S1 File. Supporting information for Functions of ceramide synthase paralogs YPR114w and YJR116w of *Saccharomyces cerevisiae*

Supplemental Materials and Methods

Construction of strains

Deletion strains were constructed by using PCR derived deletion cassettes. For FBY7440, *SLC1-1* behind the *MET17* promoter was amplified from plasmid pBF212 using primers 5'-

ATCGATTGCTCCAAAAAGGGACATAGCACACCGACAGACCcggatgcaagggttcgaat c -3' (Forward) and 5'-

AAAAAGCTAAATAAAAGCGTTCCTTATCAGATATTACTCAggagggcgtgaatgtaagc g -3' (Reverse) having homology to *TRP5* up- and downstream regions (in caps) and the amplified product was transformed into the 4Δ . pBM150:LAG1 (FBY1184) strain to get 4Δ .LAG1 *trp5::SLC1-1* (FBY7436). Then the strain was grown on medium with 5'-fluoroanthranilic acid (FAA)[1] except that the medium contained 4% glucose and 1% galactose instead of 5% glucose. The obtained colonies were grown in Lester medium (LM) supplemented with Aureobasidin A to get rid of pBM150:LAG1 and obtain FBY7440. (5'-fluoroorotic acid does not select against *URA3* plasmids on LM).

FBY7471 was constructed as follows: The spHIS5 cassette was amplified from plasmid pUG27 using primers 5'-

AAAAAAAAAAAATATTTTTAAGCTATCGCTCTTGCCGCAcagctgaagcttcgtacgc -3' (Forward) and 5'-

pFA6a-hphNT1 using primers 5'-

GGAATTCAAGCACGAAGGTGAACATTGCCTACAAGAAAAAcgtacgctgcaggtcga

-3' (Forward) and 5'-

TATACACATATATGCACATGTTAAAGTGTGCCTCCATGGAatcgatgaattcgagctcg -3' (Reverse) having homology to *YPR114w* up- and downstream regions (in caps) to obtain strain FBY7468. The pBM150:LAG1 plasmid was shuffled out of the strain FBY7468 to get FBY7471.To generate the homozygous diploid WT, *yjr116w* Δ , *ypr114w* Δ and yy $\Delta\Delta$ strains FBY7483, FBY7484, FBY7485 and FBY7486, haploid *MAT***a** and *MAT***a** strains of the same genotype in BY4741 and BY4742 backgrounds, respectively, were crossed with each other and selected on medium without Met, Lys and Leu and supplemented with G418, except for diploid WT.

To make petite strains, the cells were grown to exponential phase ($OD_{600} = 0.8$) in YPD, 2 µg ml⁻¹ ethidium bromide was added and cells were further incubated at 30 °C. After 6 h, cells were washed twice with sterile distilled water and plated on YPD and incubated at 30°C. After a few days, colonies were plated on YPD and YP glycerol plates to confirm them as ρ^{-} strains.

Inositol labeling

Metabolic labeling with $[{}^{3}H]myo$ -inositol was carried out as described [2]. Briefly, WT, 4 Δ and 6 Δ strains were grown in inositol-free LM medium at 24°C. Exponentially growing cells were collected and labeled in inositol-free LM medium with $[{}^{3}H]myo$ inositol at 24 °C for 2 h. Lipids were extracted, deacylated, desalted by Folch partitioning and analyzed by TLC in solvent 1 (chloroform:methanol:0.25% KCl, 55:45:10). For deacylation, samples were resuspended in 200 µl of solvent 2 (chloroform:methanol:water, 10:10:3) and 40 µl of 0.6 M NaOH was added, nothing to controls. The control samples were incubated on ice and samples to be deacylated at 37°C for 1 h. Thereafter 40 µl of 0.8 N acetic acid was added to all tubes and 40 µl of 0.6 M NaOH was added only to the control tubes.

For GPI anchor remodeling cells were labeled with $[^{3}H]myo$ -inositol as above, but for 4 h at 30 °C. GPI anchor lipids were isolated and analyzed as described [3] and separated on

TLC in solvent 1. TLC plates were then exposed and visualized using a phosphorimager (Bio-Rad Laboratories, Hercules, CA).

Vacuolar acidification

To asses vacuolar acidification, 3 OD_{600} units of exponentially growing cells were taken and resuspended in staining buffer (100 mM HEPES pH 7.6, and 0.2% glucose, 200 μ M quinacrine) incubated at 30°C for 10 min, centrifuged, washed twice with wash buffer (0.2% glucose in 100 mM HEPES, pH 7.6) and resuspended in ice cold wash buffer. Cells were viewed under an Olympus BX54 microscope equipped with a piezo-positioner using the FITC filter within less than 60 min.

Supplemental Tables

Query	Sequence	Organism	Score first	Identity
(S.cerevisiae)	obtained	(Fungi)	query/ score	(%)
	(Accession		second query	
	number)			
LAG1/LAC1	EDP49621.1	A.fumigatus	588/586	47/45
LAG1/LAC1	XP_001394107.1	A.niger	571/563	49/46
LAG1/LAC1	XP_956995.1	N.crassa	604/597	43/44
LAG1/LAC1	NP_982955.1	A.gossypii	554/554	68/64
LAG1/LAC1	XP_452132.1	K.lactis	530/539	65/64
LAG1/LAC1	XP_505079.1	Y.lipolytica	538/537	46/47
LAG1/LAC1	XP_717940.1	C.albicans	544/539	55/54
LAG1/LAC1	NP_596102.1	S.pombe	444/445	41/40
LAG1/LAC1	KDQ12730.1	B.botryosum	381/377	32/34
LAG1/LAC1	XP_007337961.1	A.delicata	379/367	31/34
YPR114w/YJR116w	KDQ21753.1	B.botryosum	206/225	22/26
YPR114w/YJR116w	XP_007347861.1	A.delicata	192/187	28/28
YPR114w/YJR116w	XP_453728.1	K.lactis	304/197	47/23
YPR114w/YJR116w	NP_982626.1	A.gossypii	271/197	38/25
YPR114w/YJR116w	EHA19120.1	A.niger	296/298	25/26
YPR114w/YJR116w	KMK57131.1	A.fumigatus	295/303	21/28
YPR114w/YJR116w	XP_965364.2	N.crassa	289/315	20/25
YPR114w/YJR116w	NP_594236.1	S.pombe	233/245	25/27
YPR114w/YJR116w	AEY95224.1	A.gossypii	187/250	24/43
YPR114w/YJR116w	XP_453546.1	K.lactis	201/266	27/49
YPR114w/YJR116w	KGR03554.1	C.albicans	229/265	27/34
YPR114w/YJR116w	XP_500400.1	Y.lipolytica	216/232	22/34

Table A. Sequences used for the cladogram in Fig 1D

Homologues of *LAG1*, *LAC1*, YJR116w and YPR114w in fungal model organisms were identified by PSI-Blast (http://blast.ncbi.nlm.nih.gov/) in fungal taxid (taxid:4751) with default parameters (PSI-BLAST threshold 0.005, and two reiterations) using the query genes indicated in the first column. It appears that when defining homologs as sequences identified with a significance threshold of P < 0.005, each of the hits found with *LAG1* was equally found with *LAC1*, but not by YPR114w or YJR116w, and *vice versa*, that each hit found with YPR114w was also found with YJR116w but not *LAG1* or *LAC1*. The homologs are identified by their accession numbers and have all been used to create the cladogram of Fig 1D.

 Table B. Yeast Saccharomyces cerevisiae strains.

Strain name	Genotype	Reference
WT (DV 4742)	MATer hig2 A1 low2 A0 log2 A0 ung2 A0	EUROSCARF,
W I (D I 4 / 42)		(Frankfurt, GE)
<i>yjr116w∆</i> (FBY7540)	BY4742, but $yjr116w\Delta$::kanMX4	Roger Schneiter
<i>ypr114w∆</i> (FBY7541)	BY4742, but $ypr114w\Delta$:: $kanMX4$	Roger Schneiter
yyΔΔ (FBY4352)	BY4742, but <i>yjr116wΔ::kanMX4</i> <i>ypr114wΔ::LEU2</i>	Vikram Ghugtyal
<i>isc1∆</i> (FBY3335)	BY4741, MATa his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$ isc1 Δ ::natMX	This study
WT (W303-1A)	MATa ade2-1 can1-100 ura3-1 leu2-3,112 trp1-1 his3-11,15	EUROSCARF
4Δ.LAG1 (FBY1184)	W303-1A, but <i>lac1Δ::ADE2 lag1Δ::TRP1</i> <i>ydc1Δ::natMX ypc1Δ::kanMX4</i> containing pBM150:LAG1	Vanessa Cerantola
4Δ(FBY7440)	W303-1A, but <i>lac1Δ::ADE2 lag1Δ::TRP1</i> <i>ydc1Δ::natMX ypc1Δ::kanMX4 trp5Δ::SLC1-</i> <i>1</i>	This study
6Δ(FBY7471)	FBY7440, but <i>yjr116wΔ::spHIS5</i> <i>ypr114wΔ::HYG</i>	This study
4Δ.LAG1 (FBY7436)	W303-1A, but <i>lac1Δ::ADE2 lag1Δ::TRP1</i> , ydc1Δ::natMX ypc1Δ::kanMX4 trp5Δ::SLC1- 1 containing pBM150:LAG1	This study
5Δ.LAG1 (FBY7437)	FBY7436, but $yjr116w\Delta$::spHIS5	This study
6ΔLAG1 (FBY7468)	FBY7437, but <i>ypr114wΔ::HYG</i>	This study
WT (BY4741)	$MATa$ his $3\Delta 1$, leu $2\Delta 0$, met $15\Delta 0$, ura $3\Delta 0$	EUROSCARF
<i>yjr116w∆</i> (FBY7538)	BY4741, but <i>yjr116wΔ::kanMX4</i>	EUROSCARF
<i>ypr114w∆</i> (FBY7539)	BY4741, but <i>ypr114w::kanMX4</i>	EUROSCARF
yyΔΔ (FBY7482)	BY4741, but <i>yjr116wΔ::kanMX4</i> <i>ypr114wΔ::LEU2</i>	This study
WT (FBY7443)	BY4741 <i>MAT</i> a <i>his3Δ1 leu2Δ0 met15Δ0 ura3Δ0, but containing pYES2/NT B</i>	This study
<i>yjr116wΔ</i> (FBY7446)	FBY7443, but $yjr116w\Delta$::kanMX4	This study
<i>ург114wΔ</i> (FBY7447)	FBY7443, but $ypr114w\Delta$::kanMX4	This study
<i>116Д.116</i> (FBY7444)	As FBY7446, but containing pBF771	This study
114Δ.114	As FBY7447, but containing pBF772	This study

(FBY7445)		
$hac1\Delta$ (YJU 82)	MATa. trp1-1 his3-A200 ura3-52 lys2-801	[4]
	leu2-3,112 hac1Δ::TRP1	
WT (W303-1B)	MATa ade2-1 can1-100 ura3-1 leu2-3,112	EUROSCARF
	trp1-1 his3-11,15	
$vir116w\Delta$	W303-1B. but vir116wA::spHIS5	This study
(FBY7497)		Tino otaay
$vnr114w\Lambda$	W303-1B but $vpr114wA$::spHIS5	This study
(FBY7498)		This study
WT.mtGFP	As BY4742, but containing pYES-mtGFP	This study
(FBY7499)		
vir116w∆.mtGFP	As vir116w Δa (FBY7540), but containing	This study
(FBY7500)	pYES-mtGFP	
$vpr114w\Delta.mtGFP$	As $vpr114w\Delta a$ (FBY7541), but containing	This study
(FBY7501)	pYES-mtGFP	
vyΔΔ.mtGFP	As FBY4352, but containing pYES-mtGFP	This study
(FBY7502)		
isc1Δ.mtGFP	As FBY3335, but containing pYES-mtGFP	This study
(FBY7503)		
WT (FBY7527)	As BY4742, but containing pBF776	This study
$vir116w\Delta$	As vir116w Δ (FBY7540), but containing	This study
(FBY7528)	pBF776	
$vpr114w\Delta$	As YPR114w (FBY7541), but containing	This study
(FBY7529)	pBF776	
116Д.116	As yjr116w Δ (FBY7540), but containing	This study
(FBY7530)	pBF774	5
114Δ.114	As ypr114w Δ (FBY7541), but containing	This study
(FBY7531)	pBF775	
$mmm1\Delta$ ypr114w Δ	BY4741, but $mmn1\Delta$::kanMX	This study
(FBY7496)	$ypr114w\Delta$::spHIS5	
$mdm32\Delta$ ypr114w Δ	BY4741, but $mdm32\Delta$::kanMX	This study
(FBY7495)	$ypr114w\Delta$::spHIS5	
WT (YPK9)	MATa $ade2-101^{ochre}$ his $3-\Delta 200$ leu $2-\Delta 1$ lys $2-\Delta 1$	Michal Jazwinski
	$801^{amber} trp1-\Delta 63 ura3-52$	
yjr116w∆	YPK9, but $yjr116w\Delta$::spHIS5	This study
(FBY7491)		
$ypr114w\Delta$	YPK9, but $ypr114w\Delta$::spHIS5	This study
(FBY7492)		
WT (FBY7483)	$MATa/\alpha$ his3 $\Delta 1$ / his3 $\Delta 1$, leu2 $\Delta 0$ / leu2 $\Delta 0$,	This study
	<i>lys2</i> Δ0 /LYS2, <i>MET15</i> / <i>met15</i> Δ0, <i>ura3</i> Δ0 /	
	$ura3\Delta 0$	
yjr116w∆	As FBY7483, but <i>yjr116w∆∷kanMX</i> /	This study
(FBY7484)	yjr116w∆∷kanMX	
$y pr 114 w \Delta$	As FBY7483, but <i>ypr114wΔ::kanMX</i> /	This study
(FBY7485)	$ypr114w\Delta$::kanMX	

$yy\Delta\Delta$ (FBY7486)	As FBY7483, but <i>yjr116wΔ::kanMX</i> /	This study
	yjr116w Δ ::kanMX, ypr114w Δ ::LEU2 /	
	ypr114wΔ::LEU2	
WT.SEC7-GFP	As BY4742, but containing pSEC7-GFP	This study
(FBY7506)		
yyΔΔ.SEC7-GFP	As FBY4352, but containing pSEC7-GFP	This study
(FBY7513)		-
WT.SED5-GFP	As BY4742, but containing pGFP-SED5	This study
(FBY7505)		
yyΔΔ.SED5-GFP	As FBY4352, but containing pGFP-SED5	This study
(FBY7512)		
WT.SNC1-GFP	As BY4742, but containing pGS416-SNC1	This study
(FBY7507)		-
yyΔΔ.SNC1-GFP	As FBY4352, but containing pGS416-SNC1	This study
(FBY7514)		
WT.SSO1-GFP	As BY4742, but containing pSSO416	This study
(FBY7508)		2
yyΔΔ.SSO1-GFP	As FBY4352, but containing pSSO416	This study
(FBY7515)		2
$cpr3\Delta$ yjr116w Δ	cpr3::kanMX yjr116wΔ::LEU2	This study
(FBY7532)		
$aifl\Delta$ yjr116w Δ	$aif1\Delta$::kanMX yjr116w Δ ::spHIS5	This study
(FBY7533)		-
yca1 Δ yjr116w Δ	$yca1\Delta::kanMX yjr116w\Delta::spHIS5$	This study
(FBY7532)		-
$cox12\Delta$ yjr116w Δ	$cox12\Delta$::kanMX yjr116w Δ ::spHIS5	This study
(FBY7532)		-
WT (FBY7536)	BY4742, but petite	This study
yjr116w∆		
(FBY7537)	YJR116w (FBY7540), but petite	This study
WT (RH3435)	S288c background, MATa his4 leu2 ura3	Howard Riezman
	lys2 bar1	
yjr116w∆	RH3435, but <i>yjr116wΔ::URA3</i>	This study
(FBY7487)		-
$ypr114w\Delta$	RH3435, but <i>ypr114w∆::URA3</i>	This study
(FBY7488)		-

Several strains are named $yjr116w\Delta$ or $ypr114w\Delta$. In the manuscript, the corresponding control strain usually tells, which strain was used except for deletions with different mating types in the same genetic background, e.g. FBY7540 and FBY7538. Single deletion strains not listed in this table were from the EUROSCARF collection.

Table C. Plasmids

pBM150:LAG1	LAG1 in CEN ARS URA3, GAL promoter	[5]
pBF212	SLC1-1 in p413 CEN ARS HIS3, MET25 promoter	[6]
pYES2/NT B	2µ URA3, GAL promoter	Invitrogen
pBF771	<i>YJR116w</i> in pYES2/NT B	This study
pBF772	<i>YPR114w</i> in pYES2/NT B 2µ	This study
pYES-mtGFP	mtGFP in pYES2/NT B 2µ	[7]
pBF776	pCM172 (CEN TRP1, tet _{off} promoter) from	This study
	EUROSCARF, but having also LEU2	
pBF775	<i>YPR114w</i> in pBF776	This study
pSEC7-GFP	SEC7-GFP in CEN URA3, ADH1 promoter	Akihiko Nakano
	http://www2.brc.riken.jp/lab/dna/detail.cgi?rdbno=08662	
pGFP-SED5	GFP-SED5 in CEN URA3, ADH1 promoter	Akihiko Nakano
	http://www2.brc.riken.jp/cache/dna/8658	
pGS416-SNC1	GFP-SNC1 in CEN URA3, TPI1 promoter	[8] H. Pelham
pSSO416	GFP-SSO1 in CEN URA3, TP11 promoter	F. Reggiori
pPHM5416	GFP-PHM5 in CEN URA3, TPI1 promoter	[9]
pUG27	loxP-P _{AgTEF1} -Sphis5-T _{AgTEF1} -loxP, http://web.uni-	EUROSCARF
	frankfurt.de/fb15/mikro/euroscarf/data/pUG27.html	
pFA6a-hphNT1	hph gene from Klebsiella pneumonia (for hygromycin B	EUROSCARF
	resistance) http://web.uni-	
	frankfurt.de/fb15/mikro/euroscarf/data/pFA6hphNT1.html	

Strain	Resistance to copper	Improved by NAC	Category
BY4741	As WT	Yes, as WT	А
$yps6\Delta$	$\mathbf{A}\mathbf{A}$	No	В
$hacl\Delta$	44	Yes, as WT	А
vps8 Δ	$\mathbf{A}\mathbf{A}$	Yes, but less than WT	С
$csg2\Delta$	ተተ	NA ²⁾	D
$iptl\Delta$	ተተ	NA	D
vps60Δ	as WT	Yes, as WT	А
$erg4\Delta$	as WT	Yes, but less than WT	Е
$cup2\Delta$	44	No	В
$psd2\Delta$	as WT	Yes, as WT	А
$vps35\Delta$	as WT	Yes, but less than WT	Е
$cnbl\Delta$	44	No	B (C)
mid1 Δ	44	No	В
$csgl\Delta$	<u>ተ</u>	Yes, as WT	D
taz l	$\mathbf{A}\mathbf{A}$	No	B(C)
$aqyl\Delta$	\mathbf{h}	No	В

Table D. Modulation of copper sensitivity by N-acetyl-L-cysteine (NAC)

The growth behavior of each strain in Fig E, panel E was compared to the one of WT and this allowed classifying strains into phenotypes A - E defined as follows:

A: Sensitivity in presence and absence of NAC as in WT

B: Hypersensitive, NAC cannot rescue hypersensitivity

C: Hypersensitive, NAC rescues hypersensitivity only partially

D: Hyperresistant

E: Sensitivity in absence of NAC as in WT, but more sensitive than WT in presence of NAC

¹⁾ $\mathbf{\Psi}\mathbf{\Psi}$ resistance decreased; $\mathbf{\uparrow}\mathbf{\uparrow}$ resistance increased

²⁾NA: Not applicable since growth is vigorous on copper even without NAC

Unless listed in Table B, the strains are the EUROSCARF deletion strains in the BY4741

background, having indicated genes replaced by a kanMX4 cassette.

References of Supporting Information

- 1. Toyn JH, Gunyuzlu PL, White WH, Thompson LA, Hollis GF (2000) A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. Yeast 16: 553-560.
- 2. Vazquez HM, Vionnet C, Roubaty C, Conzelmann A (2014) Cdc1 removes the ethanolaminephosphate of the first mannose of GPI anchors and thereby facilitates the integration of GPI proteins into the yeast cell wall. Mol Biol Cell
- Guillas I, Pfefferli M, Conzelmann A (2000) Analysis of ceramides present in glycosylphosphatidylinositol anchored proteins of Saccharomyces cerevisiae. Methods Enzymol 312: 506-515.
- 4. Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2: 379-384.
- Guillas I, Kirchman PA, Chuard R, Pfefferli M, Jiang JC, Jazwinski SM et al. (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J 20: 2655-2665.
- 6. Vionnet C, Roubaty C, Ejsing CS, Knudsen J, Conzelmann A (2011) Yeast cells lacking all known ceramide synthases continue to make complex sphingolipids and to incorporate ceramides into glycosylphosphatidylinositol (GPI) anchors. J Biol Chem 286: 6769-6779.
- 7. Westermann B, Neupert W (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16: 1421-1427.
- 8. Lewis MJ, Nichols BJ, Prescianotto-Baschong C, Riezman H, Pelham HR (2000) Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol Biol Cell 11: 23-38.
- 9. Reggiori F, Pelham HR (2001) Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J 20: 5176-5186.

Fig A. GPI remodeling introduces normal amounts of ceramides into GPI anchors of $yjr116w\Delta$ and $yy\Delta\Delta$ cells. 10 OD₆₀₀ units of cells were labeled with [³H]inositol, GPI anchor lipids were isolated, analyzed by TLC and visualized using the phosphorimager. In addition also two *pex* mutants were tested. pG1 is PI with a C26:0 fatty acid in sn-2 position of glycerol. LE = lipid extract from WT cells containing PIs typically having C18:1 in sn-2.

Fig B. A. Extracted ion chromatograms (XIC) of IPCs and PIs in the same NPLC-nanoESI-FTMS experiment as shown in Figs 2A, 2B, and 2E analyzed in the negative ion mode. Elution times of peak signals (in minutes) are in grey, apexes were set to 100 % and the intensity at the apex indicated in blue. B-D. In an independent experiment, lipid extracts from exponentially growing WT (W303), 4 Δ and 6 Δ cells were deacylated by mild NaOH treatment, desalted and analyzed by direct infusion MS. FTMS profiles for major IPCs and MIPC are shown. Fragmentation of [IPC44:0;4-H]⁻ of 4 Δ strain yielded the characteristic inositol-phosphate and mannosyl-inositol-phosphate fragments (not shown).

Fig C. Lipid profiles of W303-1A, 4Δ and 6Δ cells were obtained by direct infusion mass spectrometry using the negative ion mode. Quantifications of lipids were done by comparison of intensities with the signals of internal standards belonging to the same lipid class. A. Cardiolipin (CL); B. Diacylglycerol (DAG); C. Steryl ester (SE); D. Phosphatidylethanolamine (PE); E. Phosphatidylserine (PS).

Fig D

Fig D. Growth of WT and mutants on SC media in presence of different metal ions, salt concentrations, H⁺ concentrations and temperatures. A. CaCl₂; B. MnCl₂; C. NaCl; D. CoCl₂; E. ZnCl₂; F. Variable pH; G. Variable temperature; H. FeCl₂; I. CdCl₂. (H – S288c background (RH3435, FBY7487, FBY7488), all other panels use strains with BY4742 background).

Fig F. Growth of WT and mutants on different concentrations of Wiskostatin (A), PHS (B), and Aureobasidin A (AbA)(C).

Fig G. Determination of percentages of dead and of superoxide anion accumulating cells before and after 72 h of chronological aging in water. A. Cells grown to exponential phase in YPD were placed for 0 or 72 h into water and were then stained with methylene blue during 2 minutes. Methylene blue stained cells (>200 cells/strain) were counted under microscope within 5 min. B. Same as A but cells were stained with DHE.

Fig H. Stress resistance of $yjr116w\Delta$ and $ypr114w\Delta$ mutants. Serial dilutions of exponentially growing cells were plated on YPD with rapamycin (A), CFW (B), tunicamycin (C) and H_2O_2 (D). E. Western blot analysis of Kar2 protein after exposing cells for 0 - 4 h to tunicamycin (1 µg ml⁻¹).

Fig I. WT and mutant cells grown in YPD were stained with quinacrine as described in Experimental Procedures in order to assess their capacity to acidify the vacuole.

Fig J. Morphology of organelles of the secretory pathway. WT and $yy\Delta\Delta$ cells expressing SEC7-GFP and GFP-SED5, staining the Golgi, GFP-SNC1 and GFP-SSO1, SNARE proteins cycling between Golgi, endosomes and plasma membrane were viewed by fluorescence microscopy. All GFP constructs were expressed from centromeric plasmids under either the *ADH1* or *TPI1* promoter.

Fig K. Cells were plated on YPD to evaluate whether they had spontaneously been overgrown by petite strains.