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Abstract

This supplementary material contains additional proofs of the main paper.

1 Auxiliary lemmas for the proof of Proposition
29

Define e; = X 'u; = (eyy, ..., ent)’, which is an N-dimensional vector with mean
zero and covariance X!, whose entries are stochastically bounded. Let w = (Ef,f]) ' Ef;.
Also recall that
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One of the key steps of proving a; = op(1),as = 0p(1) is to establish the following

two convergences:
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where Sy = {(,7) : (£4)i; # 0}. The proofs of (1.1) and (1.2) are given later below.

Lemma 1.1. Under Hy, a1 = op(1).

Proof. We have a; = \/lﬁ Eﬁl(alﬁu 2L Et (@3 — EuZ,), which is

TN’\’7121TA2 2 TNA'7121T2 2
ﬁ 2(0 %, )zf Z(uzt — Uy) + ﬁ 2(0 %, )zf Z(uzt — Buy) = ann + ar.

For ay3, note that (5,2;1% =(1-fw) A3 (1 - fiw)(uE, ), = ek >0 (1 -

f'w)e;s, where ¢ = (1 — f'w)~! = Op(1). Hence
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Note that max;cn & > 1, (@i — ui)? = Op(*2XY) by Lemma 3.1 of ?. Since 19]2 =
Op(*E5), 12,2 = O(1) and N(log N)* = o(T"),
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To bound aq12, note that
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Uit — wy = 0; — 0; + (b; — b;)'fs, max |0; — 6;] = Op( = max ||b; — by]|.

Also, max; |+ ZtT:l uit| = Op(y/ @) = max; || % Zthl w;tfy||. Hence
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In summary, a; = aig + a1 + a2 = OP(l). ]

Lemma 1.2. Under Hy, ay = op(1).
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Proof. We have ay = \/lﬁ Disitigyesy (02, 1)i(0 DR ST (@il — Euggugy), which
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Under Hy, .60 = LA —fw) 'Y 2 (1 — fw), and e, = £ 'u,, we have
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By (1.2), Ea3, = o(1).
On the other hand, ao1 = Q911 + 9219, where
T ~ ~ 1 &
G = > 03,10 Ell)a‘f > (i — war) (e — ),
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By the Cauchy-Schwarz inequality, max;; |T Zt LW — wi) (e — uje)| = Op(#)

Hence
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Similar to the proof of term ay;2 in Lemma 1.1, max;; |+ S (U — ug)| =
Op(loéN).
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In summary, as = ags + a11 + @212 = op(1). []

1.1 Proof of (1.1) and (1.2)

For any index set A, we let |A|y denote its number of elements.
Lemma 1.3. Recall that e, = 3, ;. e; and ujy are independent if © # j.

Proof. Because u; is Gaussian, it suffices to show that cov(e;, u;;) = 0 when ¢ # j.
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Consider the vector (uj,e}) = A(u}, u;)’, where
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Then cov(u}, ;) = Acov(u},u})A, which is
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This completes the proof. n

Proof of (1.1)

Let X = ﬁ SN ST (i~ Eu?t)(\/%? ST eis(1—f'w))2. The goal is to show
EX? = o(T). We show respectively #(EX)? = o(1) and fvar(X) = o(1). The proof
of (1.1) is the same regardless of the type of sparsity in Assumption ??. For notational
simplicity, let

i = upy — Bugy,  Gs = e55(1 = fw).

Then X = ﬁ Zfil Zthl @t(\% Zstl Cis)?. Because of the serial independence, &;
is independent of (js if ¢ # s, for any 4,5 < N, which implies cov (&, GisGr) = 0 as
long as either s # t or k # t.

Expectation

For the expectation,
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where the second last equality follows since E¢; = E(; = 0 and when k # t
cov (&, CitCir) = F&uCuCir = F&uCuECr = 0. It then follows that %(EX)Q = O(%) =
o(1), given N = o(T?).

Variance

Consider the variance. We have,

var(X) = %;var(%;&t(%;@s)%



cov(£1CisGir, £1CivCip) = B1 + Ba.
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By can be bounded by the Cauchy-Schwarz inequality. Note that E¢; = E(js = 0,
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Hence B; = O(1).
We now show B, = o(1). Once this is done, it implies fvar(X) = o(1). The
proof of (1.1) is then completed because zEX? = £(EX)? + fvar(X) = o(1).
For two variables X, Y, writing X 1 Y if they are independent. Note that F¢; =
E(is = 0, and when t # s, & L (s, &ir L &js, G L (s for any ¢, 5 < N. Therefore,
it is straightforward to verify that if the set {¢, s, k, [, v, p} contains more than three
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distinct elements, then cov(&:GisCir, &1CjuCjp) = 0. Hence if we denote = as the set of
(t,s,k,l,v,p) such that {t, s, k,[,v, p} contains no more than three distinct elements,
then its cardinality satisfies: |E|y < CT* for some C' > 1, and

o cov(GuisCin EnlinGip) = D cov(EulisGirs EnCiuGip)-
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Hence
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Let us partition = into = UZ, where each element (¢, s, k, [, v, p) in Z; contains exactly
three distinct indices, while each element in =, contains less than three distinct in-

dices. We know that w7 D it 2 (tskwpyezs €OV (E&irGisCin,s ECiuCip) = O(7=N°T?) =

O(%), which implies

1 1 N
782 = i > cov(EadisGim EnlinGip) + Op(ﬁ)-

Z;éj (t,S,k,l,’l},p)EEl

The first term on the right hand side can be written as 22:1 Bs;,. Each of these five

terms is defined and analyzed separately as below.
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Note that if (3,);; = 0, u; and uj; are independent, and hence E¢;&;; = 0. This
implies >, [E€u&sel < O(1) 22,45 4.yes, 1 = O(N). Hence By = o(1).
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By Lemma 1.3, u;s and e;5 are independent for 7 # j. Also, u;, and f; are independent,
which implies & and ;s are independent. So E¢;,(;s = 0. It follows that Bay = 0.
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By the definition e; = X 'u,, cov(es) = 2, '. Hence Fe;zejs = (X1)
Bas < O( PIZ = o(1).

ij, which implies
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which is analyzed in the same way as Bo;.

Finally, Bas = D s Zthl Dozt 2izsr B EGisSjs ECaCi = 0, because E(;s€js =
0 when i # j, following from Lemma 1.3. Therefore, 4By = o(1) + O(3%5) = o(1).

Proof of (1.2)

For notational simplicity, let & = w;;u;e — Eu uje. Because of the serial indepen-
dence and the Gaussianity, cov(&;ji, (sCoi) = 0 when either s # ¢ or k # ¢, for any
1,7,l,n < N. In addition, define a set

H ={(i,j) € Su i # j}.

Then by the sparsity assumption, = Dy = O(N). Now let
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The goal is to show £ EZ* = o(1). We respectively show +(EZ)?* = o(1) = zvar(Z).
Expectation
The proof for the expectation is the same regardless of the type of sparsity in

Assumption 77 and is very similar to that of (1.1). In fact,
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Because }; ey 1 =O(N), EZ = O(\/g) Thus +(EZ)? = o(1).
Variance

For the variance, we have
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By the Cauchy-Schwarz inequality and the serial independence of &;j,
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Note that Egijt = EC’LS = Oa and when ¢ 7& S, fijt 1 Cmsa gijt 1 gmnsa Cit il
(js (independent) for any i,j,m,n < N. Therefore, it is straightforward to ver-
ify that if the set {¢,s, k,[,v,p} contains more than three distinct elements, then

cov(&i51CisCiks EmniCmuCnp) = 0. Hence for the same set = defined as before, it satisfies:



|Z|o < CT? for some C' > 1, and

Z COV(githistka fmnlCmanp) = Z COV(githistka 5mnl€mv<np>'
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We proceed by studying the two cases of Assumption ?? separately, and show
that in both cases %Ag = 0(1). Once this is done, because we have just shown
Ay = O(1), then zvar(Z) = o(1). The proof is then completed because +EZ? =
(EZ)? + fvar(Z) = o(1).

When Dy = O(v/'N)
Because |Z|p < CT? and |H|y = Dy = O(\/N), and |cov(&;iCisCiks EmniCmvCnp)| 18

bounded uniformly in i, j, m,n < N, we have
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When D, = O(N), and my = O(1)
Similar to the proof of the first statement, for the same set =; that contains exactly
three distinct indices in each of its element, (recall |H|y = O(N))
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The first term on the right hand side can be written as 22:1 Agp. Each of these five
terms is defined and analyzed separately as below. Before that, let us introduce a
useful lemma.

The following lemma is needed when X, has bounded number of nonzero entries
in each row (my = O(1)). Let | S|y denote the number of elements in a set S if S is

countable. For any ¢« < N, let
A(i) ={j < N :cov(ui,uz) #0} ={j < N:(i,j) € Su}-

Lemma 1.4. Suppose my = O(1). For any i,j < N, let B(i,j) be a set of k €
{1,..., N} such that:
() AG) U AG)

(1) there is p € A(k) such that cov(uyte, ukty) 7# 0.



Then max; j<n |B(Z,])|0 = 0(1)

Proof. First we note that if B(i,j) = (), then |B(i, j)|o = 0. If it is not empty, for any
k € B(i, ), by definition, k ¢ A(i)UA(j), which implies cov(w;:, ugt) = cov(u;p, uge) =
0. By the Gaussianity, uy, is independent of (u;, uj;). Hence if p € A(k) is such that
cov(utje, Ugtp) 7 0, then wuy, should be correlated with either w; or wj,. We thus
must have p € A(i) U A(j). In other words, there is p € A(7) U A(j) such that
cov(Ugt, up) # 0, which implies k € A(p). Hence,

ke U Al =M(,)),
PEA(I)UA())

and thus B(i,j) C M(i,j). Because my = O(1), max;<y |A(i)|o = O(1), which
implies max; ; |M (i, 7)o = O(1), yielding the result. O

Now we define and bound each of Ayy,. For any (i,j) € H = {(¢,7) : (X,)i; # 0},
we must have j € A(7). So
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< O(%) Z Z | Eijt&mnt|
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The first term is O(7) because |H|o = O(N) and |A(i)|o is bounded uniformly by
my = O(1). So the number of summands in > 4;0a(j) 2onea(m) 15 Pounded. For
the second term, if m ¢ A(i) UA(j), n € A(m) and cov(wittijt, Upmitine) 7 0, then m €
B(i, j). Hence the second term is bounded by O(ﬁ) Z(Z‘J)GH ZmeB(m) ZneA(m) |cov (Uittt, Upmttint)|,
which is also O(7) by Lemma 1.4. Hence Ay = o(1).
Similarly, applying Lemma 1.4,

T
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which is proved in the same lines of those of As;.
Also note three simple facts: (1) max;<y |A(j)|o = O(1), (2) (m,n) € H implies
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n € A(m), and (3) &nms = Eums- The term Aog is defined as

1

T
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Term a = O(%) For b, note that Lemma 1.3 implies that when m,n # J, Upstns
and e;s; are independent because of the Gaussianity. Also because uy and f; are
independent, hence (j; and &,,ms are independent, which implies that b = 0. Hence
Ay = o(1).

The same argument as of Ass also implies
1 T
Agy = NT: Z Z Z Z Z E&ij1Cnt B Cis§mns ECuCu = o(1)
(i.J)EH, (mn)EH,(m,n)#(i,5), t=1 s#t I#t,s

Finally, because >~ ; 1 <3N > jeai L < my SV, 1, and my = O(1), we have
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1

S O(W) Z Z |E§ijtgitECis€msE§mnlCnl|
(z ])EH (m,n)eH,(m,n)#(4,5)
N N

< E¢ S i E(1 — fiw)?

N
< - “1, = .
< 0<NT>uzu = o(1)

In summary, +4, = o(1) + O(#%) = o(1). This completes the proof.

2 Further technical lemmas for Section 4

We cite a lemma that will be needed throughout the proofs.
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Lemma 2.1. Under Assumption 7?7, there is C' > 0,
(Z) P(maxi,jSN |% Zle Uitu]'t — Euitujt\ > C IO%}V) — 0

ey — 0.

(ii) P(maxici jen |5 Yoy firtzel > C
(1) P(maxjcy |& S0 uj| > Cy/28Y) — 0.
Proof. The proof follows from Lemmas A.3 and B.1 in 7. O]

Lemma 2.2. When the distribution of (uy, f;) is independent of 8, there is C > 0,
(i) supgee P(max;<y 0; — 6;] > C/*%X[6) = 0

(ii) supgee P(max;j<n [7i; — 07| > C\/*%7|0) = 0,

(111) supgee P(max;<x |0; — o;| > C lo{pr\H) — 0.

Proof. Note that 9\3 -4, = aﬁ%z; ut(1 — flw). Here ajp = 1 — f'w —P
1 — Ef/(Eff))'Ef, > 0, hence ayr is bounded away from zero with probability
approaching one. Thus by Lemma 2.1, there is C' > 0 independent of 8, such that

logN log N
P(max |0,—6; 0 (1-f'w)| > C =0
sup P(max [6;6;| > 6) = P(max| Zugt w) )

(ii) There is C' independent of 6, such that the event

lo N
A= {max|—Zuztujt oij| < g Z I£]]? < C}

has probability approaching one. Also, there is C5 also independent of 8 such that
the event B = {max; Y., u? < C5} occurs with probability approaching one. Then
on the event AN B, by the triangular and Cauchy-Schwarz inequalities,

~ log N 1 - 1 N
05 — 045] < C4J i +2mzax \/? Z(u” _uit)202+m?XTZ(uit — uy)?.
t t

It can be shown that

N

T
max — > (T — )’ <max(||b bl + (6; — 6;) Z ]2+ 1).

t=1 1
Note that B, —b; and @ —0; only depend on (f;, u;) (independent of 8). By Lemma 3.1
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of 7, there is C's > 0 such that supy, o P(max;<y ;b ||2+(0;,—6;)2 > Cs e = o(1).

Combining the last two displayed inequalities yields, for Cy = (C' + 1)C3,

T
1 -
sgp P(max T g (W — ug)* > Oy

i<N
t=1

log N
T

10) = o(1),

which yields the desired result.
(iii): Recall 62 = 0;;/asr, and o3 = 0;;/(1 — Ef{/(Eff]) ' Ef,). Moreover, ayp is
independent of 8. The result follows immediately from part (ii). O

Lemma 2.3. For any ¢ > 0, supp P(| ;! — =21 > €0) = o(1).

Proof. By Lemma 2.2 (ii), supgee P(max; j<y [0;; — 05| > C'/*6¥|0) — 1. By 7, on

the event max; j<y |0;;—04j| < C 1°§FN , there is constant C’ that is independent of 8,

[oh I C'my (*%5)1/2. Hence the result follows due to the sparse condition
log N

my (F55)12 = o(1). O
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