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This is the supplement for “A Comparison of the β-substitution Method and a Bayesian
Method for Analyzing Left-Censored Data” by Huynh et al. Appendix A is a technical
appendix detailing the use of PDFs and CDFs when modeling left-censored data. This
appendix assumes a knowledge in Bayesian inference, specifically the construction of full-
conditional distributions and their use in a Gibbs sampling algorithm for estimating the
posterior distribution of various model parameters.

A The Use of PDFs vs. CDFs

In equation (2) of the main manuscript, we use the PDF of a normal distribution to represent
the nondetects’ contribution to the likelihood, rather than the CDF as is typical in classical
maximum likelihood (ML) methods. To illustrate why this was done, we first note the
following:
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φ(x |θ)dx = Φ(LOD |θ) (A.1)

where Φ(x |θ) and φ(x |θ) denote the CDF and the PDF of a normal distribution evaluated
at the value x given parameters, θ, respectively. That is, (A.1) shows that if we integrate the
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hierarchical model in (2) with respect to the nondetects, we will achieve the same likelihood
as used in standard ML methods.

The question that remains now is “Why would we want to use the PDFs?” To answer
this question, we demonstrate in the following subsections how the hierarchical model would
be evaluated using the PDFs and using the CDFs. In these subsections, we will let Φ(x)
and φ(x) denote the CDF and the PDF of a standard normal distribution evaluated at the
value x and let Di be an indicator variable of the form

Di =

�
0, if Yi ≤ LOD (i.e., “nondetected”)

1, if Yi > LOD (i.e., “detected”)
. (A.2)

We will denote the vector of detected Yi asYdet, the vector of nondetected Yi asYcen, and the
vector of indicator variables as D. Furthermore, we will denote the collection of observation
indices, i, where Di = 1 as {i;Di = 1}; similarly, we denote the set of indices where Di = 0
as {i;Di = 0}.

A.1 Using the CDFs

Based on the classical literature, we first define a new data vector, Y∗ = {Y ∗
1 , . . . , Y

∗
N
}�, with

elements

Y ∗
i
=

�
Yi, if Di = 1

LOD, if Di = 0
.

Using this, the typical likelihood for a model with left-censored data would be of the form:

p(Y∗ |µ, σ2,D) ∝
�

i∈{i;Di=1}

��
σ2
�−1/2

φ
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σ

�
× I {Yi > LOD}

�

×
�
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�
σ2
�−1/2

Φ

�
LOD− µ

σ

�
. (A.3)

Using this and the priors specified in the main manuscript, our hierarchical model would be
as follows:

p
�
µ, σ2 |Y∗,D

�
∝U (µ | aµ, bµ)× U (ln σ | aσ, bσ)

×
�
σ2
�−N/2

�

i∈{i;Di=1}

φ

�
Yi − µ

σ

�
×

�

i∈{i;Di=0}

Φ

�
LOD− µ

σ

�
. (A.4)

We now wish to derive the full conditional distributions for both µ and σ2 for the purposes
of constructing our MCMC algorithm. For µ, we obtain a full conditional distribution of the
form:

p
�
µ |Y∗,D, σ2

�
∝

�

i∈{Di=1}

exp

�
−(Yi − µ)2

2σ2

�
×

�

i∈{Di=0}

Φ

�
LOD− µ

σ

�
× I {µ ∈ (aµ, bµ)} .
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While there are some simplifications that can be made here, this is not a known distribution
and thus we cannot sample directly from this distribution. A similar issue occurs for σ2:

p
�
σ2 |Y∗,D, µ

�
∝
�
σ2
�−N/2

�

i∈{Di=1}

exp

�
−(Yi − µ)2

2σ2

�

×
�
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Φ

�
LOD− µ

σ

�
× I {σ ∈ (aσ, bσ)} .

To sample from these distributions in our MCMC algorithm, we may require the use of
Metropolis steps. Without getting into specifics, it will suffice to say that such an algo-
rithm would not be ideal, particularly if we were to extend our model to include regression
parameters, random effects, etc.

A.2 Using the PDFs

We now rewrite our likelihood in terms of the PDFs for the censored observations:

p(Y |µ, σ2,D) =
�
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�
. (A.5)

Note that in this case, rather than analytically integrating out the nondetected Yi, we use a
data augmentation approach which involves multiply imputing each of the nondetected Yi;
for a recent example of this approach, see eq. (7) of Quick et al. (2014). Using this augmented
likelihood and the priors specified in the main manuscript, our updated hierarchical model
would be as follows:

p
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µ, σ2,Ycen |Ydet,D

�
∝U (µ | aµ, bµ)× U (ln σ | aσ, bσ)

×
�
σ2
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�
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σ

�
× I {Yi > LOD}
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σ

�
× I {Yi ≤ LOD}

�
. (A.6)

As before, we now wish to derive full conditional distributions for µ and σ2, but here
we also require full conditional distributions for each of the nondetected Yi (the “multiple
imputation” component of this model). Our full conditional distributions are as follows:

p(µ |Y,D, σ2) ∝
N�

i=1

exp

�
−(Yi − µ)2

2σ2

�
× I {µ ∈ (aµ, bµ)} (A.7)

p(σ2 |Y,D, µ) ∝
�
σ2
�−N/2

N�

i=1

exp

�
−(Yi − µ)2

2σ2

�
× I {σ ∈ (aσ, bσ)} (A.8)

p(Yi,cen |Y(i,cen), µ, σ
2) ∝ exp

�
−(Yi,cen − µ)2

2σ2

�
× I {Yi,cen ≤ LOD} . (A.9)
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From these expressions, we can find that (A.7) is the form of an interval truncated Normal
distribution, (A.8) is the form of an interval truncated inverse gamma distribution, and (A.9)
is the form of a truncated Normal distribution; as such, we can sample directly from each of
these full conditional distributions, facilitating a simple MCMC algorithm.
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