAC
VDR_2rev	AAGTTCACAGCGGTCCTCG
VDR_3fwd	GCATTGATCCCAGAGAGGTTAAG
VDR_3rev	CTGGTCCCATTGGCTTCTG
VDR_4+5fwd	GCTTCCTGAGTTGAGTTTTGTTATG
VDR_4+5rev	CCATCCCTCCCAAGC
VDR_6+7fwd	TCGCCTGTCTCTGCCTCC
VDR_6+7rev	TGAGTTCTAGTCCCCAGCAGC