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Supplementary Figure 1 

 

 
 

 

Supplementary Figure 1: Networks with the 2D cortical geometry (8 μm x 8 μm x 0.5 μm) 

display altered morphologies depending on the actin turnover rate.  a) A 2D cytoskeletal 

network with an actin turnover rate of 0 s
-1

, 25 μM actin, 1% ACPs, and 1% motors at different 

time points.  Motors started walking at t = 10s.  At t = 30s and 50s, the network has aggregated 

under internal stress.  b) A 2D cytoskeletal network with an actin turnover rate of 200 s
-1

, 25 

μM actin, 1% ACPs, and 1% motors at different time points.  Motors started walking at t = 10s.  

The network is homogeneous and can sustain the generated stress.  Teal, yellow, and red are 

actin filaments, ACPs, and motors, respectively.   
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Supplementary Figure 2 

 

Supplementary Figure 2: Spatial distribution of internal tension.  a-d) Tension profiles of 

networks at corresponding time points in Fig. 1a, Fig1b, Supplementary Fig. 1a, Supplementary 

Fig. 1b, respectively.  The color bar indicates the linear scale for tension.  The bottom 

corresponds to tensions less than or equal to 0 and the top corresponds to tensions of 100 pN or 

larger.    
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Supplementary Figure 3 

 

 
 

 

Supplementary Figure 3: Time evolution of stress profiles for 2D (8 μm x 8 μm x 0.5 μm) 

networks with 25 μM actin and the specified percentages of ACPs and motors to actin.  Each 

row has the same concentration of ACPs (from 1% to 10%) and each column has the same 

concentration of motors (from 0.1% to 3.16%).  Blue, red, yellow, purple, green, light blue, and 

dark red curves represent actin turnover rates of 0, 30, 60, 120, 200, 300, and 600 s
-1

, 

respectively.  Networks with stress profiles that peak and collapse are unstable and lead to 

aggregates, while networks that display sustained steady-state stress profiles (from initial motor 

activation) tend to stay homogeneous.  The average filament length of these networks is ~1 μm.      
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Supplementary Figure 4 

 

 
 

 

Supplementary Figure 4: Time evolution of stress profiles for various network configurations in 

3D domains (3 μm x 3 μm x 3 μm) with 25 μM actin and the specified percentages of ACPs and 

motors to actin.  Blue, red, yellow, purple, and green curves represent actin turnover rates of 0, 

30, 90, 150, and 300 s
-1

, respectively.  Each column has the same motor concentration and each 

row has the same ACP concentration.  The average filament length of these networks is ~1.3 

μm.     
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Supplementary Figure 5 

 

 
 

Supplementary Figure 5: Impact of concentrations and filament length on stresses measured in 

the 2D cortical geometry.  Average filament length is varied by changing the ratio of the 

polymerization rate to the nucleation rate.  Each curve on the same plot corresponds to a 

different actin turnover rate: 0, 30, 60, 120, 240, 480 s
-1

 from top to bottom, respectively.  

Increasing ACP concentration or actin filament length enhances the stability of the stress, 

especially for lower actin turnover rates, corresponding to larger stresses.  Increasing filament 

length also leads to larger stresses.  Doubling the actin concentration appears to have less of an 

effect (compared to Supplementary Fig. 3), but may slightly increase the stability of the network.   
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Supplementary Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 6: Curve fits on stress profiles.  Red curves are fits according to equation 

S2 and circles are numerical data from typical stress profiles for different simulated network 

configurations, including both aggregated and homogeneous networks.  Data are from 

configurations with 25 μM actin, 1% ACPs, 1% motors, and actin turnover rates of 0 (blue), 30 

(green), or 300 s
-1

 (orange).  
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Supplementary Figure 7 

 

 

Supplementary Figure 7: Separation distances and the clustering factor.  a) The separation 

distance Dj between neighbors evolves over time for a network that aggregates (1% ACP, 1% 

motors, 30 s
-1

 actin turnover rate).  Dark blue, red, yellow, purple, green, light blue, and maroon 

curves indicate t = 0 to 60s at 10s time intervals, respectively.  The signature for aggregated 

networks (low Dj for a large number of close neighbors) is apparent at later time points.  b) The 

clustering factor CF evolves over time for a network with 1% ACP and 1% motors at different 

actin turnover rates.  Blue, red, yellow, purple, and green curves correspond to actin turnover 

rates of 0, 30, 90, 150, and 300 s
-1

, respectively.  Homogeneous networks have high and stable 

CF’s whereas aggregated networks have CF’s that diminish over time.  
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Supplementary Figure 8 

 

 
 

Supplementary Figure 8: Heat maps of the clustering factor (CF) measured at the end of 

simulation time for each configuration (see Supplementary Fig. 4 for typical durations), as 

described in Supplementary Note 3.   
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Supplementary Figure 9 

 

 
 

Supplementary Figure 9: Peak stresses of 2D (a,b) and 3D (c,d) networks with 25 μM actin, 10% 

ACPs, and 1% motors.  (a,c) The peak stresses of networks at various actin turnover rates for 

different scaling of the motor walking rate.  Increased motor walking speed increases the peak 

stress for the same turnover rate.  (b,d) The peak stresses of networks vs. the scaled turnover 

rate, equal to the turnover rate divided by the scaling factor of the motor walking rate.  The 

curves collapse, indicating that a fixed ratio of the turnover rate to motor walking rate produces 

the same stress profiles for relatively high (non-zero) turnover rates.     
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Supplementary Figure 10 

 

 
 

Supplementary Figure 10: Dual roles of actin turnover.  With permanent ACPs (ku,ACP
0  = 0), 

actin turnover can serve to both diminish and sustain steady-state stresses.  Numbers in the 

legend indicate actin turnover rates.  Without any intrinsic ACP unbinding, low actin turnover 

rates lead to a collapse in the stress profile, while high actin turnover rates recover stable stress 

profiles.  However, at the lowest actin turnover rate (0 s
-1

), the stress is stable.  These 

simulations were performed in the 2D cortical geometry (8 µm x 8 µm x 0.5 µm) with 25 μM 

actin, 7% ACPs, and 5% motors.  
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Supplementary Figure 11 

 

 
 

Supplementary Figure 11: Stress dynamics of 3D networks with 1% ACP, 1% motors, and 25 μM 

actin (a) without and (b) with bending angle-dependent severing of actin filaments.  Blue, red, 

yellow, purple, and green curves indicate actin turnover rates (due to treadmilling) of 0, 30, 90, 

150, and 300 s
-1

, respectively.  (c) Peak stress vs. turnover rate for simulations in (a) and (b).  

Blue circles and red diamonds represent simulations without and with severing, respectively.  

Peak stresses are calculated by taking the average stress over a 10 s time interval centered on the 

time point of maximal stress.     
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Supplementary Table 1: List of parameters employed in the model. Most of the parameter 

values are identical to those used in our recent work 
1
. Parameter values without references are 

either determined arbitrarily due to lack of experimental data or generally accepted ones. 

Symbol Definition Value 

r0,A Length of a cylindrical actin segment 1.4×10
-7

 [m]  

rc,A Diameter of a cylindrical actin segment 7.0×10
-9

 [m] 
2
 

θ0,A Bending angle of actin 0 [rad]  

κs,A Extensional stiffness of actin 1.69×10
-2 

[N m
-1

] 

κb,A Bending stiffness of actin 2.64×10
-19

 [N m] 
3
 

r0,ACP Length of an ACP arm 2.35×10
-8

 [m] 
4
 

rc,ACP Diameter of an ACP arm 1.0×10
-8

 [m]  

θ0,ACP Bending angle of ACP 0 [rad]  

κs,ACP Extensional stiffness of an ACP arm 2.0×10
-3 

[N m
-1

]  

κb,ACP Bending stiffness of ACP  1.04×10
-19

 [N m]  

r0,M1 Length of a bare zone of motor backbone 4.2×10
-8

 [m]  

r0,M2 Length of side segments of motor backbone 4.2×10
-8

 [m]  

θ0,M Bending angle of motor backbone 0 [rad]  

κs,M1 Extensional stiffness 1 of motor backbone 1.69×10
-2 

[N m
-1

] 

κs,M2 Extensional stiffness 2 of motor backbone 1.69×10
-2 

[N m
-1

] 

κb,M Bending stiffness of motor backbone 5.07×10
-18

 [N m]  

r0,M3 Length of a motor arm 1.35×10
-8

 [m] 
5
 

rc,M Diameter of a motor arm 1.0×10
-8

 [m]  

κs,M3 Extensional stiffness 1 of a motor arm 2.5×10
-4 

[N m
-1

] 

κs,M4 Extensional stiffness 2 of a motor arm 1.0×10
-3 

[N m
-1

] 
6
 

Nh Number of heads represented by a motor arm 8 

Na Number of arms in a single motor 8 

κr Strength of repulsive force 1.69×10
-3

 [N m
-1

] 

CA Actin concentration 25 [μM] 

% Motors [Ratio of CM to CA] × 100 0.1-5 

% ACPs [Ratio of CACP to CA] × 100 1-10 

<Lf> Average length of actin filaments  
1.3 [μm] for 3D domain 

1 [μm] for 2D domain 

Δt Time step 2.3×10
-5 

[s] 
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μ Viscosity of medium 0.86×10
-3 

[kg m
-1

 s
-1

] 

 Zero-force unbinding rate coefficient of ACP 0.115 [s
-1

] 
7
 

 Compliance of a bond for ACP unbinding 1.04×10
-10 

[m] 
7
 

kBT Thermal energy 4.142×10
-21 

[J] 

ka,p Actin polymerization rate 30n [μM
-1 

s
-1

] 

ka,d Actin depolymerization rate 30n [s
-1

] 

ka,n Actin nucleation rate 0.01n [μM
-1 

s
-1

] 

n Actin turnover scaling factor 0-20 
0

sevk  Zero-angle severing rate coefficient  1.0×10
-17

 [s
-1

]  

sev  Sensitivity of a severing rate to an angle 2.79×10
-2 

[rad]  

For “Parallel Cluster Model” 
8,9

 

k01 A rate from unbound to weakly bound state 40 [s
-1

] 
  k10  A rate from weakly bound to unbound state 2 [s

-1
] 

k12 
A rate from weakly bound to post-power-stroke 

state 
1,000 [s

-1
] 

k21 
A rate from post-power-stroke to weakly bound 

state 
1,000 [s

-1
] 

k20 A rate from post-power-stroke to unbound state 20 [s
-1

] 

F0 Constant for force dependence 5.04×10
-12

 [N] 

Epp 
Free energy bias toward the post-power-stroke 

state 
-60×10

-21 
[J] 

Eext External energy contribution 0 [J] 

d Step size 7×10
-9

 [m] 

km Spring constant of the neck linkers 1×10
-3 

[N m
-1

] 

  

0
u,ACPk

u,ACP
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Supplementary Note 1: Brownian Dynamics Model of the Active 

Actin Cytoskeleton 

We simulated actomyosin networks composed of F-actins, passive ACPs, and active 

myosin motors by modifying our previous model built based on Brownian dynamics 
1
. 

Definitions and values of parameters used in the model are described in Supplementary Table 1. 

 

Coarse-grained representations of F-actin, ACPs, and motors 

Actin filaments (F-actin) are coarse-grained using cylindrical segments with polarity 

(barbed and pointed ends) whose length and diameter are 140 nm and 7 nm 
2
 respectively, 

serially connected by elastic hinges. ACPs are modeled as pairs of cylindrical arms of 23.5 nm in 

length and 10 nm in diameter serially connected to each other by elastic hinges, which mimics 

the geometry of α-actinin 
4
. Motors consist of a relatively rigid backbone with symmetric 

polarity comprising multiple segments of 42 nm in length serially connected by hinges. Each 

endpoint of the backbone segment has two motor arms of 13.5 nm in length 
5
, mimicking the 

structure of myosin bipolar thick filaments (TF)
10

. The arms of ACPs and motors can bind to 

binding sites located every 7 nm on actin segments.  

 

Brownian dynamics using the Langevin equation 

      Displacements of the cylindrical segments representing F-actins, ACPs, and motors are 

governed by the Langevin equation with inertia neglected: 

     (S1.1) 
Td

0
d

i
i i i

t
  

r
F F
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where ir  is the location of either center point of ACPs or endpoint of segments constituting 

actin filaments and motor backbones, ζi is a drag coefficient, t is time, and iF  is a deterministic 

force that includes extensional and bending forces as well as repulsive forces. T

iF , a thermal 

force, is determined by the fluctuation-dissipation theorem: 

   
2 i ij

i j

k T
t t

t

 




BT T
F F δ     (S1.2) 

where δij is the Kronecker delta, δ is a unit second-order tensor, and Δt = 2.3×10
-5 

s is time step. 

The drag coefficients of actins, ACPs, and motors are approximated as 
11

: 

0, c,

c,

3 /
3

5

i i

i i

r r
r 


      (S1.3) 

where c,ir  and 0,ir  are the diameter and length of a segment, respectively. Locations of 

segments are updated at each time step using the Euler integration scheme:  

 Td 1
( ) ( ) ( )

d

i
i i i i i

i

t t t t t t
t 

       
r

r r r F F      (S1.4) 

 

Extensional and bending forces 

Extension and bending of actins, ACPs, and motors are governed by harmonic potentials 

with stiffness s  and b , respectively: 

2

s s 0

1
( )

2
U r r  ,  

2

b b 0

1

2
U                      (S1.5) 

where r is a distance, θ is a bending angle, and the subscript 0 denotes the equilibrium value.  
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i) Actin: Extensional (
s,A ) and bending stiffnesses of F-actins ( b,A ) maintain an equilibrium 

length of actin segments (
0,Ar = 140 nm) and an equilibrium angle formed by adjacent actin 

segments (
0,A = 0 rad). We chose the value of b,A  leading to the persistence length of 9 μm 

3
, 

but employed a lower value for 
s,A  than experimental measurement 

12
 for a resonable 

computational efficiency.  

ii) ACP: Extensional (
s,ACP ) and bending stiffnesses of ACPs (

b,ACP ) keep an equilibrium 

length of ACP arms (
0,ACPr = 23.5 nm) and an equilibrium angle formed by two ACP arms (

0,ACP

= 0 rad), and their values are set to reasonable values due to lack of experimental data as in our 

previous works 
13

.  

iii) Motor: Extensional stiffness of motor backbone (
s,M1  and 

s,M2 ) maintains an equilibrium 

length of the backbone (
s,M1r =

s,M2r = 42 nm), and their values are identical to 
s,A , whereas its 

bending stiffness (
b,M ) keeping the backbone straight (

0,M = 0 rad) is much larger than b,A

because motors need to be capable of extending and bending actin filaments without significant 

deformations on themselves. Extension of each motor arm is governed by a two-spring model 

where a transverse spring (
s,M3 ) maintains an equilibrium distance (

0,M3r = 13.5 nm) between F-

actin and the endpoint of the motor backbone while a longitudinal spring (
s,M4 ) helps 

maintaining a right angle formed by axis of the F-actin and a motor arm ( 0,M4r = 0 nm). The value 

of 
s,M4  is set based on experimental measurement 

6
. 

 

Repulsive forces 
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Repulsive forces due to volume-exclusion effects are computed via a harmonic potential 

13
: 

 
2

r 12 c,A 12 c,A

r

12 c,A

1
if

2

0 if

r r r r
U

r r




 
 
 

    (S1.6) 

where 12r  is a minimum distance between a pair of actin segments, and r  is strength of 

repulsive force. 

 

Dynamics of ACPs 

ACPs transiently cross-link pairs of F-actins without preference for angle of contact. 

ACPs unbind from F-actins in a force-dependent manner:  

u,ACP s,ACP
0

0,ACPu,ACP

u,ACP B

0
0,ACPu,ACP

exp if

if

F
k r r

k k T

k r r

  
   

    




   (S1.7) 

where s,ACPF  is an extensional force acting on an ACP arm, 0
u,ACPk  is the zero-force unbinding 

rate coefficient, u,ACP  is the force sensitivity of unbinding, and kBT is thermal energy. The 

reference values of 0
u,ACPk  ( 0*

u,ACPk = 0.115 s
-1

) and u,ACP  (= 1.04×10
-10 

m) are determined based 

on a previous single-molecule experiment 
7
, corresponding to those of filamin A.  

 

Dynamics of motors 

Bipolar TF structure of motors is formed via nucleation of a bare zone followed by 

symmetric assembly of backbone segments at both sides of the bare zone, leading to TFs with 
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constant backbone length. Each of Na motor arms attached to a single backbone represents Nh 

myosin heads. A free arm can bind to a binding site located on F-actin at a rate, 40Nh s
-1

. Motor 

arms walk on and unbind from F-actins. At each walking event, arms slide from a current 

binding site to a next one located toward the barbed end by ~7 nm. After reaching the barbed end, 

motors slide off from F-actin at a next walking event. The walking ( w,Mk ) and unbinding rates 

( u,Mk ) vary depending on forces exerted on the arms and determined by “parallel cluster model” 

(PCM) for mechanochemical rates, step size, and the number of heads 
8,9

. Table S1 shows values 

for the major parameters that we used for adopting PCM to our model. We assume that only 

forces acting on the longitudinal spring ( s,M4 s,M4F U ) affect w,Mk  and u,Mk . Note that we 

assume that myosin heads behave as a catch bond 
14,15

, leading to lower w,Mk  and u,Mk  with 

larger applied forces, which is opposite to the tendency of ACPs. Mechanochemical rates that we 

used for PCM result in unloaded walking velocity of ~140 nm/s and stall force of stall
Mf ~5.7 pN. 

In our recent work 
16

, it was demonstrated that arms attached to a single backbone are 

mechanically coupled; the motor with discrete Na arms representing Nh myosin heads per each 

exhibits the force-velocity relationship and dwell time corresponding to those of a myosin TF 

with NaNh heads predicted by PCM, regardless of extent of coarse-graining (Nh). Both Nh and Na 

are set to 8, corresponding to 64 myosin heads per TF which is comparable to the experimentally 

determined size of non-muscle myosin TFs 
17

. 

 

Severing of F-actin 

 To test effects of F-actin severing on contractile behaviors, we modeled the severing 



19 

 

event as disappearance of a single actin segment on a filament. A severing rate is determined by 

the sum of two bending angles formed by a segment and its adjacent ones according to the 

following equation: 

0

sev sev

sev

expk k




 
  

 
     (S1.8) 

where 0

sevk  is a zero-angle severing rate coefficient, and sev  is a sensitivity to the angle. 

Equation S1.8 and the values of 0

sevk  and sev  were found in an empirical fashion; distribution 

of angles at which severing spontaneously occur due to thermal fluctuation in the simulations 

was calculated and compared with the experimental observation (57 ± 9 ̊) 
18

. 

 

Actin turnover rates 

Within cells, a multitude of actin binding proteins and nucleators including Arp2/3, 

formins, cofilin, and myosin and relevant signaling pathways regulate actin turnover. Due to its 

complexity, it is hard to estimate the turnover rate at any transient moment during development, 

morphogenesis, and disease progression.  Therefore, we explore a range of rates that is 

physiologically plausible and consistent with prior experimental studies.  Diffusion limits 

spontaneous actin polymerization to be around 10 μM
-1

 s
-1

 for ATP-actin binding to the barbed 

end 
19,20

.  However, the formin mDia1 in the presence of profilin has been demonstrated to 

increase the rate constant of barbed end polymerization to over 100 μM
-1

 s
-1 20

.  Furthermore, 

spontaneous actin depolymerization happens in a diffusion limited rate of around ~0.2 s
-1

 
21

, but 

actin regulatory proteins such as ADF/cofilin have been shown to help significantly increase the 

breakdown of actin filaments via enhanced depolymerization 
22,23

 or severing (at low 
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concentrations of cofilin) 
24,25

.  As a result, in vivo turnover rates of actin filaments, as 

measured in studies of actin-based motility in cells and bacteria, can be over 100-fold 
21

 larger 

than spontaneous actin turnover rates.  

Among many modes of actin turnovers, we primarily consider actin treadmilling for 

simplicity.  In the model, actin filaments can polymerize, depolymerize, and nucleate from 

monomers with tuned rates.  In each simulation, we imposed identical values for the 

polymerization and depolymerization rate constants, which lead to a dynamic equilibrium at CA 

= 1 μM.  We also maintained a fixed ratio of depolymerization to nucleation rates in order to 

obtain a consistent actin filament length (1 μm on average for 2D domains and 1.3 μm for 3D 

domains).  Typical values of actin filament length measured inside cells are on the order of 

hundreds of nanometers to microns 
26-28

, and studies of reconstituted actin and actomyosin 

networks typically use filament lengths on the order of several microns 
29,30

.  We chose a range 

of polymerization rates from 0 to 300 μM
-1

s
-1

 and a range of depolymerization rates from 0 to 

300 s
-1

, which should span physiologically relevant values.    

 

Network formation 

As in our previous study 
1
, cross-linked actomyosin networks are assembled via self-

assembly of actin monomers (G-actin), ACPs, and motors within a three-dimensional rectangular 

domain (3×3×3 μm for 3D networks and 8×8×0.5 μm for 2D networks) with periodic boundary 

condition (PBC) except in z direction of a domain for 2D networks. During the self-assembly, G-

actin is polymerized into F-actin, and the TF structure of motors is formed via nucleation and 

polymerization of motor backbone segments with their arms binding to F-actin without walking 

events.  ACPs also bind to F-actin, forming functional cross-links between pairs of actin 
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filaments.  The result is an initial network that is homogeneous prior to motor walking activity 

under various actin turnover rates.     

 

 

Supplementary Note 2: Calculation of Stress and Sustainability  

 For the calculation of stress generated by networks, we consider 8 cross-sections that are 

regularly located in the computational domain in each direction. (The z direction is not 

considered for the 2D domain.)  Stress is calculated by summing the normal component of 

extensional forces of all constituents crossing a cross-section and then dividing by the area of the 

cross-section.  We repeat this calculation on multiple cross-sections (16 for 2D and 24 for 3D) 

and compute the average.  

    In order to calculate the sustainability of steady stresses generated by the actomyosin 

network, we fit the stress data to a three parameter function: 

        (   0)   
   (    )    (      (    ))     (S2) 

where H is the Heaviside function centered at t0, t0 is the time the motors start walking, a is a 

scaling factor, c is the initial stress build up rate following motor activation, d is the background 

stress (from thermal motion and ACP binding/unbinding) prior to motor activation which serves 

as an offset, and b is the decay rate of internal stresses.  Since we are interested in whether 

stresses can be sustained in a given cytoskeletal network, b should be related to the sustainability 

factor.  Moreover, we normalize b to the maximum b found in all the simulations in Fig. 3 in 

order to provide a relative metric between different networks.  We define the sustainability of 

the networks S to be 1 – b/bmax.  Therefore, the more stable a network is, the closer S is to 1 and 
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the more unstable the network is, the closer S is to 0.  As shown in Supplementary Fig. 6, our 

computational data appear to fit very well to equation S2.   

 

 

Supplementary Note 3: Quantification of Clustering Dynamics 

Actomyosin networks cluster under certain conditions, so here we describe a metric to 

quantify the clustering dynamics in our simulations.  We consider the positions of each ACP 

bound to actins in the network.  We calculate the separation distance dij between the i
th

 ACP 

and the j
th

 ACP (i and j are indices for keeping track of individual ACPs): 

 

    |     |  (S3.1) 

 

where ri is the position vector of the i
th

 ACP.  We then sort dij along j from nearest to farthest 

for each i and average over all i to obtain the average distance Dj between an ACP and its j
th

 

nearest neighbor: 

 

   
∑     (   , )
 
   

 
   (S3.2) 

 

where n is the total number of bound ACPs.  Note that increasing ACP concentration decreases 

the distance between nearest neighbors.  Thus to obtain comparable results between different 

networks, we under-sample each configuration by CACP/1μM, i.e. we consider only one out of 

every CACP/1μM particles in our analysis, where CACP is the ACP concentration of the network.  
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This effectively normalizes the initial ACP separation distances to those of the 1μM 

configuration.  We then compute Dj(t) at different times t after motor activation, as 

demonstrated in Supplementary Fig. 7a.   

We define the clustering factor CF to be the average distance between an ACP and its N 

nearest neighbors, normalized by that of the initial network state before significant motor activity 

(CF0): 

 

   
 

   
 
∑   
 
   

 
    (S3.3) 

 

where N is chosen to be 500 (out of ~2000).  Clustered networks will have a low CF, whereas 

sparse networks will have a high CF ~ 1.  CF can be calculated for each time point simulated 

(Supplementary Fig. 7b).   

To compare between network states, we calculated CF at a fixed time point after motor 

activation, t = 40s, and plot the heat maps of CF for various % ACPs, % motors, and actin 

turnover rates (Fig. 3c).  We further check whether networks are severely clustered by the end 

of their simulation time CF(tf) (Supplementary Fig. 8).  Severe clustering is defined to be CF < 

0.7, which visually appears to be highly clustered.  Therefore, we threshold the lowest color on 

CF heat maps to be 0.7, i.e. CF < 0.7 shows as blue on the heat maps.   Note that simulations 

that end earlier due to computational cost are typically severely clustered.  Networks that are 

still homogeneous after the end of their simulation time are typically steady and can sustain 

homogeneity for over 150 s. 
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Supplementary Note 4: Altered Binding and Turnover Dynamics  

Effect of ACP Unbinding Rate 

We investigated the interplay between actin turnover and ACP unbinding to determine 

their relative roles in network stress profiles and morphologies.  We reduced the unbinding rate 

of ACPs to 0, which means that the ACPs do not unbind intrinsically and only unbind when actin 

filaments depolymerize at the binding sites.  As shown in Supplementary Fig. 10, without any 

actin turnover, the internal stress of the network builds up to much larger levels than in previous 

cases and is sustained.  However, at low actin turnover rates, network aggregation reappears.  

As actin filaments are turned over, ACPs unbind from disappearing filaments and the stress that 

they held is dissipated, leading to aggregation.  At high actin turnover rates, however, the 

network can sustain steady-state stresses, as before.   

Physiologically, different ACPs have different unbinding rates.  For example, fascin 
31

 

and scruin 
32

 are relatively permanent.  Furthermore, different isoforms of ACPs and some 

adhesion proteins may possess different bond behavior, such as catch bonds that have decreased 

unbinding rates under tension 
33

.  Our results show that with ACPs that have more permanent 

bond characteristics, actin turnover can serve dual, opposing functions of both destabilizing and 

stabilizing stress profiles. 

 

Impact of Actin Severing 

The bending of actin filaments facilitates fragmentation 
18,34

.  Past a critical bending 

angle, actin filaments are more likely to sever, thus promoting turnover and stress relaxation.  

Myosin motors can enhance filament bending and breaking 
34

 and contribute to cell-scaled actin 
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network treadmilling 
35

.  We investigate this effect here by introducing a bending angle-

dependent severing rate in our simulations (see Supplementary Note 1 for details).  Our results 

show that the incorporation of severing activity leads to lower stresses and faster stress decay 

(Supplementary Fig. 11).  This further demonstrates the interdependence of cytoskeletal 

components in regulating global network properties.  Future investigations incorporating other 

physiological cytoskeletal features, such as additional potential mechanisms of myosin induced 

actin turnover, e.g. disassembling actin bundles and enhancing depolymerization 
36

 and 

selectively disassembling anti-parallel actin structures 
37

, and other actin dynamics modifiers, 

e.g. capping and branching, are necessary to elucidate detailed in vivo dynamics.      
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Supplementary Note 5: Modulating Active Stress Fluctuations 

Molecular motors, in addition to generating intracellular prestress and transporting cargo 

in a directed manner, also provide increased fluctuations throughout the cytoskeletal network, as 

demonstrated by the enhanced, random but non-thermal motions seen in intracellular organelles 

and exogenously injected nanoparticles 
38-42

.  The true biological function of this added noise is 

not yet clear, but transport enhancement can play critical roles in redistributing macromolecules 

and metabolic factors, particularly in crowded and compartmentalized networks such as the 

intracellular space 
43-46

.  Additionally the intracellular environment is mechanosensitive, where 

signals can be activated by force.  For example, ACPs such as filamin have cryptic binding sites 

that become accessible when they are stretched 
47

.  Motor induced stress fluctuations can 

provide a means to dynamically modulate mechanotransduction in time and space, enabling an 

added dimension in signal encoding.   

Our simulation results demonstrate that actin turnover dynamics and motor concentration 

can regulate the magnitude of stress fluctuations.  As shown in Fig. 5, as the actin turnover rate 

decreases, the distribution of changes in stress over time, taken to be the change in stress over 1 

second time intervals, widened, indicating that that magnitude of stress fluctuations is enhanced.  

Furthermore, at the same actin turnover rate, increased motor density can lead to enhanced stress 

fluctuations.  This enhancement can lead to a larger dispersion of intracellular macromolecules 

and modulate stress-dependent reaction cascades.  Keeping the same motor concentration and 

actin turnover rate while modulating ACP concentrations does not appear to alter the stress 

fluctuation distribution, at least in the regime with high actin turnover relative to intrinsic ACP 

unbinding.  Fig. 5d shows the amplitude of stress fluctuations in relation to motor and ACP 
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concentrations and actin turnover.  These results suggest that active factors – actin 

(de)polymerization and motor force generation – are key determinants of enhanced stress 

fluctuations in cytoskeletal networks.  Activating motors through VEGF (vascular endothelial 

growth factor) stimulation of ROCK (Rho-kinase), which regulates the phosphorylation of 

myosin, has been shown via particle tracking microrheology experiments to enhance intracellular 

fluctuations of endothelial cells 
48

.  Inhibition of myosin IIa via blebbistatin suppresses active 

fluctuations 
38

.  Further experiments are required to investigate how precisely tuning actin 

turnover impacts intracellular fluctuations.  Because our simulations entail the dynamics and 

interactions of individual elements, we are able to recover “biological noise” (stress fluctuations) 

that may otherwise be overlooked in continuum approaches. 
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Supplementary Note 6: Active Kinetic Spring Model 

Based on our in silico results and in order to better understand conceptually complex 

intracellular mechanics, we derived an analytical model that captures the dynamics of motorized 

cytoskeletal networks.  We considered the network as a primarily elastic material with a spring 

constant that is dependent on time and the forces acting on it.   

   ( )           (S6.1) 

where F is the total internal force in the network (analogous to the stress), K is the dynamic 

spring constant (the modulus) dependent on time t, and x is the effective stretch of the network 

from equilibrium (the strain of the actin network internally by motors).  The dynamics of this 

spring depends on the unbinding of force-sensitive ACPs, which reduces the spring constant, and 

the turnover and reformation of new crosslinked filaments, which helps the spring constant 

recover, as described by: 

   

  
    u   u            (S6.2) 

where    is the number of bound ACPs that help maintain the integrity of the spring,  u is the 

number of ACPs that are unbound,    is the rate of binding or reforming of the crosslinks, and 

 u is the unbinding rate of bound crosslinks.  The total number of crosslinks is assumed to be 

conserved so Ctot = Cb + Cu.  Additionally, the spring constant is directly proportional to the 

concentration of bound crosslinks, K = q* Cb, where q is a scaling constant.  In the simple case 

of all springs in parallel as shown in Fig. 6a, q is the spring constant of each ACP-actin spring 

construct.  For simplicity, we assume that the rates are constant or have quickly reached a 

steady level in time.  Then, the solution to equation S6.2 is: 
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  ( )  
    

     
(    u 

 (     ) )         (S6.3) 

assuming that at t = 0, all ACPs responsible for network elasticity are in the bound state and the 

network has its maximum spring constant before remodeling by motors.   

kb and ku are dependent on several important parameters.  kb is proportional to the F-

actin concentration in the network, CA, since ACPs have to bind to F-actin to form functional 

crosslinks.  In addition, it is assumed that the average amount of force acting on each ACP 

affects kb because it requires more work to reform a crosslink that was under high tension.  

Based on the Arrhenius equation, kb is proportional to exp(-E/kBT), where E is the sum of 

activation energy and mechanical work required for binding or rebinding.  The mechanical 

component of the binding rate is then: 

      (   
〈    〉

   
)         (S6.4)  

where 〈 ACP〉 is the average force acting on each ACP and  b
 
is related to the recoil distance of 

the spring constructs after ACP unbinding.  〈 ACP〉 and  b should both be roughly proportional 

to the ratio of the concentration of motors, CM, to Ctot because motors generate forces and strain 

the network, whereas ACPs support the motor-induced forces and distribute strains.  Therefore, 

the effective binding rate is:  

     0 A    (  (
  

    
)
 

)      (S6.5) 

where kb0 is the zero-force binding rate, and b is a scaling constant.   

ku also depends on force according to Bell’s equation 
49

:   

   u   u0    (
  〈    〉

   
)    u0    ( 

  

    
)    (S6.6) 
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where ku0 is the zero-force unbinding rate,  u is the mechanical compliance of the ACP, and a is 

a scaling constant.  Since not all ACPs bear stress in a disordered network (as simulated in our 

Brownian dynamics model), ku0 in the active kinetic spring model should be a fraction of the 

actual zero force unbinding rate of an ACP.  Here, we assume this fraction to be 1/3 so ku0 is 

0.038 s
-1

.  We further make an assumption that kb0 is 0.038 μM
-1

 s
-1

, so the intrinsic binding rate 

is much higher than the unbinding rate at zero-force for 25 μM actin and most ACPs are bound 

in steady-state.  Note that we assumed that kb and ku are independent of time when we 

analytically solved equation S6.1. This assumption was based on the approximation that each 

spring construct in the network experiences a constant tensile force (the average force).  For 

simplicity and qualitative evaluation, we assume that a and b are 1.  The chosen value for b 

leads to a substantial decay of kb when 
  

    
 is 1, which corresponds to results obtained in our 

Brownian dynamics simulation results in which decaying stress profiles emerge when 
  

    
 is on 

that order.       

kb and ku also depend on the turnover rate of the actin filaments, since turnover dynamics 

helps regenerate the network by causing the unbinding of motors and ACPs as well as inducing 

new stress-bearing bonds to form.  Therefore, the total binding and unbinding rates need to 

reflect the turnover rates: 

    u   u0    ( 
  

    
)        (S6.7) 

    A (  0    (  
  

    
)     )          (S6.8) 

where r is the ratio of monomeric to filamentous actin, which is around 0.035 based on our 

Brownian dynamics simulations for the investigated configurations.  kp and kd are the actin 
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polymerization and depolymerization rates, respectively.  At steady-state actin turnover, which 

we assume,      A   .   

The effective deformation of the network from equilibrium, x in equation S6.1, is 

assumed to be the average of the motor-induced extensions of spring constructs that cross the 

cross-section of a domain.  For simplicity, we assume that motors walk at a constant speed.  

This leads to a constant network deformation rate up to a certain characteristic time t1 until 

further deformation stalls, which results from a dynamic steady-state caused by a balance 

between motors actively walking and motors being stalled, motors walking off of filament ends, 

filaments depolymerizing and inducing motor unbinding, and ACP unbinding.  Thus x is a ramp 

function starting at t = 0: 

       ( )           (S6.9) 

      ( )              (S6.10) 

where v is the rate of deformation of the network due to motors walking.  v is thus proportional 

to the average walking speed of motors and 
  

    
.  t1 depends on the turnover rate of the network, 

as further deformations are prevented as motors or ACPs become unbound.  For simplicity, we 

assume that t1 takes the form: 

   
 

  
       (S6.11) 

which indicates the persistence (or processivity) time of motors, empirically estimated to be on 

the order of 10 seconds in live cells 
38

.        

Taking everything together, we can derive a constitutive relation for the time evolution of 

the forces exhibited in the active kinetic spring model:  
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 ( )  
  

     
(    u 

 (     ) )   ( )    (S6.12) 

where K0 = qCtot is the spring constant of the network at t = 0, and recall that  ( ) scales as 
  

    
.  

As shown in Figs. 6b-d, by tuning actin turnover rates and concentrations of motors and ACPs 

(springs), we can reproduce similar stress profiles and phase maps compared to those measured 

from Brownian dynamics simulations.  Increasing CM leads to larger peak stresses and lower 

sustainability, whereas increasing actin turnover or spring concentration (Ctot) stabilizes stress 

profiles.  Equations S6.1 to S6.12 help provide insights toward the underlying parameters and 

scales that govern the relations between the kinetics and mechanics in the active cytoskeletal 

network.  Note that since we are able to capture long-term network behaviors with reduced 

computational cost, we can see the emergence of metastable states in which unstable 

configurations do not dissipate forces completely as shown in Fig. 6b, which may correspond to 

superstructure formation such as stress fibers.  S also has to be calculated differently due to 

these states, so we determined S here by calculating the ratio of the long-time force to the peak 

force (rather than calculating the decay rate of the force).   
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