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A.1 Additional simulation study: single data source

In this simulation setting, we generated the dichotomous outcomes from the following model:

Yij = sign{βW ∗
ij + aij + bij + εij},

where W ∗ is the radius of the two spheres in the Supplementary Materials Figure A1. First

we generated W ij , a 3-dimensional vector randomly located either on the outer sphere with

a radius equal to 2 (with a small random error) or on the inner sphere with a radius equal

to 1 (with a small random error) at each visit for a subject. We used the radius W ∗ in the

score function for generating the binary outcome. The radius changes at each visit (with equal

probability to be 1 or 2). A single radial kernel SVM can generate a sphere-shaped boundary

and perfectly separate the two groups of W ’s. ai and bi are subject-specific random effects.

Specifically, ai is generated from MVN(0,Σa), where Σa is a correlation matrix with compound-

symmetric structure (ρ = 0.5), and bi is generated from MVN(0,Σb), where Σb is a correlation

matrix with exponential correlation structure, e.g., ρj,k = exp(−α|tj − tk|) with α = 1. Here

εij are normally distributed random errors of the ith subject at the jth visit. We performed

100 simulation runs and compared various performance indices of the proposed method under

a single linear or radial kernel with and without random effects to logistic regression ignoring

correlation and generalized mixed effects regression with subject-specific random intercepts. For

logistic regression and generalized mixed effects regression, we included all the feature variables,

their squared terms and pairwise interactions as predictors. The parameters ρ and α associated

with long-term and short-term random effects were determined by small scale cross-validation.

In type A prediction, we predicted outcomes for a new subject based on his/her observed

feature variables alone and the trained model. We generated longitudinal data from the single

source W plus latent random effects with a sample size of n = 250 subjects, each having 4

visits. Two-thirds of the subjects are included in the training set and the rest as the testing set.

The results are summarized in the top panel of Table A1 and Figure A3. The performance of
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the linear kernel SVM is poor so only the radial kernel SVM results are shown in Figure A3.

On average, the two radial kernel SVMs (fixed-effects and mixed-effects) have better accuracy

(1-misclassification rate), sensitivity and negative predictive value (NPV). The specificity and

positive predictive value (PPV) is slightly lower. Including random effects in the prediction

improves accuracy and leads to smaller variability over repeated simulations. A paired t-test

comparing radial kernel SVM with and without random effects shows a significant decrease in

misclassification rate (p < 0.001).

In type B prediction, we predicted the future follow-up outcomes for the same subject based

on his/her observed features variables and prior visits’ outcomes and the trained model. In

this case each subject was generated to have 6 visits. The first 3 visits of each subject are

used as the model-building set and the rest 3 visits as the testing set. In this case we can

compute the fitted random effects for each subject using the designed kernel functions, and the

subject-specific outcomes for the last 3 visits can be predicted for each subject incorporating

fitted random effects. The results are summarized in the bottom panel of Table A1 and Figure

A3. Here we see more improvement for SVM-based approach compared to the generalized mixed

effects regression or logistic regression, and again extracting information from the distribution

of random effects leads to smaller variability for each of the performance index. A paired t-test

comparing radial kernel SVM with and without random effects shows a significant decrease in

misclassification rate (p = 0.024).

A.2 Application to PREDICT-HD study

In this real data example, we predict Huntington’s disease (HD) diagnosis in a large multi-site

HD epidemiological study from various sources of clinical interviews and biomarkers and show

that the proposed method outperforms single kernel approaches and multiple kernel approaches

without accounting for subject-specific correlations in terms of both predicting future subjects

and predicting future outcomes on the same subject.

We applied the developed method to PREDICT-HD (Paulsen et al., 2008), a multi-center
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observational study on Huntington’s disease (HD). HD is an autosomal dominant disease caused

by an expansion of CAG trinucleotide repeats in ITI5 gene on chromosome 4 (Huntington’s

Disease Collaborative Research Group, 1993). Majority of subjects with an expansion of CAG

repeats in IT15 gene (CAG repeats ≥ 36) on one allele will develop HD if not censored by death

(Kieburtz and Huntington Study Group, 1996). The diagnosis of HD is based on the diagnostic

confidence level (DCL), a measure ranging from 0 to 4 based on the UHDRS assessment. A

DCL of 0 means no abnormalities and 4 means motor abnormalities that are unequivocal signs

of HD with 99% confidence. Subjects with a DCL of 2 or higher can be considered as showing

motor abnormalities that may be signs of HD with more than 50% confidence. There are 941

CAG-expanded participants in the data set who have complete data for analysis. The median

age is 40 years old and the range is from 18 to 75. 195 participants have a DCL of 2 or higher

at the baseline and totally 126 subjects reached a DCL of 4 during the study.

The goal of PREDICT-HD analysis is to distinguish among those who showed noticeable

motor signs of HD from those who did not. The analysis sample included 449 participants who

had 4 or more visits, and the outcome of interest is whether a subject had a DCL≥ 2 versus

DCL< 2 at each visit. The data sources include demographic data (age, gender and education

level), genetic marker (CAG repeat length), motor and functional measures (total motor score

and total functional capacity), cognitive function measures (stroop color, digital and word,

and symbol digit modalities tests) and psychiatric assessment scores obtained through FRSBE

(Frontal Systems Behavior Scale), SCL90 (Global Severity Index, Positive Symptom Total and

Distress Index) and UHDRS (Unified Huntington’s disease rating scale). For the multiple fused

kernel SVM, we used 5 separate kernels for the feature variables: a linear kernel for age at visit

since age appears to be an important biomarker for HD (Chen et al. 2003), a radial kernel for all

the continuous clinical measures and cognitive scores, another radial kernel for their interaction

with age, a linear kernel for genetic marker and other demographic variables, and another linear

kernel for their interaction with age. We considered several different combinations of kernel types

and suggested the one with the smallest misclassification rate by small scale cross-validation.
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We first assessed the type A prediction by treating one third of subjects as new subjects

and predicting their outcomes at several visits based on the model trained from the rest of two-

thirds subjects. For the standard approaches (logistic regression and generalized mixed effects

regression), all the feature variables and their interactions with age were used as predictors

in the model. We only reported results from logistic regression without random effects since

generalized mixed effects model failed to converge potentially due to a large number of feature

variables included in the model. We compared the performance of five methods: a logistic

regression, a fixed-effects single radial kernel SVM, a fixed-effects multiple radial kernel SVM,

a fixed-effects multiple fused kernel SVM, and a mixed-effects multiple fused kernel SVM. The

performance of methods using multiple kernels are much better than using the single kernel in

all the measures except for specificity (due to very low sensitivity). For example, the accuracy

for the single-kernel SVM is only 0.66 and the sensitivity is 0.15, while for all other methods

the accuracy is around 0.85 and the sensitivity is between 0.75 and 0.80. In the top panel of

Figure A4, we show the performance of four methods. We can see that the kernel-based methods

perform better the logistic regression in four out of five fit indices (similar sensitivity). Including

random effects into multiple fused kernels improves accuracy, specificity and NPV.

Next, we assessed the type B prediction of future observations on existing subjects. We used

the first two visits of each subject as the training set to predict the subject-specific outcomes

at the rest of follow-up visits. Since the division of training set and testing set is fixed in this

setting, we repeated the process n times, taking one subject out each time. From the bottom

panel of Figure A4, we can see that the accuracy is higher when including random effects, and its

standard deviation is much smaller, indicating stability of the results. Although the sensitivity

and NPV are slightly lower, the specificity and PPV are much higher.
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Figure A1: A typical set of simulated data (3-dimensional vector W ).
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Figure A2: A typical set of simulated data (2-dimensional vector X). Top panel: nonlin-
ear boundary in original space. Bottom panel: linear boundary (separating plane) in new
3-dimensional space.
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Figure A3: Simulation: single data source. Top panel presents type A prediction of new subjects
(left to right): 1-logistic regression, 2-generalized mixed effects regression, 3-single radial kernel
SVM (fixed-effects), 4-single radial kernel SVM (mixed-effects). Bottom panel presents type B
prediction of outcomes at future visits on the same subjects (labels same as top the panel).
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Figure A4: PREDICT-HD study. Top panel presents type A prediction of new subjects (left to
right): 1-logistic regression, 2- multiple radial kernel SVM (fixed-effects), 3-multiple fused kernel
SVM (fixed-effects), 4-multiple fused kernel SVM (mixed-effects). Bottom panel presents type
B prediction of outcomes at future visits on the same subjects (left to right): 1-multiple fused
kernel SVM (fixed-effects), 2-multiple fused kernel SVM (mixed-effects).
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