# Supplement to "Power Enhancement in High Dimensional Cross-Sectional Tests"

Jianqing Fan<sup>†</sup>, Yuan Liao<sup>‡</sup> and Jiawei Yao<sup>\*</sup>

\*Department of Operations Research and Financial Engineering, Princeton University

- † Bendheim Center for Finance, Princeton University
- $^{\ddagger}$  Department of Mathematics, University of Maryland  $^{*}$

#### Abstract

This supplementary material contains additional proofs of the main paper.

## 1 Auxiliary lemmas for the proof of Proposition ??

Define  $\mathbf{e}_t = \mathbf{\Sigma}_u^{-1} \mathbf{u}_t = (e_{1t}, ..., e_{Nt})'$ , which is an N-dimensional vector with mean zero and covariance  $\mathbf{\Sigma}_u^{-1}$ , whose entries are stochastically bounded. Let  $\bar{\mathbf{w}} = (E\mathbf{f}_t\mathbf{f}_t')^{-1}E\mathbf{f}_t$ . Also recall that

$$a_1 = \frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i^2 (\widehat{\sigma}_{ii} - \sigma_{ii}),$$

$$a_2 = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j (\widehat{\sigma}_{ij} - \sigma_{ij}).$$

<sup>\*</sup>Address: Department of Operations Research and Financial Engineering, Sherrerd Hall, Princeton University, Princeton, NJ 08544, USA. Department of Mathematics, University of Maryland, College Park, MD 20742, USA. E-mail: jqfan@princeton.edu, yuanliao@umd.edu, ji-aweiy@princeton.edu.

One of the key steps of proving  $a_1 = o_P(1)$ ,  $a_2 = o_P(1)$  is to establish the following two convergences:

$$\frac{1}{T}E\left|\frac{1}{\sqrt{NT}}\sum_{i=1}^{N}\sum_{t=1}^{T}(u_{it}^{2}-Eu_{it}^{2})\left(\frac{1}{\sqrt{T}}\sum_{s=1}^{T}e_{is}(1-\mathbf{f}_{s}'\bar{\mathbf{w}})\right)^{2}\right|^{2}=o(1),$$
(1.1)

$$\frac{1}{T}E\left|\frac{1}{\sqrt{NT}}\sum_{i\neq j,(i,j)\in S_U}\sum_{t=1}^{T}(u_{it}u_{jt}-Eu_{it}u_{jt})\left[\frac{1}{\sqrt{T}}\sum_{s=1}^{T}e_{is}(1-\mathbf{f}_{s}'\bar{\mathbf{w}})\right]\left[\frac{1}{\sqrt{T}}\sum_{k=1}^{T}e_{jk}(1-\mathbf{f}_{k}'\bar{\mathbf{w}})\right]\right|^{2}=o(1),$$
(1.2)

where  $S_U = \{(i, j) : (\Sigma_u)_{ij} \neq 0\}$ . The proofs of (1.1) and (1.2) are given later below.

**Lemma 1.1.** *Under*  $H_0$ ,  $a_1 = o_P(1)$ .

*Proof.* We have  $a_1 = \frac{T}{\sqrt{N}} \sum_{i=1}^N (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_{i=T}^2 \sum_{t=1}^T (\widehat{u}_{it}^2 - Eu_{it}^2)$ , which is

$$\frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it}^{2} - u_{it}^{2}) + \frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} (u_{it}^{2} - Eu_{it}^{2}) = a_{11} + a_{12}.$$

For  $a_{12}$ , note that  $(\widehat{\boldsymbol{\theta}}' \mathbf{\Sigma}_{u}^{-1})_{i} = (1 - \bar{\mathbf{f}}' \mathbf{w})^{-1} \frac{1}{T} \sum_{s=1}^{T} (1 - \mathbf{f}'_{s} \mathbf{w}) (\mathbf{u}'_{s} \mathbf{\Sigma}_{u}^{-1})_{i} = c \frac{1}{T} \sum_{s=1}^{T} (1 - \mathbf{f}'_{s} \mathbf{w}) e_{is}$ , where  $c = (1 - \bar{\mathbf{f}}' \mathbf{w})^{-1} = O_{P}(1)$ . Hence

$$a_{12} = \frac{Tc}{\sqrt{N}} \sum_{i=1}^{N} (\frac{1}{T} \sum_{s=1}^{T} (1 - \mathbf{f}_{s}' \mathbf{w}) e_{is})^{2} \frac{1}{T} \sum_{t=1}^{T} (u_{it}^{2} - Eu_{it}^{2})$$

By (1.1),  $Ea_{12}^2 = o(1)$ . On the other hand,

$$a_{11} = \frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it} - u_{it})^{2} + \frac{2T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} u_{it} (\widehat{u}_{it} - u_{it}) = a_{111} + a_{112}.$$

Note that  $\max_{i \leq N} \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it} - u_{it})^2 = O_P(\frac{\log N}{T})$  by Lemma 3.1 of ?. Since  $\|\widehat{\boldsymbol{\theta}}\|^2 = O_P(\frac{N \log N}{T}), \|\boldsymbol{\Sigma}_u^{-1}\|_2 = O(1)$  and  $N(\log N)^3 = o(T^2),$ 

$$a_{111} \le O_P(\frac{\log N}{T}) \frac{T}{\sqrt{N}} \|\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1}\|^2 = O_P(\frac{(\log N)^2 \sqrt{N}}{T}) = o_P(1),$$

To bound  $a_{112}$ , note that

$$\widehat{u}_{it} - u_{it} = \widehat{\theta}_i - \theta_i + (\widehat{\mathbf{b}}_i - \mathbf{b}_i)' \mathbf{f}_t, \quad \max_i |\widehat{\theta}_i - \theta_i| = O_P(\sqrt{\frac{\log N}{T}}) = \max_i \|\widehat{\mathbf{b}}_i - \mathbf{b}_i\|.$$

Also, 
$$\max_{i} \left| \frac{1}{T} \sum_{t=1}^{T} u_{it} \right| = O_{P}(\sqrt{\frac{\log N}{T}}) = \max_{i} \left\| \frac{1}{T} \sum_{t=1}^{T} u_{it} \mathbf{f}_{t} \right\|$$
. Hence

$$a_{112} = \frac{2T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} u_{it} (\widehat{\boldsymbol{\theta}}_{i} - \boldsymbol{\theta}_{i}) + \frac{2T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} (\widehat{\mathbf{b}}_{i} - \mathbf{b}_{i})' \frac{1}{T} \sum_{t=1}^{T} \mathbf{f}_{t} u_{it}$$

$$\leq O_{P}(\frac{\log N}{\sqrt{N}}) \|\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1}\|^{2} = o_{P}(1).$$

In summary,  $a_1 = a_{12} + a_{111} + a_{112} = o_P(1)$ .

**Lemma 1.2.** Under  $H_0$ ,  $a_2 = o_P(1)$ .

*Proof.* We have  $a_2 = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \frac{1}{T} \sum_{t=1}^T (\widehat{u}_{it} \widehat{u}_{jt} - Eu_{it}u_{jt})$ , which is

$$\frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \left( \frac{1}{T} \sum_{t=1}^T (\widehat{u}_{it} \widehat{u}_{jt} - u_{it} u_{jt}) + \frac{1}{T} \sum_{t=1}^T (u_{it} u_{jt} - E u_{it} u_{jt}) \right) = a_{21} + a_{22}.$$

where

$$a_{21} = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \frac{1}{T} \sum_{t=1}^T (\widehat{u}_{it} \widehat{u}_{jt} - u_{it} u_{jt}).$$

Under  $H_0$ ,  $\Sigma_u^{-1}\widehat{\boldsymbol{\theta}} = \frac{1}{T}(1 - \bar{\mathbf{f}}'\mathbf{w})^{-1}\sum_{t=1}^T \Sigma_u^{-1}\mathbf{u}_t(1 - \mathbf{f}_t'\mathbf{w})$ , and  $\mathbf{e}_t = \Sigma_u^{-1}\mathbf{u}_t$ , we have

$$a_{22} = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_{U}} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{j} \frac{1}{T} \sum_{t=1}^{T} (u_{it} u_{jt} - E u_{it} u_{jt})$$

$$= \frac{Tc}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_{U}} \frac{1}{T} \sum_{s=1}^{T} (1 - \mathbf{f}'_{s} \mathbf{w}) e_{is} \frac{1}{T} \sum_{k=1}^{T} (1 - \mathbf{f}'_{k} \mathbf{w}) e_{jk} \frac{1}{T} \sum_{t=1}^{T} (u_{it} u_{jt} - E u_{it} u_{jt}).$$

By (1.2),  $Ea_{22}^2 = o(1)$ .

On the other hand,  $a_{21} = a_{211} + a_{212}$ , where

$$a_{211} = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \frac{1}{T} \sum_{t=1}^T (\widehat{u}_{it} - u_{it}) (\widehat{u}_{jt} - u_{jt}),$$

$$a_{212} = \frac{2T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \frac{1}{T} \sum_{t=1}^T u_{it} (\widehat{u}_{jt} - u_{jt}).$$

By the Cauchy-Schwarz inequality,  $\max_{ij} \left| \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it} - u_{it}) (\widehat{u}_{jt} - u_{jt}) \right| = O_P(\frac{\log N}{T})$ . Hence

$$|a_{211}| \leq O_{P}(\frac{\log N}{\sqrt{N}}) \sum_{i \neq j, (i,j) \in S_{U}} |(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}| |(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{j}|$$

$$\leq O_{P}(\frac{\log N}{\sqrt{N}}) \left( \sum_{i \neq j, (i,j) \in S_{U}} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \right)^{1/2} \left( \sum_{i \neq j, (i,j) \in S_{U}} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{j}^{2} \right)^{1/2}$$

$$= O_{P}(\frac{\log N}{\sqrt{N}}) \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \sum_{j: (\boldsymbol{\Sigma}_{u})_{ij} \neq 0} 1 \leq O_{P}(\frac{\log N}{\sqrt{N}}) ||\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1}||^{2} m_{N}$$

$$= O_{P}(\frac{m_{N} \sqrt{N} (\log N)^{2}}{T}) = o_{P}(1).$$

Similar to the proof of term  $a_{112}$  in Lemma 1.1,  $\max_{ij} \left| \frac{1}{T} \sum_{t=1}^{T} u_{it} (\widehat{u}_{jt} - u_{jt}) \right| = O_P(\frac{\log N}{T}).$ 

$$|a_{212}| \le O_P(\frac{\log N}{\sqrt{N}}) \sum_{i \ne j \ (i,j) \in S_U} |(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i| |(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j| = O_P(\frac{m_N \sqrt{N} (\log N)^2}{T}) = o_P(1).$$

In summary, 
$$a_2 = a_{22} + a_{211} + a_{212} = o_P(1)$$
.

### 1.1 Proof of (1.1) and (1.2)

For any index set A, we let  $|A|_0$  denote its number of elements.

**Lemma 1.3.** Recall that  $\mathbf{e}_t = \mathbf{\Sigma}_u^{-1} \mathbf{u}_t$ .  $e_{it}$  and  $u_{jt}$  are independent if  $i \neq j$ .

*Proof.* Because  $\mathbf{u}_t$  is Gaussian, it suffices to show that  $cov(e_{it}, u_{jt}) = 0$  when  $i \neq j$ . Consider the vector  $(\mathbf{u}'_t, \mathbf{e}'_t)' = \mathbf{A}(\mathbf{u}'_t, \mathbf{u}'_t)'$ , where

$$\mathbf{A} = \begin{pmatrix} \mathbf{I}_N & 0 \\ 0 & \mathbf{\Sigma}_u^{-1} \end{pmatrix}.$$

Then  $cov(\mathbf{u}'_t, \mathbf{e}'_t) = \mathbf{A}cov(\mathbf{u}'_t, \mathbf{u}'_t)\mathbf{A}$ , which is

$$\begin{pmatrix} \mathbf{I}_N & 0 \\ 0 & \mathbf{\Sigma}_u^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{\Sigma}_u & \mathbf{\Sigma}_u \\ \mathbf{\Sigma}_u & \mathbf{\Sigma}_u \end{pmatrix} \begin{pmatrix} \mathbf{I}_N & 0 \\ 0 & \mathbf{\Sigma}_u^{-1} \end{pmatrix} = \begin{pmatrix} \mathbf{\Sigma}_u & \mathbf{I}_N \\ \mathbf{I}_N & \mathbf{\Sigma}_u^{-1} \end{pmatrix}.$$

This completes the proof.

#### **Proof of (1.1)**

Let  $X = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} (u_{it}^2 - Eu_{it}^2) (\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{is} (1 - \mathbf{f}_s' \mathbf{w}))^2$ . The goal is to show  $EX^2 = o(T)$ . We show respectively  $\frac{1}{T} (EX)^2 = o(1)$  and  $\frac{1}{T} \text{var}(X) = o(1)$ . The proof of (1.1) is the same regardless of the type of sparsity in Assumption ??. For notational simplicity, let

$$\xi_{it} = u_{it}^2 - Eu_{it}^2, \quad \zeta_{is} = e_{is}(1 - \mathbf{f}_s'\mathbf{w}).$$

Then  $X = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \xi_{it} (\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^2$ . Because of the serial independence,  $\xi_{it}$  is independent of  $\zeta_{js}$  if  $t \neq s$ , for any  $i, j \leq N$ , which implies  $\operatorname{cov}(\xi_{it}, \zeta_{is}\zeta_{ik}) = 0$  as long as either  $s \neq t$  or  $k \neq t$ .

#### Expectation

For the expectation,

$$EX = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \cos(\xi_{it}, (\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^{2}) = \frac{1}{T\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \cot(\xi_{it}, \zeta_{is}\zeta_{ik})$$

$$= \frac{1}{T\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} (\cos(\xi_{it}, \zeta_{it}^{2}) + 2 \sum_{k \neq t} \cos(\xi_{it}, \zeta_{it}\zeta_{ik}))$$

$$= \frac{1}{T\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \cos(\xi_{it}, \zeta_{it}^{2}) = O(\sqrt{\frac{N}{T}}),$$

where the second last equality follows since  $E\xi_{it} = E\zeta_{it} = 0$  and when  $k \neq t$   $\operatorname{cov}(\xi_{it}, \zeta_{it}\zeta_{ik}) = E\xi_{it}\zeta_{it}\zeta_{ik} = E\xi_{it}\zeta_{it}E\zeta_{ik} = 0$ . It then follows that  $\frac{1}{T}(EX)^2 = O(\frac{N}{T^2}) = o(1)$ , given  $N = o(T^2)$ .

#### Variance

Consider the variance. We have,

$$var(X) = \frac{1}{N} \sum_{i=1}^{N} var(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{it}(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^{2})$$

$$+\frac{1}{NT^3} \sum_{i \neq j} \sum_{t,s,k,l,v,p \leq T} \operatorname{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}) = B_1 + B_2.$$

 $B_1$  can be bounded by the Cauchy-Schwarz inequality. Note that  $E\xi_{it} = E\zeta_{js} = 0$ ,

$$B_1 \leq \frac{1}{N} \sum_{i=1}^{N} E(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{it} (\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^2)^2 \leq \frac{1}{N} \sum_{i=1}^{N} [E(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{it})^4]^{1/2} [E(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^8]^{1/2}.$$

Hence  $B_1 = O(1)$ .

We now show  $\frac{1}{T}B_2 = o(1)$ . Once this is done, it implies  $\frac{1}{T}var(X) = o(1)$ . The proof of (1.1) is then completed because  $\frac{1}{T}EX^2 = \frac{1}{T}(EX)^2 + \frac{1}{T}var(X) = o(1)$ .

For two variables X, Y, writing  $X \perp Y$  if they are independent. Note that  $E\xi_{it} = E\zeta_{is} = 0$ , and when  $t \neq s$ ,  $\xi_{it} \perp \zeta_{js}$ ,  $\xi_{it} \perp \xi_{js}$ ,  $\zeta_{it} \perp \zeta_{js}$  for any  $i, j \leq N$ . Therefore, it is straightforward to verify that if the set  $\{t, s, k, l, v, p\}$  contains more than three distinct elements, then  $\operatorname{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}) = 0$ . Hence if we denote  $\Xi$  as the set of (t, s, k, l, v, p) such that  $\{t, s, k, l, v, p\}$  contains no more than three distinct elements, then its cardinality satisfies:  $|\Xi|_0 \leq CT^3$  for some C > 1, and

$$\sum_{t,s,k,l,v,p\leq T} \operatorname{cov}(\xi_{it}\zeta_{is}\zeta_{ik},\xi_{jl}\zeta_{jv}\zeta_{jp}) = \sum_{(t,s,k,l,v,p)\in\Xi} \operatorname{cov}(\xi_{it}\zeta_{is}\zeta_{ik},\xi_{jl}\zeta_{jv}\zeta_{jp}).$$

Hence

$$B_2 = \frac{1}{NT^3} \sum_{i \neq j} \sum_{(t,s,k,l,v,p) \in \Xi} \text{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}).$$

Let us partition  $\Xi$  into  $\Xi_1 \cup \Xi_2$  where each element (t, s, k, l, v, p) in  $\Xi_1$  contains exactly three distinct indices, while each element in  $\Xi_2$  contains less than three distinct indices. We know that  $\frac{1}{NT^3} \sum_{i \neq j} \sum_{(t,s,k,l,v,p) \in \Xi_2} \text{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}) = O(\frac{1}{NT^3}N^2T^2) = O(\frac{N}{T})$ , which implies

$$\frac{1}{T}B_2 = \frac{1}{NT^4} \sum_{i \neq j} \sum_{(t,s,k,l,v,p) \in \Xi_1} \operatorname{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}) + O_p(\frac{N}{T^2}).$$

The first term on the right hand side can be written as  $\sum_{h=1}^{5} B_{2h}$ . Each of these five terms is defined and analyzed separately as below.

$$B_{21} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s,t} E\xi_{it}\xi_{jt}E\zeta_{is}^2 E\zeta_{jl}^2 \le O(\frac{1}{NT}) \sum_{i \neq j} |E\xi_{it}\xi_{jt}|.$$

Note that if  $(\Sigma_u)_{ij} = 0$ ,  $u_{it}$  and  $u_{jt}$  are independent, and hence  $E\xi_{it}\xi_{jt} = 0$ . This implies  $\sum_{i\neq j} |E\xi_{it}\xi_{jt}| \leq O(1) \sum_{i\neq j, (i,j)\in S_U} 1 = O(N)$ . Hence  $B_{21} = o(1)$ .

$$B_{22} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s,t} E\xi_{it} \zeta_{it} E\zeta_{is} \xi_{js} E\zeta_{jl}^2.$$

By Lemma 1.3,  $u_{js}$  and  $e_{is}$  are independent for  $i \neq j$ . Also,  $u_{js}$  and  $\mathbf{f}_s$  are independent, which implies  $\xi_{js}$  and  $\zeta_{is}$  are independent. So  $E\xi_{js}\zeta_{is} = 0$ . It follows that  $B_{22} = 0$ .

$$B_{23} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s,t} E\xi_{it} \zeta_{it} E\zeta_{is} \zeta_{js} E\xi_{jl} \zeta_{jl} = O(\frac{1}{NT}) \sum_{i \neq j} |E\zeta_{is} \zeta_{js}|$$
$$= O(\frac{1}{NT}) \sum_{i \neq j} |Ee_{is}e_{js} E(1 - \mathbf{f}_s' \mathbf{w})^2| = O(\frac{1}{NT}) \sum_{i \neq j} |Ee_{is}e_{js}|.$$

By the definition  $\mathbf{e}_s = \mathbf{\Sigma}_u^{-1} \mathbf{u}_s$ ,  $\operatorname{cov}(\mathbf{e}_s) = \mathbf{\Sigma}_u^{-1}$ . Hence  $Ee_{is}e_{js} = (\mathbf{\Sigma}_u^{-1})_{ij}$ , which implies  $B_{23} \leq O(\frac{N}{NT}) \|\mathbf{\Sigma}_u^{-1}\|_1 = o(1)$ .

$$B_{24} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s, t} E\xi_{it}\xi_{jt} E\zeta_{is}\zeta_{js} E\zeta_{il}\zeta_{jl} = O(\frac{1}{T}),$$

which is analyzed in the same way as  $B_{21}$ .

Finally,  $B_{25} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s,t} E \xi_{it} \zeta_{jt} E \zeta_{is} \xi_{js} E \zeta_{il} \zeta_{jl} = 0$ , because  $E \zeta_{is} \xi_{js} = 0$  when  $i \neq j$ , following from Lemma 1.3. Therefore,  $\frac{1}{T}B_2 = o(1) + O(\frac{N}{T^2}) = o(1)$ .

#### Proof of (1.2)

For notational simplicity, let  $\xi_{ijt} = u_{it}u_{jt} - Eu_{it}u_{jt}$ . Because of the serial independence and the Gaussianity,  $cov(\xi_{ijt}, \zeta_{ls}\zeta_{nk}) = 0$  when either  $s \neq t$  or  $k \neq t$ , for any  $i, j, l, n \leq N$ . In addition, define a set

$$H = \{(i, j) \in S_U : i \neq j\}.$$

Then by the sparsity assumption,  $\sum_{(i,j)\in H} 1 = D_N = O(N)$ . Now let

$$Z = \frac{1}{\sqrt{NT}} \sum_{(i,j) \in H} \sum_{t=1}^{T} (u_{it}u_{jt} - Eu_{it}u_{jt}) \left[ \frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{is} (1 - \mathbf{f}_{s}'\mathbf{w}) \right] \left[ \frac{1}{\sqrt{T}} \sum_{k=1}^{T} e_{jk} (1 - \mathbf{f}_{k}'\mathbf{w}) \right]$$

$$= \frac{1}{\sqrt{NT}} \sum_{(i,j)\in H} \sum_{t=1}^{T} \xi_{ijt} \left[ \frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is} \right] \left[ \frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{jk} \right] = \frac{1}{T\sqrt{NT}} \sum_{(i,j)\in H} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \xi_{ijt} \zeta_{is} \zeta_{jk}.$$

The goal is to show  $\frac{1}{T}EZ^2 = o(1)$ . We respectively show  $\frac{1}{T}(EZ)^2 = o(1) = \frac{1}{T}var(Z)$ .

#### Expectation

The proof for the expectation is the same regardless of the type of sparsity in Assumption ??, and is very similar to that of (1.1). In fact,

$$EZ = \frac{1}{T\sqrt{NT}} \sum_{(i,j)\in H} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \cot(\xi_{ijt}, \zeta_{is}\zeta_{jk}) = \frac{1}{T\sqrt{NT}} \sum_{(i,j)\in H} \sum_{t=1}^{T} \cot(\xi_{ijt}, \zeta_{it}^2).$$

Because 
$$\sum_{(i,j)\in H} 1 = O(N)$$
,  $EZ = O(\sqrt{\frac{N}{T}})$ . Thus  $\frac{1}{T}(EZ)^2 = o(1)$ .

#### Variance

For the variance, we have

$$\operatorname{var}(Z) = \frac{1}{T^{3}N} \sum_{(i,j)\in H} \operatorname{var}(\sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \xi_{ijt} \zeta_{is} \zeta_{jk}) + \frac{1}{T^{3}N} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t,s,k,l,v,p\leq T} \operatorname{cov}(\xi_{ijt} \zeta_{is} \zeta_{jk}, \xi_{mnl} \zeta_{mv} \zeta_{np})$$

$$= A_{1} + A_{2}.$$

By the Cauchy-Schwarz inequality and the serial independence of  $\xi_{ijt}$ ,

$$A_{1} \leq \frac{1}{N} \sum_{(i,j)\in H} E\left[\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{ijt} \frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is} \frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{jk}\right]^{2}$$

$$\leq \frac{1}{N} \sum_{(i,j)\in H} \left[E\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{ijt}\right)^{4}\right]^{1/2} \left[E\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is}\right)^{8}\right]^{1/4} \left[E\left(\frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{jk}\right)^{8}\right]^{1/4}.$$

So  $A_1 = O(1)$ .

Note that  $E\xi_{ijt} = E\zeta_{is} = 0$ , and when  $t \neq s$ ,  $\xi_{ijt} \perp \zeta_{ms}$ ,  $\xi_{ijt} \perp \xi_{mns}$ ,  $\zeta_{it} \perp \zeta_{js}$  (independent) for any  $i, j, m, n \leq N$ . Therefore, it is straightforward to verify that if the set  $\{t, s, k, l, v, p\}$  contains more than three distinct elements, then  $\operatorname{cov}(\xi_{ijt}\zeta_{is}\zeta_{jk}, \xi_{mnl}\zeta_{mv}\zeta_{np}) = 0$ . Hence for the same set  $\Xi$  defined as before, it satisfies:

 $|\Xi|_0 \leq CT^3$  for some C > 1, and

$$\sum_{t,s,k,l,v,p\leq T} \operatorname{cov}(\xi_{ijt}\zeta_{is}\zeta_{jk},\xi_{mnl}\zeta_{mv}\zeta_{np}) = \sum_{(t,s,k,l,v,p)\in\Xi} \operatorname{cov}(\xi_{ijt}\zeta_{is}\zeta_{jk},\xi_{mnl}\zeta_{mv}\zeta_{np}).$$

We proceed by studying the two cases of Assumption ?? separately, and show that in both cases  $\frac{1}{T}A_2 = o(1)$ . Once this is done, because we have just shown  $A_1 = O(1)$ , then  $\frac{1}{T}\text{var}(Z) = o(1)$ . The proof is then completed because  $\frac{1}{T}EZ^2 = \frac{1}{T}(EZ)^2 + \frac{1}{T}\text{var}(Z) = o(1)$ .

When 
$$D_N = O(\sqrt{N})$$

Because  $|\Xi|_0 \leq CT^3$  and  $|H|_0 = D_N = O(\sqrt{N})$ , and  $|\operatorname{cov}(\xi_{ijt}\zeta_{is}\zeta_{jk}, \xi_{mnl}\zeta_{mv}\zeta_{np})|$  is bounded uniformly in  $i, j, m, n \leq N$ , we have

$$\frac{1}{T}A_2 = \frac{1}{T^4N} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t,s,k,l,v,p\in\Xi} \cos(\xi_{ijt}\zeta_{is}\zeta_{jk}, \xi_{mnl}\zeta_{mv}\zeta_{np}) = O(\frac{1}{T}).$$

When 
$$D_n = O(N)$$
, and  $m_N = O(1)$ 

Similar to the proof of the first statement, for the same set  $\Xi_1$  that contains exactly three distinct indices in each of its element, (recall  $|H|_0 = O(N)$ )

$$\frac{1}{T}A_2 = \frac{1}{NT^4} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t,s,k,l,v,p\in\Xi_1} \text{cov}(\xi_{ijt}\zeta_{is}\zeta_{jk}, \xi_{mnl}\zeta_{mv}\zeta_{np}) + O(\frac{N}{T^2}).$$

The first term on the right hand side can be written as  $\sum_{h=1}^{5} A_{2h}$ . Each of these five terms is defined and analyzed separately as below. Before that, let us introduce a useful lemma.

The following lemma is needed when  $\Sigma_u$  has bounded number of nonzero entries in each row  $(m_N = O(1))$ . Let  $|S|_0$  denote the number of elements in a set S if S is countable. For any  $i \leq N$ , let

$$A(i) = \{ j \le N : cov(u_{it}, u_{jt}) \ne 0 \} = \{ j \le N : (i, j) \in S_U \}.$$

**Lemma 1.4.** Suppose  $m_N = O(1)$ . For any  $i, j \leq N$ , let B(i, j) be a set of  $k \in \{1, ..., N\}$  such that:

- (i)  $k \notin A(i) \cup A(j)$
- (ii) there is  $p \in A(k)$  such that  $cov(u_{it}u_{jt}, u_{kt}u_{pt}) \neq 0$ .

Then  $\max_{i,j < N} |B(i,j)|_0 = O(1)$ .

Proof. First we note that if  $B(i,j) = \emptyset$ , then  $|B(i,j)|_0 = 0$ . If it is not empty, for any  $k \in B(i,j)$ , by definition,  $k \notin A(i) \cup A(j)$ , which implies  $\operatorname{cov}(u_{it}, u_{kt}) = \operatorname{cov}(u_{jt}, u_{kt}) = 0$ . By the Gaussianity,  $u_{kt}$  is independent of  $(u_{it}, u_{jt})$ . Hence if  $p \in A(k)$  is such that  $\operatorname{cov}(u_{it}u_{jt}, u_{kt}u_{pt}) \neq 0$ , then  $u_{pt}$  should be correlated with either  $u_{it}$  or  $u_{jt}$ . We thus must have  $p \in A(i) \cup A(j)$ . In other words, there is  $p \in A(i) \cup A(j)$  such that  $\operatorname{cov}(u_{kt}, u_{pt}) \neq 0$ , which implies  $k \in A(p)$ . Hence,

$$k \in \bigcup_{p \in A(i) \cup A(j)} A(p) \equiv M(i, j),$$

and thus  $B(i,j) \subset M(i,j)$ . Because  $m_N = O(1)$ ,  $\max_{i \leq N} |A(i)|_0 = O(1)$ , which implies  $\max_{i,j} |M(i,j)|_0 = O(1)$ , yielding the result.

Now we define and bound each of  $A_{2h}$ . For any  $(i, j) \in H = \{(i, j) : (\Sigma_u)_{ij} \neq 0\}$ , we must have  $j \in A(i)$ . So

$$A_{21} = \frac{1}{NT^4} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t=1} \sum_{s\neq t}^T \sum_{l\neq t,s} E\xi_{ijt} \xi_{mnt} E\zeta_{is} \zeta_{js} E\zeta_{ml} \zeta_{nl}$$

$$\leq O(\frac{1}{NT}) \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j)} |E\xi_{ijt} \xi_{mnt}|$$

$$\leq O(\frac{1}{NT}) \sum_{(i,j)\in H} (\sum_{m\in A(i)\cup A(j)} \sum_{n\in A(m)} + \sum_{m\notin A(i)\cup A(j)} \sum_{n\in A(m)} )|\operatorname{cov}(u_{it}u_{jt}, u_{mt}u_{nt})|.$$

The first term is  $O(\frac{1}{T})$  because  $|H|_0 = O(N)$  and  $|A(i)|_0$  is bounded uniformly by  $m_N = O(1)$ . So the number of summands in  $\sum_{m \in A(i) \cup A(j)} \sum_{n \in A(m)}$  is bounded. For the second term, if  $m \notin A(i) \cup A(j)$ ,  $n \in A(m)$  and  $\operatorname{cov}(u_{it}u_{jt}, u_{mt}u_{nt}) \neq 0$ , then  $m \in B(i,j)$ . Hence the second term is bounded by  $O(\frac{1}{NT}) \sum_{(i,j) \in H} \sum_{m \in B(i,j)} \sum_{n \in A(m)} |\operatorname{cov}(u_{it}u_{jt}, u_{mt}u_{nt})|$ , which is also  $O(\frac{1}{T})$  by Lemma 1.4. Hence  $A_{21} = o(1)$ .

Similarly, applying Lemma 1.4,

$$A_{22} = \frac{1}{NT^4} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t=1} \sum_{s\neq t}^{T} \sum_{l\neq t,s} E\xi_{ijt} \xi_{mnt} E\zeta_{is} \zeta_{ms} E\zeta_{jl} \zeta_{nl} = o(1),$$

which is proved in the same lines of those of  $A_{21}$ .

Also note three simple facts: (1)  $\max_{j \leq N} |A(j)|_0 = O(1)$ , (2)  $(m, n) \in H$  implies

 $n \in A(m)$ , and (3)  $\xi_{mms} = \xi_{nms}$ . The term  $A_{23}$  is defined as

$$A_{23} = \frac{1}{NT^4} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t=1} \sum_{s\neq t}^T \sum_{l\neq t,s} E\xi_{ijt} \zeta_{it} E\zeta_{js} \xi_{mns} E\zeta_{ml} \zeta_{nl}$$

$$\leq O(\frac{1}{NT}) \sum_{j=1}^N \sum_{i\in A(j)} 1 \sum_{(m,n)\in H, (m,n)\neq (i,j)} |E\zeta_{js} \xi_{mns}|$$

$$\leq O(\frac{2}{NT}) \sum_{j=1}^N \sum_{n\in A(j)} |E\zeta_{js} \xi_{jns}| + O(\frac{1}{NT}) \sum_{j=1}^N \sum_{m\neq j, n\neq j} |E\zeta_{js} \xi_{mns}| = a + b.$$

Term  $a = O(\frac{1}{T})$ . For b, note that Lemma 1.3 implies that when  $m, n \neq j$ ,  $u_{ms}u_{ns}$  and  $e_{js}$  are independent because of the Gaussianity. Also because  $\mathbf{u}_s$  and  $\mathbf{f}_s$  are independent, hence  $\zeta_{js}$  and  $\xi_{mms}$  are independent, which implies that b = 0. Hence  $A_{23} = o(1)$ .

The same argument as of  $A_{23}$  also implies

$$A_{24} = \frac{1}{NT^4} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t=1} \sum_{s\neq t}^{T} \sum_{s\neq t} \sum_{l\neq t,s} E\xi_{ijt} \zeta_{mt} E\zeta_{is} \xi_{mns} E\zeta_{il} \zeta_{nl} = o(1)$$

Finally, because  $\sum_{(i,j)\in H} 1 \leq \sum_{i=1}^{N} \sum_{j\in A(i)} 1 \leq m_N \sum_{i=1}^{N} 1$ , and  $m_N = O(1)$ , we have

$$A_{25} = \frac{1}{NT^{4}} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq(i,j), t=1}^{NT} \sum_{s\neq t}^{NT} \sum_{l\neq t,s}^{NT} E\xi_{ijt} \zeta_{it} E\zeta_{is} \zeta_{ms} E\xi_{mnl} \zeta_{nl}$$

$$\leq O(\frac{1}{NT}) \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq(i,j)}^{NT} |E\xi_{ijt} \zeta_{it} E\xi_{is} \zeta_{ms} E\xi_{mnl} \zeta_{nl}|$$

$$\leq O(\frac{1}{NT}) \sum_{i=1}^{N} \sum_{m=1}^{N} |E\zeta_{is} \zeta_{ms}| \leq O(\frac{1}{NT}) \sum_{i=1}^{N} \sum_{m=1}^{N} |(\Sigma_{u}^{-1})_{im}|E(1-\mathbf{f}_{s}'\mathbf{w})^{2}$$

$$\leq O(\frac{N}{NT}) \|\Sigma_{u}^{-1}\|_{1} = o(1).$$

In summary,  $\frac{1}{T}A_2 = o(1) + O(\frac{N}{T^2}) = o(1)$ . This completes the proof.

## 2 Further technical lemmas for Section 4

We cite a lemma that will be needed throughout the proofs.

**Lemma 2.1.** Under Assumption ??, there is C > 0,

(i) 
$$P(\max_{i,j \le N} | \frac{1}{T} \sum_{t=1}^{T} u_{it} u_{jt} - E u_{it} u_{jt}| > C \sqrt{\frac{\log N}{T}}) \to 0.$$

(ii) 
$$P(\max_{i \le K, j \le N} | \frac{1}{T} \sum_{t=1}^{T} f_{it} u_{jt} | > C \sqrt{\frac{\log N}{T}}) \to 0.$$

(iii) 
$$P(\max_{j \le N} |\frac{1}{T} \sum_{t=1}^{T} u_{jt}| > C\sqrt{\frac{\log N}{T}}) \to 0.$$

*Proof.* The proof follows from Lemmas A.3 and B.1 in ?.

**Lemma 2.2.** When the distribution of  $(\mathbf{u}_t, \mathbf{f}_t)$  is independent of  $\boldsymbol{\theta}$ , there is C > 0,

(i) 
$$\sup_{\boldsymbol{\theta} \in \Theta} P(\max_{j \le N} |\widehat{\theta}_j - \theta_j| > C\sqrt{\frac{\log N}{T}} |\boldsymbol{\theta}) \to 0$$

(ii) 
$$\sup_{\boldsymbol{\theta} \in \Theta} P(\max_{i,j \leq N} |\widehat{\sigma}_{ij} - \sigma_{ij}| > C\sqrt{\frac{\log N}{T}} |\boldsymbol{\theta}) \to 0$$
,

(iii) 
$$\sup_{\boldsymbol{\theta} \in \Theta} P(\max_{i \le N} |\widehat{\sigma}_i - \sigma_i| > C\sqrt{\frac{\log N}{T}} |\boldsymbol{\theta}) \to 0.$$

*Proof.* Note that  $\hat{\theta}_j - \theta_j = \frac{1}{a_{f,T}T} \sum_{t=1}^T u_{jt} (1 - \mathbf{f}_t' \mathbf{w})$ . Here  $a_{f,T} = 1 - \bar{\mathbf{f}}' \mathbf{w} \to^p 1 - E\mathbf{f}_t' (E\mathbf{f}_t\mathbf{f}_t')^{-1} E\mathbf{f}_t > 0$ , hence  $a_{f,T}$  is bounded away from zero with probability approaching one. Thus by Lemma 2.1, there is C > 0 independent of  $\boldsymbol{\theta}$ , such that

$$\sup_{\boldsymbol{\theta} \in \Theta} P(\max_{j \leq N} |\widehat{\theta}_j - \theta_j| > C\sqrt{\frac{\log N}{T}} |\boldsymbol{\theta}) = P(\max_j | \frac{1}{a_{f,T}T} \sum_{t=1}^T u_{jt} (1 - \mathbf{f}_t' \mathbf{w})| > C\sqrt{\frac{\log N}{T}}) \to 0$$

(ii) There is C independent of  $\theta$ , such that the event

$$A = \{ \max_{i,j} \left| \frac{1}{T} \sum_{t=1}^{T} u_{it} u_{jt} - \sigma_{ij} \right| < C \sqrt{\frac{\log N}{T}}, \quad \frac{1}{T} \sum_{t=1}^{T} \|\mathbf{f}_t\|^2 < C \}$$

has probability approaching one. Also, there is  $C_2$  also independent of  $\boldsymbol{\theta}$  such that the event  $B = \{ \max_i \frac{1}{T} \sum_t u_{it}^2 < C_2 \}$  occurs with probability approaching one. Then on the event  $A \cap B$ , by the triangular and Cauchy-Schwarz inequalities,

$$|\widehat{\sigma}_{ij} - \sigma_{ij}| \le C\sqrt{\frac{\log N}{T}} + 2\max_{i} \sqrt{\frac{1}{T} \sum_{t} (\widehat{u}_{it} - u_{it})^2 C_2} + \max_{i} \frac{1}{T} \sum_{t} (u_{it} - \widehat{u}_{it})^2.$$

It can be shown that

$$\max_{i \le N} \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it} - u_{it})^2 \le \max_{i} (\|\widehat{\mathbf{b}}_i - \mathbf{b}_i\|^2 + (\widehat{\theta}_i - \theta_i)^2) (\frac{1}{T} \sum_{t=1}^{T} \|\mathbf{f}_t\|^2 + 1).$$

Note that  $\hat{\mathbf{b}}_i - \mathbf{b}_i$  and  $\hat{\theta}_i - \theta_i$  only depend on  $(\mathbf{f}_t, \mathbf{u}_t)$  (independent of  $\boldsymbol{\theta}$ ). By Lemma 3.1

of?, there is  $C_3 > 0$  such that  $\sup_{\mathbf{b}, \boldsymbol{\theta}} P(\max_{i \leq N} \|\widehat{\mathbf{b}}_i - \mathbf{b}_i\|^2 + (\widehat{\theta}_i - \theta_i)^2 > C_3 \frac{\log N}{T}) = o(1)$ . Combining the last two displayed inequalities yields, for  $C_4 = (C+1)C_3$ ,

$$\sup_{\theta} P(\max_{i \le N} \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it} - u_{it})^2 > C_4 \frac{\log N}{T} | \theta) = o(1),$$

which yields the desired result.

(iii): Recall  $\hat{\sigma}_j^2 = \hat{\sigma}_{jj}/a_{f,T}$ , and  $\sigma_j^2 = \sigma_{jj}/(1 - E\mathbf{f}_t'(E\mathbf{f}_t\mathbf{f}_t')^{-1}E\mathbf{f}_t)$ . Moreover,  $a_{f,T}$  is independent of  $\boldsymbol{\theta}$ . The result follows immediately from part (ii).

**Lemma 2.3.** For any  $\epsilon > 0$ ,  $\sup_{\boldsymbol{\theta}} P(\|\widehat{\boldsymbol{\Sigma}}_u^{-1} - \boldsymbol{\Sigma}_u^{-1}\| > \epsilon|\boldsymbol{\theta}) = o(1)$ .

Proof. By Lemma 2.2 (ii),  $\sup_{\boldsymbol{\theta} \in \Theta} P(\max_{i,j \leq N} |\widehat{\sigma}_{ij} - \sigma_{ij}| > C\sqrt{\frac{\log N}{T}} |\boldsymbol{\theta}) \to 1$ . By ?, on the event  $\max_{i,j \leq N} |\widehat{\sigma}_{ij} - \sigma_{ij}| \leq C\sqrt{\frac{\log N}{T}}$ , there is constant C' that is independent of  $\boldsymbol{\theta}$ ,  $\|\widehat{\boldsymbol{\Sigma}}_u^{-1} - \boldsymbol{\Sigma}_u^{-1}\| \leq C' m_N (\frac{\log N}{T})^{1/2}$ . Hence the result follows due to the sparse condition  $m_N(\frac{\log N}{T})^{1/2} = o(1)$ .