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1 General Methods and Informa-

tion

1.1 Cell culture

PC3-IFIT2 reporter cells were maintained in RPMI 1640
10% FBS at 37�C 5%CO2 and subcultured twice per week.
Reporter cells were kept at low passage post monoclonal
selection (10-12 passages). Prior to infection cells were
harvested at 90% confluency by trypsinization, counted
by hemocytometer and diluted to approximately 3.5x105

cells/ml. Cells were plated at that density in a multi-well
tissue culture plate, allowed to sit ⇠ 15 minutes at RT to
promote a more uniform monolayer, and incubated for at
least 12 hrs at 37�C 5%CO2 prior to treatment or infection.
All work was done in a BSL2 laboratory setting.

1.2 VSV RFP vs PFU

The relationship of viral RFP production to the resultant
number of plaque forming units (PFU) for the entire pop-
ulation was examined and is plotted in Fig. A. The data
shows that RFP appears to be a good surrogate for virus
particle production.
The methods used to obtain this data are as follows. One

day before infection, PC3 cells were plated in 12-well plates
at a density of 1.8 x 105 cells/well. PC3 cells are highly
resistant to infection by VSV, so to achieve a synchronous
infection 200 µL of stock virus (VSV-rWT, VSV-M51R) was
added directly to cell monolayers and allowed to adsorb for
one-hour in an incubator, rocking plates every 20 minutes.
The virus was titered on PC3 cell monolayers, and based
on this number the e↵ective MOI, was approximately 15 (⇠
3500 MOI on permissive BHK cells). After adsorption, the
stock solution was removed and the cells were rinsed with
sterile PBS and overlaid with 1 ml PC3 infection media.
Two other 12 well plates were used for infected and un-
infected monolayer controls. At various time-points, these
plates were imaged with a Typhoon FLA 9000 (GE Health-
care Life Sciences) and then one-well at each time-point was
sacrificed to sample for virus production. The infected and
un-infected controls were used to normalize the RFP fluores-
cent signal from the Typhoon scanner. Images and samples
were taken at the times designated in the figures. The host
GFP signal could not be resolved using the Typhoon scanner
due to a very high background signal.

1.3 Background subtraction and illumina-

tion correction

Background subtraction and illumination correction requires
dark-field (DF) and illumination-field (IF) images. DF im-
ages are images taken with the illumination shutter closed
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Figure A Plot of RFP and plaque titers at di↵erent time
post infection for VSV-rWT and VSV-M51R shows similar
kinetics and timing of RFP and PFU suggesting RFP as a
good surrogate for virus particle production.

using exposure times that match the exposure times of the
images taken in the channels used for quantification. In our
case, the green and red channels required the same exposure
times so the same set of DF images were used for correction.
Many DF images are taken in succession to provide more
data for a better estimate of the inherent camera noise. The
DF images are broken up into groups of four. Each group of
four is used to determine a median pixel intensity for each
pixel. The results from each group of four are then aver-
aged to result in a single DF image to be used in subsequent
correction steps.

IF images are fluorescence images taken with a fluores-
cent standard that should result in uniform fluorescent in-
tensity across the entire image if the illumination were to
be completely even. Many IF images are obtained for a
better estimate of how the sample is illuminated. IF images
are taken using fluorescence reference slides (Ted Pella, Inc.,
item 2273; Redding, CA) at four di↵erent locations 25 times
each. Again the images are broken into groups of four such
that each image in each group is from a di↵erent location.
The medians from each group are then averaged. By taking
the median of the four di↵erent locations, imperfections in
the fluorescent reference slides are largely removed for more
accurate quantification.

Typically, flat-field correction is done using the following
process where X represents the image to be corrected, X

dc

represents the dark-field subtracted image, and ↵ represents
the background subtracted and normalized IF image with
pixel intensities that represent the correction factors to be
applied to the pixels of each experimental image. Thus, Y ,
the corrected image is created by multiplying X 0 and ↵.
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X
dc

= (X �DF ) (1)

↵ =
mean(IF �DF )

IF �DF
(2)

Y = ↵ X
dc

(3)

In our case, Eq 1, provides insu�cient background sub-
traction for the experimental images prior to multiplication
with the correction image, ↵. This is primarily due to a sigi-
ficant and changing level of background flouorescence over
time. During the infection, cells lyse, resulting in the release
fluorescent protein into the supernatant over time. Further,
as cells increase in fluorescence intensity, light emitted from
each cell is scattered and produces a di↵use yet significant
level of background intensity. Thus, the background inten-
sity changes significantly over time and adds to the fluores-
cence intensity emitted directly from the cells. Besides the
IF and DF image information, we must also eliminate the
di↵use background for each image to more accurately quan-
tify the cellular signal of interest. Given the cell emitting
the fluorescent signal is significantly smaller in physical size
than the di↵use background fluorescence, we can employ a
‘rolling-ball’ background subtraction to eliminate the di↵use
background for each experimental image,X. In actuality, we
use the analogous ‘sliding-paraboloid’ method provided by
ImageJ. However, after application of the sliding-paraboloid
correction, a histogram of image intensities readily shows
that background noise has a non-zero mean given that the
sliding-paraboloid algorithm subtracts background based on
the local minima instead of the local background mean. Fur-
ther, the histograms also show that the standard deviation
of the noise increases over time, resulting in an increase of
the mean of the background noise over time after sliding-
parabaloid subtraction. Thus, we face the same problem as
before. The noise increases over time and is additive with
the signal, so the use of a single correction image, ↵, for
all images produces di↵erent levels of correction over time,
albeit the di↵erences are now much smaller. To minimize
this more subtle e↵ect, the distribution of background in-
tensities in each background corrected image needs to be
centered around zero prior to multiplication. To do this,
the peak in the histogram in the range of the background
noise is determined and the corresponding intensity value is
subtracted from the image.
Thus, in total, three background subtraction steps are

used prior to multiplication with the correction image, ↵.
First, the dark-field image, DF , is subtracted from the ex-
perimental image, X, to obtain X 0. A sliding paraboloid is
applied to X 0 to obtain X 00. The mode of the background
in X 00 is then subtracted from the entire image X 00 to ap-
proximately center the distribution of the background noise
about zero to create X 000. The correction image, ↵, is then
multiplied with X 000 to obtain a fully background subtracted
and illumination corrected image. However, in order to save

the image as an 8-, 12-, or 16-bit image, which can only han-
dle numbers � 0, we add a nominal value, �, to the image
that is greater than the absolute value of the most negative
number in X 000 (Eq 4). The value of � is then subtracted
from any subsequent measurements taken from that image.

Y = ↵ X 000 + � (4)

1.4 Cell identification

Signal from Hoechst nuclear stain is used to locate indi-
vidual cells at each time point. Given that thousands of
cells are tracked for hundreds of time points in multiple
wells, automated nucleus identification is required to make
the approach feasible. Nuclear locations are determined us-
ing the method provided by ImageJ in the ‘Find Maxima’
function. Prior to use of the ‘Find Maxima’ function, the
nuclear staining images are filtered using a mean filter with
a radius approximately equal to half the radius of the nuclei
to make the image of each nucleus appear to be a smooth
and rounded feature with a single maximum to avoid spuri-
ous local maxima while maintaining the ability to discrimi-
nate adjacent nuclei. Documentation for the ‘Find Maxima’
function is available from ImageJ but the function as it is
implemented in JEX (function name: Find Maxima in One
Color) takes two parameters, a threshold and a tolerance.
The threshold is the minimum intensity that can be consid-
ered a maximum while the tolerance is the minimum drop
in intensity that must exist between adjacent local maxima
(i.e., the depth of the valley between two peaks necessary) to
produce two separate maxima instead of ignoring the lesser
of the two and producing only one maximum. The locations
of nuclei determined by the algorithm are checked visually
to ensure high accuracy in identification. JEX then applies
the algorithm uniformly to each image in the dataset to ob-
jectively identify cells at each timepoint.

2 Baseline FC and Microscopy ex-

periments

2.1 Cell preparation

PC3 IFIT2-ZsGreen reporter cells cultured to 90% conflu-
ency, were harvested by trypsinazation, diluted to 3.0x105

cells/ml, and plated into 12 well tissue culture plates at 1
ml/well. Cells were incubated for 24 hours to adhere and
grow, after which they were 80-90% confluent. Approxi-
mately 18 hr prior to harvest, the imaging plate along with
parallel sampling plates were infected with an e↵ective MOI
of 5-10 of either VSV-rWT or VSV-M51R or mock infected.
Virus inoculum was absorbed for 20 min at 37�C, 5%CO2,
after which it was removed and cells were rinsed 1x with
DPBS. 1 ml of RPMI 2% FBS containing Hoechst 33342
(Anaspec #83218) diluted 1:20,000 as a live-cell nuclear
stain was added to cells. At the appropriate timepoint, cells
were harvested by trypsinization, fixed with PFA 4% for 20
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min, and resuspended in RPMI 2% FBS, and transferred to
flow tubes.

2.2 Data acquisition and analysis

Microscopy - Imaging for baseline microscopy experi-
ments was performed on a Nikon Eclipse-7980 Ti fitted with
an outer warming chamber set to 37�C and a stage-top
chamber (both from InVivo Scientific) set to 5%CO2, with
humidification. Fluorescence illumination was provided by a
Lumencor SpectraX Light Engine and Chroma filters. Im-
ages were acquired with a Hamamatsu C11440-22CU and
stage movement automated by an ASI MS-2000. Nikon NIS
Elements was used to automate imaging.
A 2-by-2 array of images in 3 colors (R,G, and B) at 10X

magnification was captured for each condition at each time-
point. In order to make more quantitative measurements,
images are first background subtracted and corrected for any
uneven illumination using a refined approach based on stan-
dard flat-field correction (see ‘Quantification of single-cell
fluorescence’). The locations of nuclei are determined from
the images of the live-cell Hoechst nuclear staining as de-
scribed above. Mean intensity within a small radius around
the nuclear locations is quantified in each channel of the im-
age set. The diameter of the circle is chosen to be slightly
smaller than the large majority of nuclei. All baseline mi-
croscopy single-cell analysis was performed using simple 8
pixel diameter (circular) ROIs positioned at the nucleus of
each cell. The small diameter reduces quantification outside
the cell identified by the nuclear signal yet is large enough to
average over pixel-to-pixel noise to produce a reliable mea-
sure. The nominal value � from Eq 4 is subtracted from
each measurement and the result stored in a data table.

FC - FC data was acquired on a BD LSR II equipped
with a 488nm laser to excite ZsGreen, a 561nm laser to
excite DsRed, a UV lamp to excite Hoechst 33342, with
appropriate filters for each channel. Cells were first gated
on FSC/SSC to discriminate between whole cells and debris
and then on the Hoechst signal to target single cells. A
minimum of 10,000 single cells per sample were analyzed.
In order to better compare the traditional FACS data of

our reporter system experiments with the image cytometry
data resulting from our time lapse microscopy we needed
to be able to perform analysis on a similar platform. How-
ever, most flow cytometry specific software packages such
as FlowJo and FCS-Express can only read .fcs type files, to
which our image cytometry data could not easily be con-
verted. Fortunately, the statistical package R has several
libraries (flowcore, flowviz available from the CRAN online
repository) designed for the analysis of flow type data which
can both import and plot .fcs files and also analyze and plot
similar data tables, such as those resulting from our image
quantification. Therefore, R provided a uniform platform
on which we could analyze both data types. We first used
FlowJo to do basic forward scatter/side scatter gating on

the FC data to eliminate debris and large clumps of cells
from the subsequent analysis. The data after these steps
was extracted/imported into R data tables, and plotted in
an analogous manner to the microscopy data for direct com-
parison.

2.3 Mock infection data

See Fig. B for scatter plots of mock infected controls from
baseline FC and microscopy experiments.

2.4 Earliest timepoint data

The 6 hour timepoint is the earliest timepoint for FC ex-
periments and is plotted in the main manuscript while the
microscopy data began 2.83 hpi and is plotted in Figure C.

2.5 Population Dynamic Cytometry Plots

and Movies

Population dynamic cytometry plots (PDC plots) for each
condition of baseline microscopy experiments are available
for download with this manuscript as SI files (S3, S4, S5)
along with a representative timelapse movie (S2).

3 MA-based IDC experiments

3.1 Cell preparation

PC3-IFIT2 reporter cells were infected in solution with ei-
ther the VSV-M51R or the VSV-rWT virus strains at a
e↵ective multiplicity of infection (MOI) of 10. The methods
for determining MOI and performing the in solution infec-
tions have been previously described.1 Following the virus
adsorption period, the temperatures of the virus-cell solu-
tions were raised to 37 �C in a water bath for 7 min to
allow for internalization of the attached virus. To remove
any excess virus, the cell solutions were centrifuged (1000
rpm, 4 min), the infection media decanted, and the infected
cell pellet re-suspended in fresh media three times. With
the final re-suspension, the cell density was adjusted to the
optimal density for microwell seeding (1-2 x 105 cells/mL).
The re-suspension RPMI media contained Hoechst 33342
(AnaSpec, 1µM) and HEPES (Sigma-Aldrich, 25 mM).
Hoechst 33342 is a live-cell nucleic acid stain that can be
used to identify the location and number of cells in microw-
ells. HEPES is a bu↵er commonly used in microfluidics ap-
plications to protect the cells during timelapse microscopy.

MA cell preparation di↵ered from that used for mi-
croscopy experiments. Virus in MA experiments was ad-
sorbed to suspended cells on ice to prevent entry of accu-
mulated virus on the surface of the cell until the media was
warmed over a short period just prior to imaging. This was
done to minimize the time between the start of infection
and the start of imaging, which consists of 20-30 min of
time for seeding and sealing the MA device and microscopy
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Figure B Movie frames of the PDC plots of mock infected controls from baseline experiments at 6, 12, and 18 hpi as well as
a summary plot of gated population percentages and means for each timepoint.
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Figure C PDC plots for microscope (standard culture) experiments at earliest timepoint of 2.83 [hpi].

setup. Virus in microscopy experiments was incubated with
adhered cells at 37 �C for 20 min and washed away prior to
microscope setup. This allowed viral entry during particle
adsorption, resulting in a potentially less synchronized start
to infection compared to MA expeirments. Furthermore, dif-
ferent infection e�ciencies are associated with di↵erent pro-
tocols1, thus raw viral titers (virus-per-unit-volume) were
adjusted to produce the same e↵ective MOI (5-10) for base-
line and MA experiments.

3.2 Bull’s-eye device fabrication

The bull’s-eye device is constructed using two microscope
slides and a polydimethylsiloxane (PDMS) bull’s-eye mi-
crowell array molded from a master created via soft-
lithography techniques which have been discussed else-
where2,3. The microwells are designed to be 50 µm ⇥ 50
µm ⇥ 50 µm with a 50 µm space between the edges of each
well and are similar to that used by others in the litera-
ture4,5. The array is propagated over the area of a 1 in ⇥
3 in microscope slide. Superimposed on the microwell array
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are recessed regions, each with the shape of a bull’s-eye. The
bull’s-eye design was developed to isolate di↵erent regions
of the microwell array for independent pipette operations
without having to cut or break apart the device. 12 bull’s-
eye designs fit on the microscope slide array to allow for 12
di↵erent experimental conditions per microscope slide (al-
though only 10 per slide were used in conjunction with the
clamp apparatus). Each bull’s-eye contains ⇠ 2500 microw-
ells. The outer-ring of each bull’s-eye pattern has an inner
diameter and width of 6 mm and 1 mm and is referred to
as a moat. The recessed region at the center of each bull’s-
eye has a diameter of 1.5 mm. The moats and centers are
recessed approximately 0.4 mm from the top surface of the
microwell array.

3.3 Device preparation and seeding

Approximately 1 hour before beginning the infection pro-
cedure, the PDMS device is placed under a UV lamp for
sterilization. After 20-30 min, the device is moved to a vac-
uum chamber for de-gassing. This step is critical, as it al-
lows liquid to readily fill the wells instead of trapping air
underneath the liquid layer. After 20 min in the vacuum
chamber, 100 µL droplets of infection media (i.e., media
containing 2% FBS instead of 10% FBS) with HEPES and
Hoechst but no virus are placed on each bull’s-eye to wet
the device. There is su�cient surface tension to keep the
droplets from spilling into the moats. The PDMS device
is placed in an incubator, with the droplets in place before
beginning the infection procedure. The device is in this hu-
mid environment for approximately 1 hr before cell seeding
begins.

To seed the infected cells into the microwell device, the
existing droplets are removed and replaced with 70-80 µL
droplets of the infected cell solution (1-2 x 105 cells/mL). Af-
ter 30-60 s, the droplets are removed by placing the pipette
tip in the recessed center and aspirating quickly, followed
shortly by a gentle dispensation of fresh media to avoid evap-
oration. The swift removal of the droplets sweeps cells o↵ the
top surface of the device, but does not disturb the cells that
have settled into the microwells. The bull’s-eyes are washed
with fresh media once or twice more in the same manner.
The device is sealed by quickly removing the droplets from
the bull’s-eyes and gently pressing on a glass slide (the top
outward facing side treated with tween to avoid droplet
formation from condensation during timelapse microscopy).
Pressure is applied using a clamp apparatus to maintain a
seal between microwells as described in ‘Bull’s-eye device
fabrication and assembly’.

3.4 Clamp assembly

Dimensions and notes regarding the design of the clamp ap-
paratus are contained in Fig. D & E.

5.0 126.8 ± 0.5

Red = Device (3.2 ± 0.7 total thickness)
Drawn as max 3.9

Pressure Distributor

M2 Clearance
Hole (2.5)

M2 Tapped Hole

2.5

15.0
20

30

2.5
6.0

9.5 < 11.7
Max lid

clearance
< 17.0
Max

overall
height

25.0

5.02.7
1.5

15.0
13.0

11.0

0.8

Base Plate

Clamp

84.3 ± 0.5

Figure D Bottom piece to MA clamp apparatus with foot-
print of a 96-well plate to fit on a microscope stage.

3.5 Data acquisition and analysis

Imaging was performed using a microscope equipped with
the following components to enable fluorescence time-lapse
microscopy of live cells. Microscope body: Nikon TE Eclipse
300. Outer warming chamber: InVivo Scientific, set to
37�C. Stage-top incubator: Pathology Devices, set to 37�C,
5%CO2, and 80% RH. Illumination: Chroma PhotoFluor.
Automated filters: Lambda 10-2. Automated stage: Prior
ProScanII. Imaging software: MetaMorph v.7.7.8. During
imaging, Kim wipes (Kimberly-Clark) soaked in sterile PBS
were placed within the slide holder apparatus to increase hu-
midity immediately surrounding the device. A 3-by-4 array
of images in 3 colors for each bull’s-eye was acquired every
30 min at 4X magnification (1.6125 pixel/µm).
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R 4.0
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Scale = 1:1
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Material:  Aluminum (see note below)

Figure E Top piece to MA clamp apparatus for distributing
clamp pressure evenly over the MA.

Automatic microwell identification - Microwells are
identified using two phases. The first is to identify poten-
tial locations of microwells, while the second uses the most
promising locations as seed points for building a grid of po-
tential locations that matches what is expected in the image.
The potential locations are determined via convolution with
an image kernel. The kernel is a square with a border. The
center of the square and the border can be defined as be-
ing either white (a value of 1) or black (a value of 0). The
overall width and height of the square, as well as the bor-
der width, and colors are defined by the user based on what
will best convolve with either the bright-field/phase-contrast
or fluorescent image. Typically a kernel with a black cen-
ter and white border is used to with a bright-field image
while a white center and black border is used with a fluo-
rescent image. When using bright-field, convolution results
are typically enhanced when the bright-field images are first
processed using a edge-detection filter of some sort to make
the microwell boundaries appear brighter than the centers
or surrounding regions of the microwells.

The convolution phase (function name: Microwell Con-
volver) produces an image where bright peaks indicate likely
locations of microwell centers and is used in the second phase
of building a fully connected grid of points (i.e., a potentially
non-rectangular grid in which each location is connected to
at least one neighbor) representing microwell centers. To
determine which peaks are actually microwells we use the
function named ‘Microwell Finder’. In this function, the
ImageJ ‘Find Maxima’ function is first leveraged to deter-
mine the locations of the peaks in the convolution image

using only 1 defined image channel of the multi-channel im-
age set. The result of the algorithm organizes the points ac-
cording to their peak heights, which means the first points in
the list are the locations with the highest convolution score
and thus highest confidence of being the center of a microw-
ell. Beginning with the first point in the list, a grid is built
based on user specifications regarding the expected spacing
and potential deviations from horizontal and vertical. If a
grid of su�cient size, as indicated by the user, cannot be
built according to the specifications from the first point, the
second point in the list is used as the seed point for attempt-
ing again. The grid building phase increases the robustness
and success rate of automatically determining microwell lo-
cations immensely, allowing the user to use a single set of
parameters to determine microwell locations for an entire
set of bull’s-eyes on a microscope slide. On the occasion
that the settings do not succeed in finding the microwell
centers for a particular group of images, JEX allows one to
re-run the algorithm with di↵erent parameters on just those
subsets of images.

Additional options to the Microwell Finder function en-
able the ability to avoid identifying microwells on the bor-
ders of the images (i.e., those that may not be fully cap-
tured in the image) as well as any microwells that are on
the border of the grid. This is useful for allowing the im-
ages to be processed and analyzed without having to stitch
the images first. In other words, if images are taken that
have a small amount of overlap, microwells on the borders
of images have the potential to be quantified twice, once in
one image and again in the overlapping image. By eliminat-
ing wells on the border this possibility is eliminated. Some
microwells might go un-analyzed; however, this is preferred
to producing ‘duplicate’ data points. Given the dimensions
of the bull’s-eye pattern and microwells, there are ⇠ 2500
microwells per bull’s-eye. Using this approach we typically
identify ⇠ 2200 microwells per bull’s-eye, which is able to
provide su�cient data for this study and general approach

Quantification of whole cell intensity - Using similar
approaches described for baseline microscopy experiments,
images were corrected and stitched and cells were identified.
The algorithm used to quantify fluorescence from a microw-
ell containing a single cell was optimized to increase signal
to noise (SNR). Instead of using the integrated intensity
from the entire microwell region of interest as the signal, we
first convolve the entire image with a circular mean-filter 26
pixels diameter, which is large compared to the cell (⇠16
pixel diameter), but is smaller than the microwell width (33
pixels). We then find the maximum intensity within the
microwell in the mean-filtered image. Furthermore, we limit
the search for this maximum to a region slightly smaller than
the microwell given the peak intensity of a cell is generally
at least 1 cell-radius inside the microwell boundary. This
restriction reduces the chance of quantifying signal from an
adjacent microwell (e.g., scattered light from a particularly
bright cell). We then multiply the max of mean-filtered mi-
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crowell region by the area of the mean filter to convert the
measure to integrated intensity of the cell (and background,
which will be subsequently subtracted). This approach pro-
vides a relatively simple means to dynamically ‘position’ an
ROI to maximize the amount of intensity collected from each
singly isolated cell. Use of an ROI that encompasses the mi-
crowell to quantify fluorescence in the microwell includes
unnecessary background pixels in the measurement which
significantly reduces the SNR (details to follow). The ap-
proach utilizing the radial mean filter is only appropriate
to use when a single cell is contained within the microwell.
Using an ROI to encompass the entire microwell is more
general and can be used in other cases to sum the signal
from multiple cells contained in a microwell. Since the cell
takes up a minor fraction of the microwell region, the mode
of the intensity histogram of the unfiltered microwell image
is used to measure the background intensity for background
subtraction.
The increase in SNR using this method can be seen math-

ematically as follows. However, it should be noted that the
following analysis is not meant as an absolutely rigorous ana-
lytical determination of system behavior but an appropriate
means to estimate and illustrate the influence of restricting
the ROI to exclude extraneous background pixels.
For each measured region of interest (ROI), made up of

n
tot

pixels, we consider the special case where n
sig

of the
n
tot

pixels contain a signal with a mean intensity of I
sig

and
the remaining pixels, numbering n

bg

, contain background
noise having an intensity of I

bg

. (Eq 5).

n
tot

= n
sig

+ n
bg

(5)

The pixel-to-pixel noise in the intensity of the background
pixels, �

bg,p2p is assumed to be a constant value of �, while
the noise for the signal pixels, �

sig,p2p, consists of both back-
ground noise and signal noise and depends upon characteris-
tics of the camera, which are summarized into the constant
parameter ↵. Although Poisson in nature, the noise within
the signal and background pixels approach normal distri-
butions for intensities typical of our study. Each of these
pixel-to-pixel standard deviations, when measured over n

sig

and n
bg

pixels have a measurement standard deviation of
�
sig

and �
bg

, respectively. (Eqs 6-9).

�
bg,p2p = � (6)

�
bg

=
�

p
n
bg

(7)

�
sig,p2p = ↵

p
I + � (8)

�
sig

=
↵
p
I + �

p
n
sig

(9)

Therefore, Eq 10 represents the mean intensity ±�, while
Eq 11 represents the signal-to-noise ratio (SNR).

Mean Intensity = (n
sig

I
sig

+ n
tot

I
bg

)/n
tot

±
q
�2
sig

+ �2
bg

(10)

SNR =
(n

sig

I
sig

+ n
bg

I
bg

)/n
totq

�2
sig

+ �2
bg

(11)

Eq 11 is used in Fig. F to plot the SNR of the region-
of-interest (ROI) normalized to its maximum SNR possible
(i.e., when all the pixels are comprised of signal pixels and
none are purely background signal). This normalized SNR
is plotted for di↵erent ratios of n

sig

/n
tot

. Due to normal-
ization and the assumption that I

bg

has a mean of zero, this
plot is insensitive to the intensity being measured, I

sig

, but
still depends upon ↵ and �. In our system, � was approx-
imately 20 while ↵ was approximately 1.35 (See discussion
surrounding Eq 13). The plot shows that SNR characteris-
tics of the measurement from a microwell depend upon how
many extraneous background pixels are contained within a
region of interest compared to the pixels that contain signal.
The equation suggests that the SNR is increased by a factor
3.6 by changing from a 33 ⇥ 33 pixel rectangular ROI (the
size of the microwell) to a circular ROI with radius of 13 pix-
els like that used in this study. This calculation agrees well
with observations during development of the approach (data
not shown). If the diameter of the mean-filter were to be re-
duced to 11 pixels in diameter instead of 13 pixels, the SNR
ratio improvements becomes a factor of 6.3; however, reduc-
ing the size of the mean-filter increases the risk of failing to
encompass the entire cell due to asymmetric cell morphol-
ogy. Typically removal of extraneous background pixels is
done by image segmentation, which has its own challenges.
Thus, the advantage of this approach is increased SNR with-
out the need to segment the image and potentially introduce
associated artifacts into analysis.

The signal and background intensities are recorded in a
data table and used in subsequent analysis within R. The
following numbered list describes each subsequent step of
data analysis.

Analysis in R

1. Data is loaded regarding the cell locations (from JEX),
microwell intensities (signal and background measures
as just described from JEX), and a list of microwell
IDs in which experimental errors are suspected, such as
microwells with bubbles in them (acquired via manual
curation prior to analysis).

2. Microwells identified with potential errors are removed.

3. Convert frame number to timestamp.

4. Calculate background corrected values for each color
(i.e., max - mode).

5. Get the mean signal from wells will 0 cells, termed null
wells, over time for each ROI and take the median of
those values for the given image.

6. Subtract the median signal of null wells obtained for
each image from all microwell data in the corresponding
images
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Figure F SNR charactersitics for di↵erent ROIs during
measurement of single-cell fluorescence. n

tot

represents the
number of pixels total in the ROI while n

sig

represents the
number of pixels that contain detectable signal. The re-
maining pixels exhibit background noise. Black dot - SNR
when using the entire microwell region (33 ⇥ 33 pixels).
White dot - SNR for the 13 pixel radius circle used in our
approach is shown as a white dot. Locations of dots assume
the cell signal was contained within a spot with an 8 pixel
radius (i.e., n

sig

= ⇡(8)2) and that the mean background
intensity is 0, ↵ = 1.35, � = 20.

7. Apply illumination correction

8. Separate the data into data for 0-cell wells and 1-cell
wells

9. Determine the threshold for detection based on 0-cell
well data (i.e., median + 3�).

10. Set to 0 any timpoints in each trajectory below thresh-
old and any spurrious points above threshold before
consistent signal (i.e., when less than 4 points in a row
are above the detection limit).

11. For each color, mark trajectories that have a signal us-
ing a boolean flag.

12. Write the preprocessed data to a file.

Following pre-processing, analysis of the data is performed
and described below.

1. Read in the preprocessed data.

2. Fit the first 4 detectable timepoints with an exponential
growth curve (see section ‘Curve Fit Determination of
↵ & ⌧ ’).

3. Save flags for each trajectory that indicate if the R2

value for the fit was above 0.9 and if the production
rate parameter, ↵, was greater than 0. Set fit quality
flags to indicate trajectories for which alpha was above
0 and R2 was greater than 0.9.

4. Determine other kinetic parameters described in Fig. 6
of the main manuscript such as delay-times, rise-times,
max-intensities, and cell lysis.

5. Write the summary of all of these parameters for 1-cell
wells to a file.

3.6 Curve Fit Determination of ↵ & ⌧

Single-cell fluorescence intensity measurements over time
(fluorescence trajectories) were fit with an exponential equa-
tion of the form shown in Eq 12 to determine ↵, the intrinsic
growth rate of the curve, and ⌧ , the estimated delay-time
prior to significant exponential growth. The curve fit is per-
formed on the first 4 timepoints of above the limit of detec-
tion to determine these parameters.

y = e↵(t�⌧) (12)

However, it should be noted that noise in microscopy data
typically is not constant for all intensities; thus, it is im-
portant to account for the di↵erent noise levels during the
fitting process. The majority of pixel-to-pixel noise in the
image follows a Poisson distribution and is a function of the
number of photons detected.6 The standard deviation of the
number of photons reaching each pixel is equal to the square
root of the mean number of photons. Using this observation
we can weight each data point appropriately to avoid over
fitting to points with increased noise, or vice versa. The
changing uncertainty is accounted for in least-squares fit-
ting by weighting the points inversely proportional to the
expected variance (i.e., 1/�2). However, our method uses
the mean of n ⇡ 530 pixels to quantify intensity. Thus, rel-
ative to pixel-to-pixel noise, the magnitude of the noise in
the measurement should be reduced by a factor of ⇠ 1/

p
n.

We use Eq 13 to estimate the Poisson noise, �
p

, where i
is the intensity measurement (including background from
the raw image) obtained from an average of n pixels, 18000
[electrons] is the full well capacity of the camera, 0.6 [elec-
trons/photon] is the typical camera quantum e�ciency, and
16384 [intensity units] is the dynamic range of the camera.6

Using this equation, we expect �
p

to be ⇠ 1 photon or ⇠ 0.6
intensity units for our camera and quantification method.

�
p

⇡ 1p
n

r
18000/0.6

16384
⇥ i ⇡ 0.059

p
i (13)

When we look at the data measurements we see a similar
estimate. The first few time points of data in the red chan-
nel (i.e., when no cells are expressing red) suggest that the
initial noise ranges from 0.16 to 1.16 across di↵erent images
with a mean of ⇠ 0.7 intensity units. Thus, it appears that
the primary source of noise is indeed initially Poisson noise
justifying our use of the relationship between the mean in-
tensity and standard deviation to weight each datapoint for
fitting. In this case the equation for the weight, w, simplifies
to w = 1/i.
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We use the publicly available ‘drc’ package for R to per-
forming the non-linear least-squares (NLLS) fits.7 NLLS fit-
ting does not guarantee an optimal fit of the data and can
only do so with an appropriate initial guess for the parame-
ters. To address this, we provide the package a function to
determine an initial guess. The function takes the natural
log of the data and performs a linear fit, which is guaran-
teed to find an ‘optimal’ fit to the transformed data, to get
an estimate of ↵ and ⌧ for NLLS fitting. We use the NLLS
fit method for the final estimate because the linear fit inap-
propriately weights the data points due to the log transfor-
mation, inducing non-normal noise in the data. Thus, the
linear estimates are flawed but are close enough to aid in
performing robust non-linear estimates.

3.7 Quantification of cell lysis

Lysis was detected as the first timepoint that dropped to
below 60% of the average of the previous 5 timepoints. The
method of quantification used for the microwells is sensitive
to lysis because the fluorescence signal intensity is always
measured relative to the mode of the histogram taken from
the entire microwell. Prior to lysis, the fluorescence signal
coming from the microwell is contained within the cell so
the signal detected in the microwell is significantly di↵erent
from the microwell background intensity (i.e., the mode).
Therefore, when the cell lyses and the fluorescence inten-
sity becomes evenly distributed throughout the microwell,
the signal detected in the microwell and mode of the his-
togram become nearly the same, producing a di↵erence of
⇠ 0, which is then seen as a precipitous drop in the measured
signal over background coming from the microwell.

We have also provided an example of a timelapse movie
(S6) created from microwell image data that illustrates ex-
amples of the cell lysis and demonstrates that each microwell
is sealed from the others.

For the specific purpose of examining cell lysis, we also
manually code each trajectory to indicate the overall shape
of the curve (0 = No Plateau Verified, 1 = Plateau, 2 =
Lysis, 3 = Neither).

3.8 Earliest timepoint data

For microwell experiments, the earliest timepoints was 1.42
hpi which is plotted in Fig. G.

3.9 Population Dynamic Cytometry Plots

and Movies

Population dynamic cytometry plots (PDC plots) for each
condition of microwell experiments are available for down-
load with this manuscript as SI files (S7, S8) along with a
representative timelapse movie (S6).
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Figure G PDC plots of microwell data at earliest imaged
timepoint of 1.42 [hpi].

3.10 Example JEX database and microwell

image analysis

Here are the steps to use JEX to load, process, and view
an example dataset dedicated to this manuscript which is
hosted online at SourceForge.net.

1. Go to http://sourceforge.net/projects/jex-example/
and download ‘JEX Example.zip’

2. Unzip the contents of the file, creating a folder called
‘JEX Example’ that contains folders and files named
‘Example Database’, ‘Example Workflow.jwf’, ‘Raw DF
Images’, ‘Raw IF Images’, and ‘Raw Microwell Images’.

3. Go to https://github.com/jaywarrick/JEX/wiki.

4. Read the wiki page called ‘Home’ along with reading
and following the instructions on wiki pages 01 (How
to Download JEX, version 0.0.9) and page 02 (Getting
Started) up through step 2 of creating a JEX repository.
When creating the repository, choose the ‘JEX Exam-
ple’ folder you created in the previous step. This folder
contains a JEX database already. Therefore, by point-
ing JEX to this folder, it will recognize the database
and show it in the list of databases under the reposi-
tory header you just created.

5. Once the database is recognized and shows in the list,
you can then click on the database icon to open the
database titled ‘Example Database’. The database will
contain no image data yet.

6. Read wiki page 08 (Save and Load a Workflow) to see
how to load a JEX workflow.

7. Load the JEX workflow file called ‘Example Workflow’
that is contained within the ‘Example Data’ folder.

8. Click the white square just above the
‘BROWSE/SELECT OBJECTS’ header on the
left panel of JEX. This should turn the box red. and
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indicates that this entry within the Dataset is selected
(read further wiki pages for more details on Datasets,
Entries, and Entry selection if desired).

9. Click tab #5 labeled “Process” (located along top edge
of the JEX window)

10. The JEX workflow you have loaded has three functions
at the beginning that import images (function name:
Import Images (SCIFIO)). We must set the input direc-
tory of each of these functions to the appropriate folder.
Click the header/name of the first function panel. This
will trigger JEX to show the parameters of this function
in the lower middle-right panel of JEX.

11. Click the button labeled ‘...’ next to the first param-
eter titled ‘Input Directory/File’ to open a file-chooser
dialog. Choose, the folder ‘<wherever you saved the
folder>/Example Data/Raw Microwell Images’.

12. Repeat the previous two steps for the second and
third functions choosing the ‘<wherever you saved
the folder>/Example Data/Raw DF Images’ and
‘<wherever you saved the folder>/Example Data/Raw
IF Images’, respectively.

13. Click the large ‘Run’ button to run the workflow that
you have loaded. This will run all the functions and save
a copy of the workflow into the database to save the
precise parameters that you ran. The workflow loads
the raw data and processes it to generate fluorescence
data for cells in microwells as well as ROIs and the (IF-
DF) image for illumination correction.

Double-clicking the database object icons will allow you to
view the data. If it is an image, a multi-dimensional image
viewer will open. If it is a .ar↵ file (i.e., the file type used to
save the tabular data), a table viewer will open. If you click
on an ROI object, nothing with happen. Instead, open an
image and within the image viewer you can view the ROI
object overlaid on the image. Other file types will open in
the computers default application for that file extension.
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