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Abstract

This supplementary material contains additional proofs of the main paper.

1 Auxiliary lemmas for the proof of Proposition

??

Define et = Σ−1
u ut = (e1t, ..., eNt)

′, which is an N -dimensional vector with mean

zero and covariance Σ−1
u , whose entries are stochastically bounded. Let w̄ = (Eftf

′
t)
−1Eft.

Also recall that

a1 =
T√
N

N∑
i=1

(θ̂
′
Σ−1

u )2
i (σ̂ii − σii),

a2 =
T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1

u )i(θ̂
′
Σ−1

u )j(σ̂ij − σij).
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One of the key steps of proving a1 = oP (1), a2 = oP (1) is to establish the following

two convergences:

1

T
E| 1√

NT

N∑
i=1

T∑
t=1

(u2
it − Eu2

it)(
1√
T

T∑
s=1

eis(1− f ′sw̄))2|2 = o(1), (1.1)

1

T
E| 1√

NT

∑
i 6=j,(i,j)∈SU

T∑
t=1

(uitujt−Euitujt)[
1√
T

T∑
s=1

eis(1−f ′sw̄)][
1√
T

T∑
k=1

ejk(1−f ′kw̄)]|2 = o(1),

(1.2)

where SU = {(i, j) : (Σu)ij 6= 0}. The proofs of (1.1) and (1.2) are given later below.

Lemma 1.1. Under H0, a1 = oP (1).

Proof. We have a1 = T√
N

∑N
i=1(θ̂

′
Σ−1

u )2
i

1
T

∑T
t=1(û2

it − Eu2
it), which is

T√
N

N∑
i=1

(θ̂
′
Σ−1

u )2
i

1

T

T∑
t=1

(û2
it − u2

it) +
T√
N

N∑
i=1

(θ̂
′
Σ−1

u )2
i

1

T

T∑
t=1

(u2
it − Eu2

it) = a11 + a12.

For a12, note that (θ̂
′
Σ−1

u )i = (1 − f̄ ′w)−1 1
T

∑T
s=1(1 − f ′sw)(u′sΣ

−1
u )i = c 1

T

∑T
s=1(1 −

f ′sw)eis, where c = (1− f̄ ′w)−1 = OP (1). Hence

a12 =
Tc√
N

N∑
i=1

(
1

T

T∑
s=1

(1− f ′sw)eis)
2 1

T

T∑
t=1

(u2
it − Eu2

it)

By (1.1), Ea2
12 = o(1). On the other hand,

a11 =
T√
N

N∑
i=1

(θ̂
′
Σ−1

u )2
i

1

T

T∑
t=1

(ûit−uit)2+
2T√
N

N∑
i=1

(θ̂
′
Σ−1

u )2
i

1

T

T∑
t=1

uit(ûit−uit) = a111+a112.

Note that maxi≤N
1
T

∑T
t=1(ûit − uit)2 = OP ( logN

T
) by Lemma 3.1 of ?. Since ‖θ̂‖2 =

OP (N logN
T

), ‖Σ−1
u ‖2 = O(1) and N(logN)3 = o(T 2),

a111 ≤ OP (
logN

T
)
T√
N
‖θ̂
′
Σ−1

u ‖2 = OP (
(logN)2

√
N

T
) = oP (1),
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To bound a112, note that

ûit − uit = θ̂i − θi + (b̂i − bi)
′ft, max

i
|θ̂i − θi| = OP (

√
logN

T
) = max

i
‖b̂i − bi‖.

Also, maxi | 1T
∑T

t=1 uit| = OP (
√

logN
T

) = maxi ‖ 1
T

∑T
t=1 uitft‖. Hence

a112 =
2T√
N

N∑
i=1

(θ̂
′
Σ−1

u )2
i

1

T

T∑
t=1

uit(θ̂i − θi) +
2T√
N

N∑
i=1

(θ̂
′
Σ−1

u )2
i (b̂i − bi)

′ 1

T

T∑
t=1

ftuit

≤ OP (
logN√
N

)‖θ̂
′
Σ−1

u ‖2 = oP (1).

In summary, a1 = a12 + a111 + a112 = oP (1).

Lemma 1.2. Under H0, a2 = oP (1).

Proof. We have a2 = T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1

u )i(θ̂
′
Σ−1

u )j
1
T

∑T
t=1(ûitûjt−Euitujt), which

is

T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1

u )i(θ̂
′
Σ−1

u )j

(
1

T

T∑
t=1

(ûitûjt − uitujt) +
1

T

T∑
t=1

(uitujt − Euitujt)

)
= a21+a22.

where

a21 =
T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1

u )i(θ̂
′
Σ−1

u )j
1

T

T∑
t=1

(ûitûjt − uitujt).

Under H0, Σ−1
u θ̂ = 1

T
(1− f̄ ′w)−1

∑T
t=1 Σ−1

u ut(1− f ′tw), and et = Σ−1
u ut, we have

a22 =
T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1

u )i(θ̂
′
Σ−1

u )j
1

T

T∑
t=1

(uitujt − Euitujt)

=
Tc√
N

∑
i 6=j,(i,j)∈SU

1

T

T∑
s=1

(1− f ′sw)eis
1

T

T∑
k=1

(1− f ′kw)ejk
1

T

T∑
t=1

(uitujt − Euitujt).

By (1.2), Ea2
22 = o(1).

On the other hand, a21 = a211 + a212, where

a211 =
T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1

u )i(θ̂
′
Σ−1

u )j
1

T

T∑
t=1

(ûit − uit)(ûjt − ujt),
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a212 =
2T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1

u )i(θ̂
′
Σ−1

u )j
1

T

T∑
t=1

uit(ûjt − ujt).

By the Cauchy-Schwarz inequality, maxij | 1T
∑T

t=1(ûit − uit)(ûjt − ujt)| = OP ( logN
T

).

Hence

|a211| ≤ OP (
logN√
N

)
∑

i 6=j,(i,j)∈SU

|(θ̂
′
Σ−1

u )i||(θ̂
′
Σ−1

u )j|

≤ OP (
logN√
N

)

 ∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1

u )2
i

1/2 ∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1

u )2
j

1/2

= OP (
logN√
N

)
N∑
i=1

(θ̂
′
Σ−1

u )2
i

∑
j:(Σu)ij 6=0

1 ≤ OP (
logN√
N

)‖θ̂
′
Σ−1

u ‖2mN

= OP (
mN

√
N(logN)2

T
) = oP (1).

Similar to the proof of term a112 in Lemma 1.1, maxij | 1T
∑T

t=1 uit(ûjt − ujt)| =

OP ( logN
T

).

|a212| ≤ OP (
logN√
N

)
∑

i 6=j,(i,j)∈SU

|(θ̂
′
Σ−1

u )i||(θ̂
′
Σ−1

u )j| = OP (
mN

√
N(logN)2

T
) = oP (1).

In summary, a2 = a22 + a211 + a212 = oP (1).

1.1 Proof of (1.1) and (1.2)

For any index set A, we let |A|0 denote its number of elements.

Lemma 1.3. Recall that et = Σ−1
u ut. eit and ujt are independent if i 6= j.

Proof. Because ut is Gaussian, it suffices to show that cov(eit, ujt) = 0 when i 6= j.

Consider the vector (u′t, e
′
t)
′ = A(u′t,u

′
t)
′, where

A =

(
IN 0

0 Σ−1
u

)
.
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Then cov(u′t, e
′
t) = Acov(u′t,u

′
t)A, which is(

IN 0

0 Σ−1
u

)(
Σu Σu

Σu Σu

)(
IN 0

0 Σ−1
u

)
=

(
Σu IN

IN Σ−1
u

)
.

This completes the proof.

Proof of (1.1)

Let X = 1√
NT

∑N
i=1

∑T
t=1(u2

it−Eu2
it)(

1√
T

∑T
s=1 eis(1− f ′sw))2. The goal is to show

EX2 = o(T ). We show respectively 1
T

(EX)2 = o(1) and 1
T

var(X) = o(1). The proof

of (1.1) is the same regardless of the type of sparsity in Assumption ??. For notational

simplicity, let

ξit = u2
it − Eu2

it, ζis = eis(1− f ′sw).

Then X = 1√
NT

∑N
i=1

∑T
t=1 ξit(

1√
T

∑T
s=1 ζis)

2. Because of the serial independence, ξit

is independent of ζjs if t 6= s, for any i, j ≤ N , which implies cov(ξit, ζisζik) = 0 as

long as either s 6= t or k 6= t.

Expectation

For the expectation,

EX =
1√
NT

N∑
i=1

T∑
t=1

cov(ξit, (
1√
T

T∑
s=1

ζis)
2) =

1

T
√
NT

N∑
i=1

T∑
t=1

T∑
s=1

T∑
k=1

cov(ξit, ζisζik)

=
1

T
√
NT

N∑
i=1

T∑
t=1

(cov(ξit, ζ
2
it) + 2

∑
k 6=t

cov(ξit, ζitζik))

=
1

T
√
NT

N∑
i=1

T∑
t=1

cov(ξit, ζ
2
it) = O(

√
N

T
),

where the second last equality follows since Eξit = Eζit = 0 and when k 6= t

cov(ξit, ζitζik) = Eξitζitζik = EξitζitEζik = 0. It then follows that 1
T

(EX)2 = O( N
T 2 ) =

o(1), given N = o(T 2).

Variance

Consider the variance. We have,

var(X) =
1

N

N∑
i=1

var(
1√
T

T∑
t=1

ξit(
1√
T

T∑
s=1

ζis)
2)
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+
1

NT 3

∑
i 6=j

∑
t,s,k,l,v,p≤T

cov(ξitζisζik, ξjlζjvζjp) = B1 +B2.

B1 can be bounded by the Cauchy-Schwarz inequality. Note that Eξit = Eζjs = 0,

B1 ≤
1

N

N∑
i=1

E(
1√
T

T∑
t=1

ξit(
1√
T

T∑
s=1

ζis)
2)2 ≤ 1

N

N∑
i=1

[E(
1√
T

T∑
t=1

ξit)
4]1/2[E(

1√
T

T∑
s=1

ζis)
8]1/2.

Hence B1 = O(1).

We now show 1
T
B2 = o(1). Once this is done, it implies 1

T
var(X) = o(1). The

proof of (1.1) is then completed because 1
T
EX2 = 1

T
(EX)2 + 1

T
var(X) = o(1).

For two variables X, Y , writing X ⊥ Y if they are independent. Note that Eξit =

Eζis = 0, and when t 6= s, ξit ⊥ ζjs, ξit ⊥ ξjs, ζit ⊥ ζjs for any i, j ≤ N . Therefore,

it is straightforward to verify that if the set {t, s, k, l, v, p} contains more than three

distinct elements, then cov(ξitζisζik, ξjlζjvζjp) = 0. Hence if we denote Ξ as the set of

(t, s, k, l, v, p) such that {t, s, k, l, v, p} contains no more than three distinct elements,

then its cardinality satisfies: |Ξ|0 ≤ CT 3 for some C > 1, and∑
t,s,k,l,v,p≤T

cov(ξitζisζik, ξjlζjvζjp) =
∑

(t,s,k,l,v,p)∈Ξ

cov(ξitζisζik, ξjlζjvζjp).

Hence

B2 =
1

NT 3

∑
i 6=j

∑
(t,s,k,l,v,p)∈Ξ

cov(ξitζisζik, ξjlζjvζjp).

Let us partition Ξ into Ξ1∪Ξ2 where each element (t, s, k, l, v, p) in Ξ1 contains exactly

three distinct indices, while each element in Ξ2 contains less than three distinct in-

dices. We know that 1
NT 3

∑
i 6=j

∑
(t,s,k,l,v,p)∈Ξ2

cov(ξitζisζik, ξjlζjvζjp) = O( 1
NT 3N

2T 2) =

O(N
T

), which implies

1

T
B2 =

1

NT 4

∑
i 6=j

∑
(t,s,k,l,v,p)∈Ξ1

cov(ξitζisζik, ξjlζjvζjp) +Op(
N

T 2
).

The first term on the right hand side can be written as
∑5

h=1B2h. Each of these five

terms is defined and analyzed separately as below.

B21 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EξitξjtEζ
2
isEζ

2
jl ≤ O(

1

NT
)
∑
i 6=j

|Eξitξjt|.
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Note that if (Σu)ij = 0, uit and ujt are independent, and hence Eξitξjt = 0. This

implies
∑

i 6=j |Eξitξjt| ≤ O(1)
∑

i 6=j,(i,j)∈SU
1 = O(N). Hence B21 = o(1).

B22 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EξitζitEζisξjsEζ
2
jl.

By Lemma 1.3, ujs and eis are independent for i 6= j. Also, ujs and fs are independent,

which implies ξjs and ζis are independent. So Eξjsζis = 0. It follows that B22 = 0.

B23 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EξitζitEζisζjsEξjlζjl = O(
1

NT
)
∑
i 6=j

|Eζisζjs|

= O(
1

NT
)
∑
i 6=j

|EeisejsE(1− f ′sw)2| = O(
1

NT
)
∑
i 6=j

|Eeisejs|.

By the definition es = Σ−1
u us, cov(es) = Σ−1

u . Hence Eeisejs = (Σ−1
u )ij, which implies

B23 ≤ O( N
NT

)‖Σ−1
u ‖1 = o(1).

B24 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EξitξjtEζisζjsEζilζjl = O(
1

T
),

which is analyzed in the same way as B21.

Finally, B25 = 1
NT 4

∑
i 6=j

∑T
t=1

∑
s 6=t

∑
l 6=s,tEξitζjtEζisξjsEζilζjl = 0, because Eζisξjs =

0 when i 6= j, following from Lemma 1.3. Therefore, 1
T
B2 = o(1) +O( N

T 2 ) = o(1).

Proof of (1.2)

For notational simplicity, let ξijt = uitujt−Euitujt. Because of the serial indepen-

dence and the Gaussianity, cov(ξijt, ζlsζnk) = 0 when either s 6= t or k 6= t, for any

i, j, l, n ≤ N . In addition, define a set

H = {(i, j) ∈ SU : i 6= j}.

Then by the sparsity assumption,
∑

(i,j)∈H 1 = DN = O(N). Now let

Z =
1√
NT

∑
(i,j)∈H

T∑
t=1

(uitujt − Euitujt)[
1√
T

T∑
s=1

eis(1− f ′sw)][
1√
T

T∑
k=1

ejk(1− f ′kw)]
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=
1√
NT

∑
(i,j)∈H

T∑
t=1

ξijt[
1√
T

T∑
s=1

ζis][
1√
T

T∑
k=1

ζjk] =
1

T
√
NT

∑
(i,j)∈H

T∑
t=1

T∑
s=1

T∑
k=1

ξijtζisζjk.

The goal is to show 1
T
EZ2 = o(1). We respectively show 1

T
(EZ)2 = o(1) = 1

T
var(Z).

Expectation

The proof for the expectation is the same regardless of the type of sparsity in

Assumption ??, and is very similar to that of (1.1). In fact,

EZ =
1

T
√
NT

∑
(i,j)∈H

T∑
t=1

T∑
s=1

T∑
k=1

cov(ξijt, ζisζjk) =
1

T
√
NT

∑
(i,j)∈H

T∑
t=1

cov(ξijt, ζ
2
it).

Because
∑

(i,j)∈H 1 = O(N), EZ = O(
√

N
T

). Thus 1
T

(EZ)2 = o(1).

Variance

For the variance, we have

var(Z) =
1

T 3N

∑
(i,j)∈H

var(
T∑
t=1

T∑
s=1

T∑
k=1

ξijtζisζjk)

+
1

T 3N

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

∑
t,s,k,l,v,p≤T

cov(ξijtζisζjk, ξmnlζmvζnp)

= A1 + A2.

By the Cauchy-Schwarz inequality and the serial independence of ξijt,

A1 ≤
1

N

∑
(i,j)∈H

E[
1√
T

T∑
t=1

ξijt
1√
T

T∑
s=1

ζis
1√
T

T∑
k=1

ζjk]2

≤ 1

N

∑
(i,j)∈H

[E(
1√
T

T∑
t=1

ξijt)
4]1/2[E(

1√
T

T∑
s=1

ζis)
8]1/4[E(

1√
T

T∑
k=1

ζjk)8]1/4.

So A1 = O(1).

Note that Eξijt = Eζis = 0, and when t 6= s, ξijt ⊥ ζms, ξijt ⊥ ξmns, ζit ⊥
ζjs (independent) for any i, j,m, n ≤ N . Therefore, it is straightforward to ver-

ify that if the set {t, s, k, l, v, p} contains more than three distinct elements, then

cov(ξijtζisζjk, ξmnlζmvζnp) = 0. Hence for the same set Ξ defined as before, it satisfies:

8



|Ξ|0 ≤ CT 3 for some C > 1, and∑
t,s,k,l,v,p≤T

cov(ξijtζisζjk, ξmnlζmvζnp) =
∑

(t,s,k,l,v,p)∈Ξ

cov(ξijtζisζjk, ξmnlζmvζnp).

We proceed by studying the two cases of Assumption ?? separately, and show

that in both cases 1
T
A2 = o(1). Once this is done, because we have just shown

A1 = O(1), then 1
T

var(Z) = o(1). The proof is then completed because 1
T
EZ2 =

1
T

(EZ)2 + 1
T

var(Z) = o(1).

When DN = O(
√
N)

Because |Ξ|0 ≤ CT 3 and |H|0 = DN = O(
√
N), and |cov(ξijtζisζjk, ξmnlζmvζnp)| is

bounded uniformly in i, j,m, n ≤ N , we have

1

T
A2 =

1

T 4N

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j),

∑
t,s,k,l,v,p∈Ξ

cov(ξijtζisζjk, ξmnlζmvζnp) = O(
1

T
).

When Dn = O(N), and mN = O(1)

Similar to the proof of the first statement, for the same set Ξ1 that contains exactly

three distinct indices in each of its element, (recall |H|0 = O(N))

1

T
A2 =

1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

∑
t,s,k,l,v,p∈Ξ1

cov(ξijtζisζjk, ξmnlζmvζnp) +O(
N

T 2
).

The first term on the right hand side can be written as
∑5

h=1A2h. Each of these five

terms is defined and analyzed separately as below. Before that, let us introduce a

useful lemma.

The following lemma is needed when Σu has bounded number of nonzero entries

in each row (mN = O(1)). Let |S|0 denote the number of elements in a set S if S is

countable. For any i ≤ N , let

A(i) = {j ≤ N : cov(uit, ujt) 6= 0} = {j ≤ N : (i, j) ∈ SU}.

Lemma 1.4. Suppose mN = O(1). For any i, j ≤ N , let B(i, j) be a set of k ∈
{1, ..., N} such that:

(i) k /∈ A(i) ∪ A(j)

(ii) there is p ∈ A(k) such that cov(uitujt, uktupt) 6= 0.
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Then maxi,j≤N |B(i, j)|0 = O(1).

Proof. First we note that if B(i, j) = ∅, then |B(i, j)|0 = 0. If it is not empty, for any

k ∈ B(i, j), by definition, k /∈ A(i)∪A(j), which implies cov(uit, ukt) = cov(ujt, ukt) =

0. By the Gaussianity, ukt is independent of (uit, ujt). Hence if p ∈ A(k) is such that

cov(uitujt, uktupt) 6= 0, then upt should be correlated with either uit or ujt. We thus

must have p ∈ A(i) ∪ A(j). In other words, there is p ∈ A(i) ∪ A(j) such that

cov(ukt, upt) 6= 0, which implies k ∈ A(p). Hence,

k ∈
⋃

p∈A(i)∪A(j)

A(p) ≡M(i, j),

and thus B(i, j) ⊂ M(i, j). Because mN = O(1), maxi≤N |A(i)|0 = O(1), which

implies maxi,j |M(i, j)|0 = O(1), yielding the result.

Now we define and bound each of A2h. For any (i, j) ∈ H = {(i, j) : (Σu)ij 6= 0},
we must have j ∈ A(i). So

A21 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EξijtξmntEζisζjsEζmlζnl

≤ O(
1

NT
)
∑

(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j)

|Eξijtξmnt|

≤ O(
1

NT
)
∑

(i,j)∈H

(
∑

m∈A(i)∪A(j)

∑
n∈A(m)

+
∑

m/∈A(i)∪A(j)

∑
n∈A(m)

)|cov(uitujt, umtunt)|.

The first term is O( 1
T

) because |H|0 = O(N) and |A(i)|0 is bounded uniformly by

mN = O(1). So the number of summands in
∑

m∈A(i)∪A(j)

∑
n∈A(m) is bounded. For

the second term, if m /∈ A(i)∪A(j), n ∈ A(m) and cov(uitujt, umtunt) 6= 0, then m ∈
B(i, j). Hence the second term is bounded byO( 1

NT
)
∑

(i,j)∈H
∑

m∈B(i,j)

∑
n∈A(m) |cov(uitujt, umtunt)|,

which is also O( 1
T

) by Lemma 1.4. Hence A21 = o(1).

Similarly, applying Lemma 1.4,

A22 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EξijtξmntEζisζmsEζjlζnl = o(1),

which is proved in the same lines of those of A21.

Also note three simple facts: (1) maxj≤N |A(j)|0 = O(1), (2) (m,n) ∈ H implies
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n ∈ A(m), and (3) ξmms = ξnms. The term A23 is defined as

A23 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EξijtζitEζjsξmnsEζmlζnl

≤ O(
1

NT
)

N∑
j=1

∑
i∈A(j)

1
∑

(m,n)∈H,(m,n)6=(i,j)

|Eζjsξmns|

≤ O(
2

NT
)

N∑
j=1

∑
n∈A(j)

|Eζjsξjns|+O(
1

NT
)

N∑
j=1

∑
m 6=j,n6=j

|Eζjsξmns| = a+ b.

Term a = O( 1
T

). For b, note that Lemma 1.3 implies that when m,n 6= j, umsuns

and ejs are independent because of the Gaussianity. Also because us and fs are

independent, hence ζjs and ξmms are independent, which implies that b = 0. Hence

A23 = o(1).

The same argument as of A23 also implies

A24 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EξijtζmtEζisξmnsEζilζnl = o(1)

Finally, because
∑

(i,j)∈H 1 ≤
∑N

i=1

∑
j∈A(i) 1 ≤ mN

∑N
i=1 1, and mN = O(1), we have

A25 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EξijtζitEζisζmsEξmnlζnl

≤ O(
1

NT
)
∑

(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j)

|EξijtζitEζisζmsEξmnlζnl|

≤ O(
1

NT
)

N∑
i=1

N∑
m=1

|Eζisζms| ≤ O(
1

NT
)

N∑
i=1

N∑
m=1

|(Σ−1
u )im|E(1− f ′sw)2

≤ O(
N

NT
)‖Σ−1

u ‖1 = o(1).

In summary, 1
T
A2 = o(1) +O( N

T 2 ) = o(1). This completes the proof.

2 Further technical lemmas for Section 4

We cite a lemma that will be needed throughout the proofs.
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Lemma 2.1. Under Assumption ??, there is C > 0,

(i) P (maxi,j≤N | 1T
∑T

t=1 uitujt − Euitujt| > C
√

logN
T

)→ 0.

(ii) P (maxi≤K,j≤N | 1T
∑T

t=1 fitujt| > C
√

logN
T

)→ 0.

(iii) P (maxj≤N | 1T
∑T

t=1 ujt| > C
√

logN
T

)→ 0.

Proof. The proof follows from Lemmas A.3 and B.1 in ?.

Lemma 2.2. When the distribution of (ut, ft) is independent of θ, there is C > 0,

(i) supθ∈Θ P (maxj≤N |θ̂j − θj| > C
√

logN
T
|θ)→ 0

(ii) supθ∈Θ P (maxi,j≤N |σ̂ij − σij| > C
√

logN
T
|θ)→ 0,

(iii) supθ∈Θ P (maxi≤N |σ̂i − σi| > C
√

logN
T
|θ)→ 0.

Proof. Note that θ̂j − θj = 1
af,TT

∑T
t=1 ujt(1 − f ′tw). Here af,T = 1 − f̄ ′w →p

1 − Ef ′t(Eftf
′
t)
−1Eft > 0, hence af,T is bounded away from zero with probability

approaching one. Thus by Lemma 2.1, there is C > 0 independent of θ, such that

sup
θ∈Θ

P (max
j≤N
|θ̂j−θj| > C

√
logN

T
|θ) = P (max

j
| 1

af,TT

T∑
t=1

ujt(1−f ′tw)| > C

√
logN

T
)→ 0

(ii) There is C independent of θ, such that the event

A = {max
i,j
| 1
T

T∑
t=1

uitujt − σij| < C

√
logN

T
,

1

T

T∑
t=1

‖ft‖2 < C}

has probability approaching one. Also, there is C2 also independent of θ such that

the event B = {maxi
1
T

∑
t u

2
it < C2} occurs with probability approaching one. Then

on the event A ∩B, by the triangular and Cauchy-Schwarz inequalities,

|σ̂ij − σij| ≤ C

√
logN

T
+ 2 max

i

√
1

T

∑
t

(ûit − uit)2C2 + max
i

1

T

∑
t

(uit − ûit)2.

It can be shown that

max
i≤N

1

T

T∑
t=1

(ûit − uit)2 ≤ max
i

(‖b̂i − bi‖2 + (θ̂i − θi)2)(
1

T

T∑
t=1

‖ft‖2 + 1).

Note that b̂i−bi and θ̂i−θi only depend on (ft,ut) (independent of θ). By Lemma 3.1
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of ?, there is C3 > 0 such that supb,θ P (maxi≤N ‖b̂i−bi‖2+(θ̂i−θi)2 > C3
logN
T

) = o(1).

Combining the last two displayed inequalities yields, for C4 = (C + 1)C3,

sup
θ
P (max

i≤N

1

T

T∑
t=1

(ûit − uit)2 > C4
logN

T
|θ) = o(1),

which yields the desired result.

(iii): Recall σ̂2
j = σ̂jj/af,T , and σ2

j = σjj/(1− Ef ′t(Eftf
′
t)
−1Eft). Moreover, af,T is

independent of θ. The result follows immediately from part (ii).

Lemma 2.3. For any ε > 0, supθ P (‖Σ̂−1
u −Σ−1

u ‖ > ε|θ) = o(1).

Proof. By Lemma 2.2 (ii), supθ∈Θ P (maxi,j≤N |σ̂ij−σij| > C
√

logN
T
|θ)→ 1. By ?, on

the event maxi,j≤N |σ̂ij−σij| ≤ C
√

logN
T

, there is constant C ′ that is independent of θ,

‖Σ̂−1
u −Σ−1

u ‖ ≤ C ′mN( logN
T

)1/2. Hence the result follows due to the sparse condition

mN( logN
T

)1/2 = o(1).
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