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SUMMARY

Most rotamer libraries are generated from subsets
of the PDB and do not fully represent the con-
formational scope of protein side chains. Previous
attempts to rectify this sparse coverage of conforma-
tional space have involved application of weighting
and smoothing functions. We resolve these limita-
tions by using physics-based molecular dynamics
simulations to determine more accurate frequencies
of rotameric states. This work forms part of our Dyna-
meomics initiative and uses a set of 807 proteins
selected to represent 97% of known autonomous
protein folds, thereby eliminating the bias toward
common topologies found within the PDB. Our
Dynameomics derived rotamer libraries encompass
4.83 109 rotamers, sampled from at least 51,000 oc-
currences of each of 93,642 residues. Here, we pro-
vide a backbone-dependent rotamer library, based
on secondary structure f/c regions, and an update
to our 2011 backbone-independent library that ad-
dresses the doubling of our dataset since its original
publication.

INTRODUCTION

Detailed characterization of protein backbone and side-chain

conformations, and the relationship between them, is necessary

for improving the refinement and validation of experimentally

derived structures, homology modeling, design, and prediction.

The orientations and sampling of side-chain dihedral angles is

not random, and propensities for certain angles have been

known for some time (Bahar and Jernigan, 1996; Chandrase-

karan and Ramachandran, 1970). Side-chain propensities are

often referred to in terms of rotational isomers, or rotamers,

defined as a combination of dihedral angles that describe a given

side-chain conformation. Statistical analysis of protein struc-

tures can reveal the frequency with which individual rotamers

are sampled to create libraries for selecting appropriate side-

chain conformations (Ponder and Richards, 1987). As the popu-

lation of some rotameric states appears to be highly correlated

with protein backbone conformations (Hagarman et al., 2011;

Otzen and Fersht, 1995), accurate backbone-dependent ro-
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tamer libraries are important to improve structure prediction,

refinement, and design.

There are a number of rotamer libraries available, which

contain rotamer probabilities computed for each residue type in-

dependent of the backbone conformation (Dunbrack and Co-

hen, 1997; Dunbrack and Karplus, 1993; Janin et al., 1978; Lovell

et al., 2000; Scouras and Daggett, 2011), dependent on the sec-

ondary structure within which a residue is found (Janin et al.,

1978; Lovell et al., 2000; McGregor et al., 1987; Schrauber

et al., 1993), or with a finer detailed dependence on the local

backbone (f/c) conformation of a residue (Dunbrack and Cohen,

1997; Dunbrack and Karplus, 1993; Shapovalov and Dunbrack,

2011). There are also more specialized rotamer libraries to

construct models for large-scale coarse-grained simulations

(Larriva and Rey, 2014). The most popular backbone-dependent

library available is from the Dunbrack Lab, which has continually

improved the coverage and quality of the library over the last two

decades (Dunbrack and Cohen, 1997; Dunbrack and Karplus,

1994; Shapovalov and Dunbrack, 2011). The Dunbrack rotamer

library was generated by analyzing a filtered, high-quality set of

crystal structures from the Protein Data Bank (PDB) (Berman

et al., 2000). Indeed, all the major libraries rely on such statistical

analysis of the PDB to derive rotamer probabilities (Larriva and

Rey, 2014; Lovell et al., 2000; Shapovalov and Dunbrack,

2011; Xiang and Honig, 2001), yet rotamer libraries generated

from the PDB have their limitations (Berman et al., 2013; Davis

et al., 2007; Montelione et al., 2013).

Although the PDB is the largest repository of experimental

structures, there can be extremely low or non-existent sam-

pling of rotamers for some regions of f/c space. A large per-

centage of the PDB consists of crystal structures, which depict

a single structure averaged across an ensemble of crystallized

protein instances (Wagner et al., 1992). Where there is mobility,

B factors offer some indication of the extent of motion; how-

ever, many rotamer libraries implement a B-factor cutoff to re-

move residues whose positions are uncertain due to this

mobility (Lovell et al., 2000). The use of such measures to

obtain high-quality structural datasets from the PDB often

means that dynamic rotamer conformations are expressly

excluded and the full range of side-chain conformations under-

estimated. Furthermore, due to difficulties in crystallization of,

or gaining nuclear magnetic resonance (NMR) observables

from, highly flexible regions, structural data for some conforma-

tions may be unattainable.

The PDB is also not without error, nor experimental artifacts.

The side-chain conformations of crystal structures can be
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sensitive to the crystal environment (Jacobson et al., 2002).

Possible artifacts from experimental procedures include crystal

contacts, inducement of ordered structure (Dobrianov et al.,

1999; Kobe et al., 2008), or a general misrepresentation of the

native environment due to the cryo temperatures now commonly

used (Fraser et al., 2011). Often there can be incomplete or ab-

sent side-chain detail depending on the extent of structural vali-

dation prior to deposition (Chang et al., 2006; Gore et al., 2012).

Even when side-chain information is present, there can be ambi-

guities in the electron densities (Chen et al., 2009; Lovell et al.,

2000; Shapovalov andDunbrack, 2011). Chirality and cis peptide

bond errors, which affect side-chain placement and the accu-

racy of backbone and side-chain correlations, have also been

identified within the PDB (Schreiner et al., 2011). Overall, these

factors can introduce errors, much of which is incorporated

directly into many of the existing rotamer libraries. Hence,

refining experimental structures with statistically derived proba-

bilities from a set of PDB structures, unless they are carefully

pruned to exclude such errors, is flawed, and such static repre-

sentations are not ideal for modeling, predicting, and rational-

izing protein structures in solution at ambient or physiological

temperatures.

Molecular dynamics (MD) simulations provide a physics-

based approach fromwhich amore exhaustive sampling of rota-

meric states can be acquired. Here, we use our in-house MD

package, in lucem molecular mechanics (ilmm) (Beck et al.,

2000–2015), based on the force field devised by Levitt et al.

(Beck and Daggett, 2004; Levitt et al., 1995, 1997). Our methods

differ from protocols used with other force fields, as we employ

different treatments of long-range interactions; for example, par-

ticle mesh Ewald summations are not used. We also use the mi-

crocanonical ensemble to maintain energy conservation, rather

than the more common isobaric-isothermal and canonical en-

sembles; hence, we do not use barostats and thermostats to

control the macroscopic properties for what are very micro-

scopic systems. In addition, our methods provide natural Boltz-

mann sampling, negating the need for weighting or culling of

conformers. We have had sustained success at capturing pro-

tein dynamics in agreement with experimental observations

over the last 20 years or so (Beck and Daggett, 2004; Beck

et al., 2005; Rizzuti and Daggett, 2013; Schaeffer and Daggett,

2011; Schaeffer et al., 2008; Toofanny andDaggett, 2012; Towse

and Daggett, 2015), with only one minor modification to our

approach (Armen et al., 2005). For example, previous assess-

ments of our simulation quality show low mean Ca root-mean-

square deviations between simulation and experimental struc-

tures with good agreement with spectroscopic observables,

such as nuclear Overhauser effects (NOEs) (>90%) and chemical

shifts (R > 0.9) (Beck and Daggett, 2004; Beck et al., 2008). We

have also predicted dynamic behaviors and structures ahead

of experimental confirmation, such as the transition and interme-

diate states of the engrailed homeodomain (Gianni et al., 2003;

Mayor et al., 2000, 2003; Religa et al., 2005), dynamic cleft for-

mation in cytochrome b5 (Storch and Daggett, 1995; Arnesano

et al., 1998; Storch et al., 1999; Hom et al., 2000), and the effects

of SNPs on methyl transferases (Rutherford et al., 2006, 2008;

Rutherford and Daggett, 2010). In all these cases dynamics

was critical to characterize the nonnative states (the engrailed

homeodomain), dynamically regulated protein-protein interac-
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tions (cytochrome b5), and subtle structural and dynamic effects

linked to phenotype (methyl transferases). These are just a few

examples, and each study led to unique predictions, which could

not have been made with static native structures, and each was

validated by experiments after the fact. Here, we draw upon our

methods to introduce new dynamic rotamer libraries derived

from dynamic proteins in solution.

We reduce the possibility of structural bias by beginning with

a set of 807 protein structures, which represent 97% of all

known autonomous protein folds, from our Consensus Domain

Dictionary (CDD) (Day et al., 2003; Schaeffer and Daggett,

2011; Schaeffer et al., 2011). Extensive atomistic MD simula-

tions of these 807 protein structures, our Dynameomics proj-

ect, allow us to capture a more realistic dynamic range of

side-chain conformations in solution (van der Kamp et al.,

2010). Rotamer probabilities for the backbone-dependent

(BBDEP) library were determined using 10� 3 10� f/c bins

with a second set of probabilities determined for local back-

bone conformations in defined secondary structure f/c re-

gions, the regional secondary structure (RSS) rotamer library.

Since the raw Dynameomics data have nearly doubled in size

since the previous publication of our original backbone-inde-

pendent (BBIND) dynamic rotamer library (Scouras and Dag-

gett, 2011), we also provide an update of that library for

comparison with our new fine- and coarse-grained backbone-

dependent BBDEP and RSS libraries. All three libraries are

available upon request through http://www.dynameomics.org.

We provide an analysis of our data-driven approach to gener-

ating a backbone-dependent library, and discuss the prefer-

ence of some rotamers for different secondary structures and

the dominance of rare rotamers in narrow areas of f/c space

often coincident with high-energy f/c conformations.

RESULTS

Generation and Experimental Validation of Backbone-
Independent and Backbone-Dependent Rotamer
Libraries
MD simulations of 807 representative target structures from our

most current CDD were used to analyze the side-chain confor-

mational sampling (Schaeffer et al., 2011; van der Kamp et al.,

2010). The veracity of the rotamer probabilities obtained was

established through comparison of calculated spectroscopic

observables, reporters of the structure and dynamics captured

by the MD simulations, with experiment. NMR S2 and S2-axis

order parameters are experimental probes of backbone and

side-chain dynamics, respectively. The reproduction of experi-

mental S2 order parameters by the 807 simulations suggests

that rotameric behaviors are faithfully captured (Figure 1A). Cor-

respondence with experimental trends furthered the determina-

tion of relationships between rotamer occupancy and the S2 axis

for different rotamers, as illustrated for Val Cg methyl groups in

Figure 1B (Scouras and Daggett, 2011).

A detailed example of the quantitative agreement obtained

between experiment and our simulations is provided in Figures

2A and 2B. There are 2,727 NOEs available in the Biological

Magnetic Resonance Bank (BMRB) (Seavey et al., 1991) for

ubiquitin. When using a 5-Å cutoff, 94.4% of the NOEs are

satisfied by the crystal structure of ubiquitin (PDB: 1UBQ).
hts reserved

http://www.dynameomics.org


Figure 1. NMR Order Parameters Reproduction

(A) Histogram of order parameters comparing experiment and calculated

values from Dynameomics simulations. Correlation coefficients between

experiment and simulation are inset.

(B) Example of the relationship between rotamer occupancy and order

parameter for the primary, secondary, and tertiary rotamers of Val Cg methyl

groups.
However, a greater number of NOEs are satisfied (95.2%) by

the MD ensemble (Figure 2A). In comparing our violated

NOEs more closely with experiment, we found that 185 of

the NOEs have NMR upper bounds of 6.2 Å. Using the NMR

upper bound for these residues results in 98.2% of the NOEs

being satisfied. There are 19 violations in the X-ray structure,

not present in the MD ensemble where the distance violation

is more than 2 Å. In other words, beginning from the X-ray

structure the protein acquired those NOEs during MD. All are

long-range NOEs critical to the core and proper alignment of

secondary structure.

Interactions between Gln2 and Thr14 provide an example of

NOEs acquired during MD. The highlighted distances corre-

sponding to gross violations of the NOE-derived distances in

the X-ray structure are shown in Figure 2C. The original X-ray

side chains are shaded gray with the hydrogen atoms engaged

in the NOE highlighted in green. The alternative side chains pre-

dicted by the BBDEP library to be the most probable rotamers

using the backbone angles of the X-ray structure, with the corre-

sponding hydrogen atoms shaded orange, satisfy the NOEs and

have c1 angles closer to that in the MD ensemble. For example,

the predicted c1 of Gln2 taken from our rotamer library based on
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the f/c angles of Gln2 is 18� from the mean c1 angle in the MD

ensemble; the difference between c1 in the X-ray and MD

ensemble is 99�. The c1 rotamer, dictating the side-chain direc-

tionality, is crucial for satisfying this NOE. Thr14 is less mobile

(c1 SD ±34�) and the predicted rotamer is in the same rotameric

bin as that present in the X-ray structure, yet it has a c1 angle 20�

closer to the MD ensemble mean. The replacement of these two

side chains with the most probable rotamers from our BBDEP li-

brary generated from 807 proteins allowed the X-ray structure to

satisfy this NOE (Figure 2C).

In addition, the MD ensemble can be compared with NMR

chemical shifts and S2 order parameters (Figure 2B). A total of

275 chemical shifts are available for 13C, 15N, and 1H nuclei,

and those calculated from the MD ensemble are in excellent

agreement with experiment, with R = 0.999 (Figure 2A). Specific

to the validity of our rotamer library is the recapitulation of the

main-chain Ca (R = 0.97, Figure 2B) and the side-chain Cb chem-

ical shifts for ubiquitin (R = 0.99). Further quantitative examples

supporting our experimental agreement for the D807 dataset

used here regarding NOE, chemical shift, and order parameter

agreement have been reported for ubiquitin (Beck et al., 2008),

the engrailed homeodomain (again with excellent agreement

with 99% of the 654 NOEs satisfied and R > 0.99 for the 535

chemical shifts) (Beck and Daggett, 2004), chymotrypsin inhibi-

tor 2 (Li and Daggett, 1995), WW domains (Sharpe et al.,

2007), and others (van der Kamp et al., 2010).

With our Dynameomics project we are making use of an

established program and experimentally validated methods to

capture protein dynamics over essentially all known pro-

tein folds. To calculate rotamer probabilities, we used the

side-chain dynamics sampled through native-state MD; each

structure was simulated for a minimum of 51 ns at 25�C and

underwent pre- and post-simulation validation (van der Kamp

et al., 2010). In total, our current Dynameomics dataset pro-

vided 4.8 3 109 samples (Table 1), where a sample is defined

to be one instance of a side chain from a single time point.

The current dataset is nearly double in sample size compared

with our previous BBIND library (Scouras and Daggett, 2011);

however, the variance in the probability distribution was mini-

mal. There was an average variance of 0.12% with an SD of

0.30% for all BBIND rotamer representatives. The maximum

change to any individual rotamer probability was 2.9%. Hence,

the updated BBIND library presented here is consistent with

our previous findings. Although there was a minimal impact

on the BBIND statistics, the Dynameomics BBDEP library

benefited from the increased information due to the number

of discretized backbone conformations.

A comparison with a set of high-quality X-ray crystal structures

from the PDB (3,985 chains) used in creating the Dunbrack labo-

ratory’s 2010 BBDEP rotamer library (RL2010) (Shapovalov and

Dunbrack, 2011) confirms our sampling to be much more exten-

sive and has a 104 larger sampling of rotameric states (Table 1

and Figure 3A). Rotamer probabilities were calculated using

10� 3 10� f/c bins; based on the total number of bins populated,

our dataset covers 97% of the Ramachandran plot, 91% if only

taking into account binscontainingR50samples. In comparison,

53%and24%off/c space, respectively, is coveredby the struc-

tural dataset used togenerate theRL2010.Aplot of thedifference

between these twodatasets underscores the increased sampling
7–199, January 5, 2016 ª2016 Elsevier Ltd All rights reserved 189



Figure 2. Comparison between Experiment

andMD and Rotamer Prediction for Ubiquitin

(A) Summary of experimental datasets and simu-

lation; note that 5-Å NOE cutoff was used. RMSD,

root-mean-square deviation.

(B) Experimental and simulated 13Ca chemical

shifts and amide S2 order parameters. RMSD, root-

mean-square deviation.

(C) Positions of the Gln2 and Thr14 side chains in

the X-ray structure that fail to satisfy the NOE-

derived distances (highlighted in green) and the

rotamer predicted from the BBDEP library with

those interactions now highlighted in orange.
and overwhelming size of the Dynameomics dataset used to

construct our rotamer libraries (Figure 3A). There are 39bins coin-

cident with thewhite regions in Figure 3A not sampled due to ste-

ric conflicts by either dataset. Even with 5� 3 5� bins there is no

area populated by RL2010 that is not also populated by Dyna-

meomics. Also, except for a single bin where both datasets

have a single sample marked on the difference plot of Figure 3A,

our dataset hasmore samplesper bin. Aquantitative examination

of the maximum populations in different conformational regions

confirms the degree to which our sampling exceeds that of the

RL2010 dataset. In the aR region the maximum population in

any one bin is 6.3 3 107 for Dynameomics versus 2.8 3 104 for

RL2010 (Figure 3B). In the b region, Dynameomics has a

maximumbin population of 8.63 106whereas the RL2010 library

contains 2,618 samples. Even in sparser regions the Dynameo-

mics sampling dwarfs the RL2010 dataset. For example, in the

reverse bridge region connecting the bottom of aR with the top

of b (f: �75� to �100�, c: �105� to �135�), the maximum bin

population for the RL2010 dataset is only five samples versus

1.3 3 104 for our dataset (Figure 3).

To estimate any topological bias present within our dataset,

we used the proteomic Ramachandran plot (PRplot) approach

(Carugo and Djinovi�c-Carugo, 2013), whereby taking the
190 Structure 24, 187–199, January 5, 2016 ª2016 Elsevier Ltd All rights reserved
average f/c angles of protein structures

places the different topologies across

f/c space. All-b and all-a topologies fell

within the b and aR Ramachandran re-

gions, respectively, and a histogram of

the average f/c angles for the 807 starting

structures shows there is some natural

bias toward all-a topologies (Figure 4).

The ratio of folds taken from the all-a,

all-b, and intervening mixed-a/b regions

is 0.4:0.3:0.3. The PDB-based RL2010 da-

taset, however, showed large collections

of structures in the all-b and all-a tails of

the distribution, with most structures

heavily concentrated in the b-region

(40%) (Figure 4).

Backbone-Dependent versus
Independent Probabilities
The importance of taking backbone con-

formations into account is illustrated for
Val. Independent of the backbone conformation, the most com-

mon of the three rotameric states for Val is the lower energy trans

(t) rotamer, which is populated 56% of the time (Figure 5 and Ta-

ble S1). Plots of dependent versus independent probabilities

were used to visualize how the rotameric preferences change

once backbone structure is incorporated (Figure 6). In these

plots, the percentage BBDEP probabilities are given alongside

the order of magnitude by which the number of instances them-

selves changed when compared with the BBIND library.

When the backbone conformation is taken into account, the

t rotamer is only dominant in four distinct areas around f an-

gles of [�140�, �60�] and [30�, 120�] and c angles of [�30�,
�90�] and [90�, 120�] (Figure 6A). This is consistent with the

t rotamer being the preferred side-chain conformation when

the backbone is in the aR and b regions (Figure S1). The t ro-

tamer is also extensively sampled in the lower right quadrant

populated by some residues at helix termini (Figure 6A, struc-

ture A3) or those in b turns, g turns, and inverse PIIL. In addition,

this rotamer also populates an area overlapping the aL region

typically sampled by residues where there has been a reverse

in chain directionality, as shown for the Val residue highlighted

in structure A2 in Figure 6A (Richardson, 1981). The other ro-

tamers, lesser populated overall, have substantial populations



Table 1. Statistics for the PDB-Based Dunbrack Backbone-

Dependent Library RL2010 and the Dynameomics Backbone-

Dependent Library

RL2010 Dynameomics

Total samples 6.3 3 105 4.8 3 109

Average samples per residue 2.9 3 104 2.4 3 108

Average no. of populated

bins per residue

526 1,128

Average samples per bin 55 221,668

Median samples per bin 5 125

Total 4/c coverage by

structural dataset (%)

52.9 97.0

Percentage 4/c coverage,

samples R50

23.6 90.6
in the f/c areas not sampled by t, showing that these become

preferred side-chain choices when the backbone is in more

extended or rarer secondary structure conformations, turns,

and other non-repetitive structures (Figures 6B and 6C). For

example, the second most populated gauche� (g�) rotamer

(43% independent probability) is occupied in more extended

conformations, such as PIIL, or flexible regions and in bridge

regions between energy basins (Figure 6B, areas B2 and B3;

Figure S1).

Overall, the t and g� rotamers commanded 98% of the inde-

pendent probability, with the third possible rotamer of Val

(gauche+ [g+]) being rarely sampled (2%). Accordingly, we see

that this is a consequence of the g+ rotamer being sampled

over a narrower range of backbone conformations associated

with the rarer observed PIR conformation and cis-proline turns

(Figure 6C). Note that the color scale for Figure 6C is magnified

relative to Figures 6A and 6B. Although g+ occurs in only 2%

of the overall side-chain samples, it can be the predominant ro-

tamer where the f angle falls within the [�180�, �150�] and
[150�, 180�] regions, at some points reaching 100% dependent

probability (Figure 6C, area C1). In the proximity of f = �180�

and c = 110�, the g+ rotamer of Val is 100 times more likely to

occur than the BBIND would suggest.

The preference for one rotamer over another within particular

regions was not isolated to Val. Rare rotamers for other residues

were also similarly dominant within a small number of f/c loca-

tions. These regions where rare rotamers dominate coincide with

higher-energy backbone conformations. The free energy land-

scapes constructed from the f/c distributions showing the

side-chain preferences for a given rotamer are provided in Fig-

ures S1 and S2. Note that the split rotameric bins, e.g., the

g bin defined between +45� to +135� and �45� to �135� for

the Phe c2 angle (Figure 7A), are to account for indistinguishable

side-chain conformations resulting from a 180� flip of the func-

tional groups. Collective populations in these degenerate bins

were used to compute the probabilities of those side-chain con-

formations (Table S1).

Secondary Structure-Specific Differences
To assess the dependence of rotamer probabilities on the back-

bone conformation in a wider context, we recalculated them

within defined secondary structure regions (Figure 3B) and
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compared the distributions against those determined for

the BBIND library (Figure 5). To delineate this from the finer

grained BBDEP library, where probabilities were calculated

within 10� 3 10� f/c bins, we refer to this set of probabilities

as the RSS rotamer library (Table S1).

The different rotamer definitions used are given in Figure 7A.

As previously mentioned, Val shows distinct changes in the c1

sampling with the t rotamer becoming more populated when

Val is in aR and a population shift toward g�when the backbone

is more extended (Figure 7B). Again, sampling of g+ is minimal,

as this rotamer only dominates within narrow f/c regions not

coincident with regular secondary structure (Figures 6C and

7B). Comparison of Leu and Ile suggests that b branching has

a strong effect on c1, similar to that seen for the other

b-branched residues, Thr and Val. However, this variation in c1

was also seen to some extent for the smaller residues, with

only one c angle, and aromatic groups where c1 falls between

the main chain and the aromatic group. For the residues with

longer side chains, e.g., Arg, secondary structure has little

impact on the dihedral angle distributions. One exception is

the terminal c2 of Asn whose behavior differs even from Gln;

this behavior could be due to the closer proximity of the carbox-

amide group to themain chain in Asn or themore frequent occur-

rence of this residue in helix-capping motifs (Aurora and Rose,

2013).

The changes in some of the rotamer probabilities, compared

with the BBIND values, are illustrated for the b-branched resi-

dues (Figure 8). The Ramachandran plots show the distributions

with the probabilities corresponding to each RSS overlaid. For

simplicity, we present only the top three rotamers as ranked by

their BBIND probabilities; the complete RSS and BBIND proba-

bilities for these, and all other residues are provided in Table S1.

The behavior of the residues varied from exhibiting consistent

ranking of rotamers across secondary structure regions (Ser)

to large departures from the backbone-independent rankings,

sometimes despite modest changes in the actual probabilities

(Thr). Overall, there can be striking differences in different sec-

ondary structure regions with only those for the b region consis-

tently approaching the BBIND probabilities.

In terms of which rotamer was most probable, Ser showed a

consistent ordering of the top three rotamers for all secondary

structure regions, matching that of the backbone-independent

probability ranking (Figure 7). However, although the g� rotamer

remained most probable in all secondary structure regions (Fig-

ure 8), the ratio between the probabilities shifted significantly for

some regions. In particular, an increased propensity for the

g� rotamer to 96% was observed for the aL region, while that

of the g+ dropped to 2%, significantly lower than the back-

bone-independent probability of 23%. A similar consistency in

the ordering of rotamers was also true of Ile, except for the

decreased probabilities observed for the g+,t conformation in

the aR and aL regions. In the aR region, the probability for the

g+,t rotamer was 23%, nearly half that of the independent prob-

ability (43%). The difference between the probabilities was even

more pronounced in the aL region, with a decrease in the g+,t

probability to 14%. In both cases these decreases were offset

by a substantial shift in probability toward the g�,t rotamer,

which increased to 40%–50% due to a switch in preference for

c1 from g+ to g� (Figure 9).
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Figure 3. Comparison of the f/c Coverage

for the Dynameomics and RL2010 Structural

Datasets

(A) Ramachandran plots for the raw structural da-

tasets underlying the rotamer libraries and the

difference between the two datasets. The un-

populated regions toward the bottom of the Dy-

nameomics plot are only populatedwhen including

Gly and Ala, which are omitted here as they do not

contribute to the rotamer library. While the differ-

ence plot appears to be the Dynameomics plot

because of the much more extensive sampling in

Dynameomics, there is a difference: a single bin

where both datasets had only one sample, marked

by arrows.

(B) Definition of secondary structure regions

overlaid for the Dynameomics dataset; the f/c

limits of these regions are given in the Experimental Procedures. Dynameomics maximum populations: aR region 6.25 3 107 (bin: �62.5�, �42.5�); b region

8.62 3 106 (bin: �67.5�, 147.5�); reverse a 4 b bridge: 1.32 3 104 (bin: �82.5�, �107.5�). RL2010 maximum populations: aR region, 2.79 3 104 (bin: �62.5�,
�42.5�); b region, 2,618 (bin: �62.5�, 142.5�); reverse a 4 b bridge: 5 (bin: �87.5�, �112.5�).
Threonine, however, showed a larger departure from the inde-

pendent rotamer probabilities for a number of secondary struc-

ture regions. The near aR, b, PIR, and PIIL regions all shifted

toward the g+ rotameric state (Figures 8 and 9). In contrast, pop-

ulations in the aL and aR regions shifted to g� (Figure 8). Unlike Ile

and Ser, the most probable rotamer in the backbone-indepen-

dent library was only retained in two of six regions (Figure 8).

This switch between most probable rotamers is shown for other

residues in Figure 9. Most residues follow Ser where, even if the

probabilities themselves change, the ranking of which rotamers

are most probable is retained. In rare cases, like Thr, the most

probable BBIND rotamer is retained in few of the secondary

structure regions (Figure 9). This behavior is most distinct for

Arg; the top three rotamers, as ranked by their BBIND probabil-

ities, are not the most probable in any of the secondary structure

regions. This behavior is a consequence of the probabilities of

the top rotamers in the BBIND library being sufficiently close

together that the ranking of rotamers is sensitive to very small

population changes.

DISCUSSION

We have presented the backbone-dependent and -independent

propensities of amino acid side-chain conformations in terms of

defined rotameric state populations from our Dynameomics da-

taset (Beck et al., 2008; Simms and Daggett, 2012; Simms et al.,

2008; van der Kamp et al., 2010). Using MD simulations of 807

proteins covering essentially all known globular protein folds,

we capture the dynamic range of solvated side-chain conforma-

tions at ambient temperature from which more faithful measures

of both backbone-independent and -dependent probabilities

could be derived. The rotameric probabilities computed in this

manner complement, and in many cases rival, those determined

from statistical analyses of static NMR and X-ray crystal struc-

tures. The most extensive BBDEP rotamer library to date has

employed advanced statistical methods to generate a compre-

hensive set of probabilities using the PDB (Shapovalov and Dun-

brack, 2011). However, our Dynameomics dataset possesses

three main strengths that circumvent many of the limitations of

PDB-based rotamer libraries.
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First, our dataset has undergone extensive structural valida-

tion. Subjectivity can be difficult to eliminate from the structural

determination process using experimental data (Gore et al.,

2012), and retractions and fraudulent structures are not un-

heard of (Berman et al., 2013; Chang et al., 2006). Although

there has been a recent push to improve the structural valida-

tion of both NMR and crystal structures upon deposition to the

PDB (Montelione et al., 2013; Read et al., 2011), our simulation

preparation and validation protocols corrected typical struc-

tural errors in the PDB and excluded erroneous structures (Da-

vis et al., 2007). For example, a few of our originally selected

targets were identified as having been poorly refined and

were rejected; these structures either became rapidly distorted

during our simulations or exhibited structural instability (Towse

and Daggett, 2012; van der Kamp et al., 2010). These rejected

targets, all NMR structures, were discarded from our dataset

and replaced with equivalent higher-resolution crystal struc-

tures that did pass our validation metrics. We determined

that the instability of some of the rejected structures, despite

them being published with well-structured topologies in the

PDB, was due to previously undetected disorder (Towse and

Daggett, 2012). Moreover, as a consequence of the minimiza-

tion, solvation, and equilibration routines applied to the 807

starting structures, our rotamer libraries also do not suffer

the steric overlaps observed in other libraries (Lovell et al.,

2000).

Second, the sample size that can be obtained from the PDB, in

terms of the number of rotamer instances, is dramatically lower

than that of the Dynameomics rotamer libraries (Table 1). The

PDB is limited in the extent of the conformations side chains

can assume, resulting in some regions being sparsely populated

or lacking samples completely (Figure 3A). To generate

adequate probability distributions from this sparse dataset for

the RL2010 library, Bayesian statistical analysis and adaptive

kernel density estimates were used to estimate rotamer proba-

bilities (Dunbrack and Cohen, 1997; Shapovalov and Dunbrack,

2011). In contrast, our dataset is of sufficient size that, with nat-

ural Boltzmann sampling provided by the MD, we are able to

obtain meaningful statistics from our raw distributions

(Figure 3A).
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Figure 4. Topological Bias of Experimental Structures Used in

Rotamer Library Creation

Proteomic Ramachandran plot histograms of the PDB structures used in both

the RL2010 and Dynameomics rotamer libraries showing the distribution of

proteins in terms of their average f/c angles. As the coverage of f/c space by

L-amino acid-containing proteins is essentially constrained to negative values,

only the left halves of the plots are shown.

Figure 5. Independent Rotamer Probabilities and c1 Dihedral Angle

Distribution for Val

Histogram of c1 dihedral angles for all Val residues in the Dynameomics da-

taset. Rotameric populations are labeled with the backbone-independent

probabilities and the definition of the trans (t), gauche+ (g+), and gauche� (g�)

states inset. See also Table S1.
Agreement with NMR chemical shifts, NOEs, and backbone

and side-chain S2 order parameters verified our conformational

sampling, and thereby the rotameric probabilities, to be a good

reflection of side-chain propensities for solvated, autonomously

folded protein domains at ambient temperature (Figures 1 and 2)

(Beck and Daggett, 2004; Beck et al., 2008; Scouras and Dag-

gett, 2011). One common artifact many force fields suffer from

is a tendency to be overly helical. For example, a study of the pol-

yalanine pentapeptide revealed the commonly used force fields,

CHARMM27/CMAP, AMBER03, AMBER94, and AMBER99, to

have helical content spanning 58%–98%, far in excess of the

experimental estimate of �20% (Best et al., 2008; Firestine

et al., 2008; Jiang et al., 2013). We recently examined this

behavior for our own force field using the same peptide system

and confirmed our helical content to be 19%, in line with exper-

iments (Towse et al., 2015). We have also shown that by incorpo-

rating dynamics we pick up features not well captured in the

PDB, such as the differential behaviors of mobile surface resi-

dues whereby we observed flexible residues to have larger in-

creases in the number of rotamers occupied at surfaces (+0.85

rotamers on average) than other residues (+0.10) (Scouras and

Daggett, 2011). Hence, we conclude that the increased sampling

achieved through the use of MD captures a realistic range of

conformations.

Finally, the construction of a CDD enabled collation of a non-

redundant but representative structural dataset (Day et al.,

2003; Schaeffer et al., 2011). Our dataset contains 807 target

structures selected to represent different fold families covering

97% of all known globular protein folds. As reported by the

PDB, based on the SCOP v1.75 definitions there have been no

unique protein folds deposited since 2008 (http://www.rcsb.

org/pdb/statistics/contentGrowthChart.do?content=fold-scop).

SCOPe has reported 11 new folds since SCOP v1.75 (2009),
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which are primarily membrane and large multi-domain proteins

(Berman et al., 2000; Fox et al., 2014). CASP also reports the

increasing difficulty to find ‘‘true new folds’’ for targets in their

free modeling category, those available being often large and/

or irregular, non-autonomous folds (Kryshtafovych et al., 2014).

For globular proteins, this was anticipated (Levitt, 2007).

Although new dynamic domain families are possible for disor-

dered proteins, there is as yet no agreed categorization in place.

Hence, our CDD still provides a viable consensus view of the

currently classified protein fold space for globular and soluble

proteins.

Due to our metafold-based selection procedure, any bias to-

ward the more commonly found or studied topologies is mini-

mized so that our dataset is not structurally skewed to any great

degree, but we are of course biased by what is present in the

PDB and downstream domain libraries, as well as our choice

to focus on globular proteins. In any case, rotamer libraries

that rely on statistical analyses of the PDB to derive rotamer

probabilities (Larriva and Rey, 2014; Lovell et al., 2000; Shapova-

lov and Dunbrack, 2011; Xiang and Honig, 2001) use filtered

structural subsets that are often culled further to remove

sequence redundancy. This approach overlooks the occurrence

of sequences with low sequence identity that still have a high de-

gree of structural homology (Brenner et al., 1997) and potentially

removes homologous protein sequences that have very different

folds (Alexander et al., 2005). Hence, the probabilities for a given

residue may be biased by the secondary and tertiary structural

environment wherein that residue is most frequently found in

the PDB rather than its true probability across protein fold space.

Our dataset mimics ‘‘true’’ protein fold space with the natural

inclination toward mixed-a/b and mostly-a folds confirmed by

other structural classification schemes (Figure 4) (Andreeva

et al., 2008; Sillitoe et al., 2015), thus minimizing topological

bias compared with other current libraries. In principle, our prob-

abilities more faithfully reflect the natural structural propensities

of amino acids and their side-chain conformations. Given the
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Figure 6. Backbone-Dependent Versus Backbone-Independent Probabilities for Val

Differences in the probabilities related to the Val f/c distributions are given for side chains in the (A) t, (B) g�, and (C) g+ rotameric states. Well-populated regions

are highlighted, and labeled and representative structures are displayed on the right. The plots range from a 0% to 100% backbone-dependent probability on a

logarithmic scale, and are colored by the change in magnitude of the number of instances when compared with the backbone-independent library; e.g., pink

represents a dependent probability of 0% instances of side-chain conformations. The BBDEP rotamer preferences of other residues acrossf/c bins are shown in

Figures S1 and S2.
slow rate at which novel folds are being discovered (Levitt, 2007),

neither this natural bias, nor our coverage, is likely to change for

some time.

Despite the differences in the ways our library has been

constructed compared with others, we agree with earlier back-

bone-dependent preferences for many rotameric states (Dun-

brack and Cohen, 1997; Shapovalov and Dunbrack, 2011),

particularly in the hydrophobic cores. For example, we observe

similar side-chain behaviors for residues with similar chemistry

or geometry such as the b-branched and aromatic groups.

However, in determining the rotamer probabilities and their cor-

relation to backbone propensities (Figure 6), we have identified

aspects of side-chain dynamics not captured by X-ray struc-

tures. Our comparison of the differences in the BBDEP and
194 Structure 24, 187–199, January 5, 2016 ª2016 Elsevier Ltd All rig
BBIND probabilities of Val serves as an example of the impor-

tance of incorporating dynamics for proper selection of ro-

tamers. Owing to the greater sampling of both rotamers and

backbone conformations afforded by MD (Table 1), 90,034

side-chain samples were populated for the rare Val g+ confor-

mation. Similar observations were made for the rare rotamers

of other residues. This highlights just how important the minor

rotamer states become for residues in certain conformations.

Of note, this change in probability distribution for Val is not

observed in the RL2010 library (Shapovalov and Dunbrack,

2011).

Another discrepancy raised by Shapovalov and Dunbrack

(2011) as a critique of BASILISK (Harder et al., 2010) was the

ranking of the Ser rotamers; the authors stated that the Ser
hts reserved



Figure 7. Rotameric Bin Definitions and Dihedral Angle Distributions

(A) Dihedral angle ranges that define rotameric states.

(B) Polar dihedral angle distributions and rotameric bin populations from trajectories of all residues within the Dynameomics dataset. For each amino acid and

side-chain dihedral angle, the polar distribution of the angle is shown surrounded by donut plots shaded by population.

See also Table S2.
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Figure 8. RSS Probabilities for Ile, Ser, and Thr Compared with the

Probabilities for the Top Three BBIND Rotamers

The BBIND probabilities are provided in the lower right quadrant and the RSS

probabilities are inset in the same order in the appropriate secondary structural

regions, as defined in Figure 4, with the most probable rotamers in bold. See

also Table S1 for RSS probabilities.

Figure 9. Comparison of Most Probable Rotamer for all Amino Acids

Taken from the BBIND and RSS Libraries

Rotamer color classifications are inset alongside the plots. Correspondence

with the BBIND library is blue in each case.
g� rotamer was not the most probable. However, in agreement

with Harder et al., we find that the g� rotamer of Ser is domi-

nant (75%, BBIND) (Table S1; Figures 7, 8, and 9). Similarly, we
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find the most probable c1 rotamer for Asp and Asn to be t and

not the g� rotamer reported in RL2010. The underlying distri-

butions in the static dataset compared with those obtained

from MD, as illustrated in our previous publication (Scouras

and Daggett, 2011), explains these disparities. The dynamic,

solvated systems provide a more comprehensive sampling

and characterization of mobile side chains on the surface of

proteins.

Some of the discrepancies are also a consequence of the

RL2010 library using conditional probabilities assuming that

the c2 rotamers are independent of f/c, except for Asn and

Asp (Dunbrack and Cohen, 1997). While it is known that c1 can

have a strong dependence on f/c, we found that c2 can also

vary withf/c. Figure 7B shows shifts in the c2 dihedral angle dis-

tributions for some of the residues; this wasmost pronounced for

Asn and Asp, as expected, but included other residues, such as

the b-branched Ile c2. Both the position populated within a rota-

meric bin, changing the average c2-angle, and shifts in popula-

tions toward other rotameric bins are observed (Figure 7B). For

example, RL2010 reports the Met g�, g�, g� rotamer to be

most probable (18%). In our BBIND library, however, the most

probable rotamer for Met is g�,t,g� and only within the near-

aR region does the g�,g�,g� rotamer become the most

frequently populated (Table S1 and Figure 9). This is an example

of c2 showing some dependence on f/c even as the Met c1 dis-

tribution remains relatively invariant across different secondary

structure regions (Figure 7B).

For many of the residues, there was visible demarcation be-

tween collections of f/c bins where there was preference for

one rotamer over another (Figure 6). These areas of consensus

often coincided with f/c regions typical of common secondary

structures. Hence, along with presenting the BBDEP and BBIND

rotamer libraries, we also analyzed correlations between side-

chain and backbone propensities within defined secondary

structure f/c regions (Figures 7, 8, and 9). Beyond allowing us

to gain a clearer overview of how rotamer probabilities change

with local backbone conformation, these RSS probabilities

should prove useful for the selection of rotamers when the sec-

ondary structure of a residue is known, or has been predicted,

but where the initial backbone angles are uncertain or based

on a homology model.

The results presented here are available online as part of our

Structural Library of Intrinsic Residue Propensities (SLIRP) at

http://www.dynameomics.org/SLIRP. The updated BBIND li-

brary is also included in UCSF Chimera (Pettersen et al., 2004).

EXPERIMENTAL PROCEDURES

The Dynameomics v2009 Release Set (Schaeffer et al., 2011) (http://www.

dynameomics.org) of 807 unique protein folds simulated using MD was used

to generate rotamer statistics. Simulations were performed using ilmm (Beck

and Daggett, 2004; Beck et al., 2000–2015) with the F3C water model (Beck

et al., 2003; Levitt et al., 1997) and the Levitt force field (Levitt et al., 1995).

Each structure was solvated and simulated for at least 51 ns at 25�C; the first

nanosecond allowed for equilibration and was excluded from further analysis.

Structures were saved every picosecond (van der Kamp et al., 2010), resulting

in more than 51,000 instances for each of the 93,642 residues and totaling

more than 4.8 3 109 samples. Additional details for the simulation protocols

are available elsewhere (Beck and Daggett, 2004; Beck et al., 2008).

The rotamer populations, average c angles, and associated SDswere calcu-

lated using the rotamer bin definitions in Figure 7A. For tetrameric carbons, the
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nomenclature used for rotameric bins was as defined by IUPAC where g+ re-

fers to the conformation that centers on +60� and g� on �60� (Hoffman-Os-

tenhof et al., 1970). For non-rotameric side-chain angles, the definitions

used for our earlier backbone-independent library were applied (Figure 6A)

(Scouras and Daggett, 2011). Narrower rotamer bin definitions, employed

elsewhere (Dunbrack and Cohen, 1997; Shapovalov and Dunbrack, 2011),

split some probability distributions at the population maximum rather than

capturing the energy minimum within a bin. The definitions used here accom-

modate the broader asymmetric and symmetric population distributions of the

non-rotameric terminal c angles; the total number of rotamers is detailed in Ta-

ble S2 (Scouras and Daggett, 2011). For the terminal c angles of the Asp, Glu,

Tyr, and Phe residues, degenerate rotameric bins split about 0� and 180�

angles, e.g. the two g bins of Phe c2, were counted as a single rotameric state.

These bins are associated with symmetric probability distributions where flips

of the planar aromatic and carbonyl groups that alter the value of the defined c2

or c3, defined for specific atoms in our MD analysis, but which result in indis-

tinguishable orientations of the side chain. To determine backbone-dependent

rotamer probabilities, all residue instances were collected into 1,296 10� 3 10�

f/c bins and the rotamer statistics calculated within each bin as a percentage

of the total number of data points (f/c instances) for each residue. Populations

and probabilities within broader conformational regions were calculated with

the secondary structure regions defined as: aR: �100� % 4 % �30�, �80�

% c % �5�; near-aR: �175� % 4 % �100�, �55� % c % �5�; aL: 5� % 4 %

75�, 25� % c % 120�; b: �180� % 4 % �50�, 80� % c % �170�; PIR: �180�

% 4 % �115�, 50� % c % 100�; PIIL: �110� % 4 % �50�, 120� % c % 180�

(Figure 3B).

To assess topological bias, the 807 starting structures of the Dynameomics

dataset were compared with the 3,985 chains used in creating the RL2010

(Shapovalov and Dunbrack, 2011). Average f/c angles of individual structures

were computed using circular statistics, and population bias in f/c space was

then determined from histograms of the average values within the two data-

sets. To enable direct comparison of the two different sized datasets, frac-

tional populations for each bin were calculated and normalized by the

maximum bin population. Histograms of all the individual f/c angles within a

dataset using 5� 3 5� and 10� 3 10� bin widths were also generated to assess

coverage. NMR S2 order parameter data used to assess backbone and side-

chain dynamics and the correlation between S2 axis and multi-rotamericity

populations were generated as reported previously from a set of 18 proteins

(Best et al., 2004; Scouras and Daggett, 2011). Experimental data and simula-

tion details are as previously reported for ubiquitin and were taken from BMRB

entry 17439 (Beck et al., 2008).

More extensive data for the rotamer libraries described herein are available

at http://www.dynameomics.org/SLIRP.
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Figure S1: (Related to Figure 6) Rotamer preferences taken from the backbone-dependent 
(BBDEP) rotamer library for amino acids with only one side chain χ-angle. Free energy 
landscapes of the φ/ψ distributions are shown with the landscapes colored by the preferred 
rotamer associated with the backbone angles within 5°×5° degree φ/ψ bins to illustrate the 
relationship between rotameric propensities and the relative energies of backbone 
conformations. Insurmountable energy barriers are shaded black.  
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Figure S2: (Related to Figure 6) Rotamer preferences taken from the backbone-dependent 
(BBDEP) rotamer library for a selection of amino acids with longer side chains and 
representing different side chain functional groups. Free energy landscapes of the φ/ψ 
distributions are shown with the landscapes colored by the preferred rotamer associated with 
the backbone angles within 5°×5° degree φ/ψ bins to illustrate the relationship between 
rotameric propensities and the relative energies of backbone conformations. Insurmountable 
energy barriers are shaded black. Rotamer definitions are as provided in Figure 6, where a 
residue has split bin definitions, part of the rotamer label is highlighted in red to denote the 
precise top, bottom, left or right portion of the bin populated.  
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Table S1: (Related to Figures 5, 8 and 9) Independent (BBIND) and secondary structure 
region-dependent (RSS) rotamer probabilities. Percentage populations lower than 0.01 are 
indicated as such to acknowledge that, while substantially smaller populations, rotamer instances 
were observed in order to delineate from cases where there were no rotamer samples.   

Residue χ1 χ2 χ3 χ4 BBIND RSS 
αR 

RSS 
Near αR 

RSS 
αL 

RSS 
β 

RSS 
PIIL 

RSS  
PIR 

ARG g+ g+ g+ g+ 0.02% 0.02% <0.01% <0.01% 0.03% <0.01% <0.01% 
ARG g+ g+ g+ t 0.03% 0.02% <0.01% <0.01% 0.03% 0.12% 0.01% 
ARG g+ g+ g+ g- <0.01% <0.01% <0.01% <0.01% 0.01% <0.01% - 
ARG g+ g+ t g+ 0.01% <0.01% <0.01% <0.01% 0.01% 0.06% <0.01% 
ARG g+ g+ t t 0.08% 0.01% 0.07% <0.01% 0.24% 0.18% 0.01% 
ARG g+ g+ t g- 0.01% <0.01% 0.08% - 0.02% 0.02% <0.01% 
ARG g+ g+ g- g+ <0.01% <0.01% <0.01% - <0.01% - <0.01% 
ARG g+ g+ g- t 0.02% <0.01% 0.17% 0.01% 0.01% 0.01% <0.01% 
ARG g+ g+ g- g- 0.01% <0.01% 0.01% - 0.01% 0.01% <0.01% 
ARG g+ t g+ g+ 0.48% 0.10% 0.58% 0.03% 1.17% 0.77% 1.51% 
ARG g+ t g+ t 0.86% 0.15% 0.98% 0.05% 1.75% 1.72% 1.65% 
ARG g+ t g+ g- 0.08% 0.01% 0.10% <0.01% 0.24% 0.12% 0.07% 
ARG g+ t t g+ 0.68% 0.24% 1.11% 0.01% 1.35% 1.15% 0.45% 
ARG g+ t t t 0.64% 0.13% 0.72% <0.01% 1.86% 1.16% 0.76% 
ARG g+ t t g- 0.39% 0.11% 0.25% 0.01% 0.96% 0.81% 0.22% 
ARG g+ t g- g+ 0.08% 0.03% 0.05% <0.01% 0.20% 0.18% 0.01% 
ARG g+ t g- t 0.70% 0.15% 0.69% 0.02% 1.70% 1.46% 0.71% 
ARG g+ t g- g- 0.44% 0.25% 0.40% 0.01% 0.76% 0.87% 0.35% 
ARG g+ g- g+ g+ 0.01% <0.01% 0.01% <0.01% <0.01% 0.01% <0.01% 
ARG g+ g- g+ t <0.01% <0.01% <0.01% - <0.01% <0.01% <0.01% 
ARG g+ g- g+ g- <0.01% <0.01% <0.01% - <0.01% <0.01% <0.01% 
ARG g+ g- t g+ <0.01% <0.01% 0.02% - <0.01% <0.01% <0.01% 
ARG g+ g- t t 0.01% <0.01% 0.02% <0.01% 0.05% 0.01% 0.04% 
ARG g+ g- t g- 0.01% <0.01% <0.01% - 0.03% 0.01% <0.01% 
ARG g+ g- g- g+ <0.01% <0.01% <0.01% - 0.02% <0.01% <0.01% 
ARG g+ g- g- t 0.02% <0.01% 0.01% - 0.03% 0.07% <0.01% 
ARG g+ g- g- g- <0.01% <0.01% <0.01% - <0.01% 0.01% <0.01% 
ARG t g+ g+ g+ 0.31% 0.34% 0.31% 0.18% 0.33% 0.11% 0.36% 
ARG t g+ g+ t 0.75% 0.89% 1.04% 0.73% 0.65% 0.34% 0.52% 
ARG t g+ g+ g- 0.05% 0.06% 0.03% <0.01% 0.06% 0.02% 0.09% 
ARG t g+ t g+ 0.58% 0.85% 0.64% 0.01% 0.38% 0.18% 0.64% 
ARG t g+ t t 1.26% 1.87% 0.86% 0.36% 0.91% 0.44% 0.33% 
ARG t g+ t g- 0.47% 0.59% 0.66% 0.18% 0.31% 0.36% 0.20% 
ARG t g+ g- g+ 0.08% 0.14% 0.01% <0.01% 0.02% <0.01% <0.01% 
ARG t g+ g- t 0.11% 0.14% 0.06% 0.12% 0.11% 0.05% 0.04% 
ARG t g+ g- g- 0.27% 0.38% 0.60% 0.01% 0.09% 0.08% 0.17% 
ARG t t g+ g+ 2.75% 4.36% 1.15% 0.27% 1.21% 1.07% 1.18% 
ARG t t g+ t 3.37% 4.08% 1.45% 2.18% 3.43% 2.59% 2.49% 
ARG t t g+ g- 0.62% 1.06% 0.17% 0.05% 0.23% 0.13% 0.07% 
ARG t t t g+ 0.71% 0.70% 0.72% 0.38% 1.05% 0.58% 0.68% 
ARG t t t t 1.92% 1.68% 1.34% 0.95% 3.43% 1.93% 2.36% 
ARG t t t g- 1.05% 1.17% 0.40% 0.17% 1.53% 0.67% 2.23% 
ARG t t g- g+ 0.45% 0.71% 0.25% 0.04% 0.21% 0.14% 0.13% 
ARG t t g- t 2.22% 2.65% 2.31% 1.16% 2.49% 0.98% 2.23% 
ARG t t g- g- 1.17% 1.24% 1.29% 0.99% 1.44% 0.82% 0.84% 
ARG t g- g+ g+ 0.03% 0.02% 0.07% <0.01% 0.01% <0.01% 0.41% 
ARG t g- g+ t 0.03% 0.03% 0.02% 0.03% 0.04% 0.01% 0.10% 
ARG t g- g+ g- <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
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Residue χ1 χ2 χ3 χ4 BBIND RSS 
αR 

RSS 
Near αR 

RSS 
αL 

RSS 
β 

RSS 
PIIL 

RSS  
PIR 

ARG t g- t g+ 0.11% 0.12% 0.06% 0.10% 0.11% 0.10% 0.08% 
ARG t g- t t 0.32% 0.28% 0.17% 0.05% 0.62% 0.36% 0.69% 
ARG t g- t g- 0.05% 0.06% 0.08% <0.01% 0.07% 0.01% 0.11% 
ARG t g- g- g+ 0.09% 0.07% 0.02% 0.33% 0.17% 0.04% 0.11% 
ARG t g- g- t 0.41% 0.61% 0.40% 0.09% 0.19% 0.18% 0.09% 
ARG t g- g- g- 0.06% 0.07% 0.05% 0.11% 0.08% 0.02% 0.19% 
ARG g- g+ g+ g+ 0.17% 0.17% 0.39% 0.13% 0.11% 0.22% 0.06% 
ARG g- g+ g+ t 0.44% 0.48% 0.75% 0.76% 0.33% 0.25% 0.29% 
ARG g- g+ g+ g- 0.04% <0.01% 0.01% 0.03% 0.02% 0.02% 0.02% 
ARG g- g+ t g+ 0.10% 0.04% 0.23% 0.11% 0.18% 0.09% 0.47% 
ARG g- g+ t t 0.39% 0.30% 0.70% 0.54% 0.49% 0.45% 0.49% 
ARG g- g+ t g- 0.11% 0.08% 0.16% 0.14% 0.18% 0.09% 0.14% 
ARG g- g+ g- g+ 0.01% <0.01% <0.01% <0.01% 0.01% 0.02% <0.01% 
ARG g- g+ g- t 0.11% 0.19% 0.03% 0.04% 0.04% 0.04% 0.01% 
ARG g- g+ g- g- 0.03% 0.03% 0.04% 0.01% 0.02% 0.05% 0.05% 
ARG g- t g+ g+ 4.67% 4.60% 4.29% 7.68% 4.41% 4.63% 4.24% 
ARG g- t g+ t 11.72% 11.58% 11.42% 12.40% 10.64% 13.00% 13.00% 
ARG g- t g+ g- 0.75% 0.54% 0.75% 0.82% 0.97% 1.12% 1.44% 
ARG g- t t g+ 3.48% 3.01% 3.42% 4.45% 3.89% 4.42% 3.80% 
ARG g- t t t 11.68% 13.08% 9.68% 11.80% 9.63% 10.09% 11.63% 
ARG g- t t g- 4.00% 3.53% 4.12% 4.76% 4.46% 5.15% 3.25% 
ARG g- t g- g+ 2.17% 2.70% 2.16% 1.40% 1.28% 1.26% 1.94% 
ARG g- t g- t 10.92% 7.28% 13.41% 21.19% 13.18% 15.14% 15.87% 
ARG g- t g- g- 11.06% 13.61% 9.02% 12.80% 6.36% 8.14% 8.45% 
ARG g- g- g+ g+ 0.69% 1.00% 0.39% 0.28% 0.32% 0.43% 0.11% 
ARG g- g- g+ t 0.83% 0.69% 2.04% 0.37% 0.90% 0.97% 0.82% 
ARG g- g- g+ g- 0.13% 0.17% 0.13% 0.11% 0.09% 0.13% 0.03% 
ARG g- g- t g+ 1.30% 1.08% 1.57% 1.75% 1.45% 1.52% 1.34% 
ARG g- g- t t 3.76% 3.41% 5.46% 3.38% 3.46% 4.58% 2.67% 
ARG g- g- t g- 2.16% 1.39% 4.65% 1.83% 3.79% 1.73% 3.60% 
ARG g- g- g- g+ 0.40% 0.54% 0.20% 0.05% 0.21% 0.32% 0.06% 
ARG g- g- g- t 3.64% 3.87% 3.67% 3.42% 2.64% 4.00% 2.32% 
ARG g- g- g- g- 1.41% 1.23% 1.85% 1.12% 1.32% 2.19% 1.75% 
ASN g+ Ng+ 

  
0.15% 0.05% 0.10% 0.01% 0.39% 0.22% 0.11% 

ASN g+ Og- 
  

1.01% 0.22% 0.41% 0.02% 1.97% 3.25% 0.39% 
ASN g+ Nt 

  
0.87% 0.08% 0.23% <0.01% 1.65% 2.56% 0.34% 

ASN g+ Og+ 
  

2.38% 0.33% 1.14% 0.12% 4.00% 8.38% 1.32% 
ASN g+ Ng- 

  
0.25% 0.07% 0.23% 0.02% 0.38% 0.55% 0.40% 

ASN g+ Ot 
  

<0.01% - - - <0.01% <0.01% <0.01% 
ASN t Ng+ 

  
25.68% 16.67% 18.33% 46.06% 35.35% 26.84% 42.35% 

ASN t Og- 
  

20.39% 16.14% 18.43% 28.71% 24.46% 24.14% 24.29% 
ASN t Nt 

  
11.18% 15.45% 14.84% 6.76% 6.97% 4.76% 8.96% 

ASN t Og+ 
  

25.14% 39.03% 37.30% 7.15% 12.01% 11.21% 9.14% 
ASN t Ng- 

  
1.05% 0.95% 1.07% 0.95% 1.38% 1.02% 1.45% 

ASN t Ot 
  

0.19% 0.17% 0.14% 0.19% 0.29% 0.08% 0.45% 
ASN g- Ng+ 

  
0.62% 0.80% 0.41% 0.26% 0.59% 0.58% 0.39% 

ASN g- Og- 
  

5.27% 5.26% 3.17% 3.29% 4.72% 7.42% 5.27% 
ASN g- Nt 

  
2.09% 2.85% 0.82% 0.70% 1.42% 2.98% 0.80% 

ASN g- Og+ 
  

1.85% 1.12% 1.76% 1.93% 2.30% 3.11% 1.94% 
ASN g- Ng- 

  
1.83% 0.76% 1.54% 3.78% 2.08% 2.86% 2.36% 

ASN g- Ot 
  

0.05% 0.06% 0.07% 0.04% 0.04% 0.05% 0.04% 
ASP g+ g+ 

  
1.40% 0.16% 0.22% 1.16% 3.60% 3.69% 1.61% 

ASP g+ t 
  

0.30% 0.07% <0.01% <0.01% 0.84% 0.62% 0.45% 
ASP g+ g- 

  
2.56% 0.32% 0.36% 1.18% 5.48% 7.27% 3.57% 
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Residue χ1 χ2 χ3 χ4 BBIND RSS 
αR 

RSS 
Near αR 

RSS 
αL 

RSS 
β 

RSS 
PIIL 

RSS  
PIR 

ASP t g+ 
  

66.45% 74.31% 75.36% 75.20% 46.99% 39.72% 65.41% 
ASP t t 

  
7.38% 6.71% 7.48% 5.94% 8.41% 5.35% 11.24% 

ASP t g- 
  

12.81% 10.23% 10.67% 11.97% 19.14% 22.33% 11.95% 
ASP g- g+ 

  
2.10% 1.62% 1.09% 1.22% 3.97% 6.09% 1.41% 

ASP g- t 
  

1.48% 1.81% 0.67% 0.40% 1.78% 4.09% 0.33% 
ASP g- g- 

  
5.51% 4.77% 4.15% 2.92% 9.78% 10.84% 4.02% 

CYH g+ 
   

14.00% 2.83% 13.44% 1.69% 25.15% 20.62% 25.15% 
CYH t 

   
16.97% 23.23% 20.05% 13.83% 13.39% 10.25% 17.16% 

CYH g- 
   

69.03% 73.94% 66.51% 84.48% 61.46% 69.13% 57.69% 
CYS g+ 

   
13.64% 3.36% 17.44% 3.18% 18.21% 18.80% 15.92% 

CYS t 
   

30.17% 43.79% 29.08% 34.61% 28.03% 17.34% 39.64% 
CYS g- 

   
56.19% 52.85% 53.48% 62.21% 53.76% 63.86% 44.43% 

GLN g+ g+ Ng+ 
 

0.01% <0.01% 0.01% <0.01% 0.02% 0.03% 0.01% 
GLN g+ g+ Og- 

 
0.01% <0.01% <0.01% <0.01% 0.01% 0.02% <0.01% 

GLN g+ g+ Nt 
 

<0.01% <0.01% <0.01% - 0.02% 0.02% <0.01% 
GLN g+ g+ Og+ 

 
0.01% <0.01% <0.01% <0.01% 0.04% 0.03% <0.01% 

GLN g+ g+ Ng- 
 

<0.01% <0.01% <0.01% - <0.01% <0.01% <0.01% 
GLN g+ g+ Ot 

 
<0.01% <0.01% - - <0.01% <0.01% <0.01% 

GLN g+ t Ng+ 
 

0.52% 0.08% 0.60% 0.02% 1.46% 0.94% 1.39% 
GLN g+ t Og- 

 
0.51% 0.10% 0.61% 0.02% 1.41% 0.98% 1.27% 

GLN g+ t Nt 
 

0.29% 0.03% 0.26% 0.02% 0.98% 0.69% 0.66% 
GLN g+ t Og+ 

 
0.58% 0.09% 0.53% 0.03% 1.78% 1.29% 1.10% 

GLN g+ t Ng- 
 

0.42% 0.06% 0.34% 0.02% 1.29% 1.02% 0.57% 
GLN g+ t Ot 

 
0.08% 0.01% 0.08% <0.01% 0.28% 0.18% 0.16% 

GLN g+ g- Ng+ 
 

<0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
GLN g+ g- Og- 

 
0.01% <0.01% <0.01% <0.01% 0.04% 0.01% 0.01% 

GLN g+ g- Nt 
 

0.01% <0.01% <0.01% - 0.02% 0.01% <0.01% 
GLN g+ g- Og+ 

 
0.04% 0.02% - <0.01% 0.06% 0.13% 0.03% 

GLN g+ g- Ng- 
 

0.03% 0.01% 0.01% <0.01% 0.07% 0.07% 0.03% 
GLN g+ g- Ot 

 
<0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 

GLN t g+ Ng+ 
 

0.45% 0.52% 0.36% 0.23% 0.55% 0.30% 0.38% 
GLN t g+ Og- 

 
0.20% 0.19% 0.13% 0.09% 0.33% 0.31% 0.15% 

GLN t g+ Nt 
 

0.12% 0.15% 0.10% 0.05% 0.11% 0.07% 0.09% 
GLN t g+ Og+ 

 
0.65% 0.86% 0.45% 0.26% 0.61% 0.26% 0.27% 

GLN t g+ Ng- 
 

0.04% 0.05% 0.03% 0.01% 0.02% 0.02% 0.02% 
GLN t g+ Ot 

 
0.01% 0.01% 0.01% <0.01% 0.01% 0.01% <0.01% 

GLN t t Ng+ 
 

1.45% 1.38% 1.19% 1.20% 2.32% 1.28% 1.94% 
GLN t t Og- 

 
1.74% 1.66% 1.70% 1.42% 2.67% 1.59% 2.21% 

GLN t t Nt 
 

1.10% 1.10% 1.07% 0.62% 1.53% 1.11% 1.30% 
GLN t t Og+ 

 
2.09% 2.05% 1.93% 1.11% 3.31% 1.68% 2.85% 

GLN t t Ng- 
 

1.43% 1.49% 1.41% 1.02% 1.91% 0.95% 1.88% 
GLN t t Ot 

 
0.26% 0.25% 0.22% 0.22% 0.45% 0.19% 0.37% 

GLN t g- Ng+ 
 

0.01% 0.01% 0.01% <0.01% 0.01% <0.01% 0.01% 
GLN t g- Og- 

 
0.14% 0.17% 0.13% 0.06% 0.16% 0.07% 0.21% 

GLN t g- Nt 
 

0.04% 0.04% 0.06% 0.02% 0.04% 0.03% 0.04% 
GLN t g- Og+ 

 
0.06% 0.04% 0.03% 0.04% 0.13% 0.08% 0.05% 

GLN t g- Ng- 
 

0.10% 0.11% 0.09% 0.07% 0.17% 0.07% 0.10% 
GLN t g- Ot 

 
<0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 

GLN g- g+ Ng+ 
 

0.43% 0.48% 0.48% 0.47% 0.28% 0.40% 0.22% 
GLN g- g+ Og- 

 
0.83% 1.04% 0.32% 0.27% 0.42% 1.08% 0.16% 

GLN g- g+ Nt 
 

0.34% 0.39% 0.19% 0.09% 0.21% 0.56% 0.15% 
GLN g- g+ Og+ 

 
0.45% 0.39% 0.48% 0.63% 0.57% 0.52% 0.50% 

GLN g- g+ Ng- 
 

0.01% 0.01% 0.01% 0.01% 0.02% 0.01% 0.01% 
GLN g- g+ Ot 

 
<0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
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Residue χ1 χ2 χ3 χ4 BBIND RSS 
αR 

RSS 
Near αR 

RSS 
αL 

RSS 
β 

RSS 
PIIL 

RSS  
PIR 

GLN g- t Ng+ 
 

10.84% 10.87% 11.33% 11.81% 10.14% 11.29% 9.94% 
GLN g- t Og- 

 
17.59% 16.77% 18.73% 18.75% 17.49% 19.16% 18.26% 

GLN g- t Nt 
 

10.62% 10.96% 10.28% 11.12% 9.10% 10.43% 9.79% 
GLN g- t Og+ 

 
20.10% 22.67% 17.62% 21.51% 15.16% 15.54% 18.49% 

GLN g- t Ng- 
 

15.39% 14.85% 15.29% 20.08% 15.06% 15.71% 16.29% 
GLN g- t Ot 

 
2.22% 2.15% 2.05% 2.65% 2.30% 2.45% 2.11% 

GLN g- g- Ng+ 
 

0.20% 0.15% 0.40% 0.21% 0.23% 0.21% 0.26% 
GLN g- g- Og- 

 
3.83% 3.53% 6.54% 2.07% 3.89% 4.14% 4.13% 

GLN g- g- Nt 
 

0.93% 0.91% 1.23% 0.41% 1.01% 1.05% 0.84% 
GLN g- g- Og+ 

 
1.26% 1.44% 1.04% 1.25% 0.77% 1.23% 0.53% 

GLN g- g- Ng- 
 

2.54% 2.86% 2.57% 2.11% 1.50% 2.74% 1.19% 
GLN g- g- Ot 

 
0.04% 0.04% 0.06% 0.02% 0.02% 0.02% 0.02% 

GLU g+ g+ g+ 
 

0.09% 0.06% 0.10% <0.01% 0.08% 0.17% 0.02% 
GLU g+ g+ t 

 
0.01% 0.01% <0.01% <0.01% <0.01% 0.01% <0.01% 

GLU g+ g+ g- 
 

0.03% 0.01% 0.11% <0.01% 0.07% 0.04% <0.01% 
GLU g+ t g+ 

 
1.31% 0.35% 1.41% 0.12% 3.22% 2.54% 4.01% 

GLU g+ t t 
 

0.32% 0.06% 0.34% 0.02% 1.02% 0.65% 0.70% 
GLU g+ t g- 

 
1.12% 0.30% 1.12% 0.15% 2.70% 2.51% 2.80% 

GLU g+ g- g+ 
 

0.19% 0.12% 0.12% <0.01% 0.13% 0.58% 0.04% 
GLU g+ g- t 

 
0.03% 0.02% 0.01% <0.01% 0.02% 0.08% <0.01% 

GLU g+ g- g- 
 

0.16% 0.06% 0.28% 0.01% 0.16% 0.45% 0.11% 
GLU t g+ g+ 

 
1.69% 2.31% 1.00% 0.09% 1.06% 1.16% 0.44% 

GLU t g+ t 
 

0.34% 0.53% 0.19% 0.01% 0.12% 0.05% 0.04% 
GLU t g+ g- 

 
0.35% 0.37% 0.19% 0.13% 0.43% 0.43% 0.14% 

GLU t t g+ 
 

5.47% 6.50% 4.44% 2.64% 6.03% 2.92% 5.47% 
GLU t t t 

 
1.59% 1.85% 1.22% 0.62% 1.92% 0.96% 1.49% 

GLU t t g- 
 

6.06% 7.65% 4.73% 3.02% 5.65% 2.83% 4.55% 
GLU t g- g+ 

 
0.08% 0.08% 0.02% 0.07% 0.13% 0.10% 0.04% 

GLU t g- t 
 

0.05% 0.05% 0.04% <0.01% 0.08% 0.04% <0.01% 
GLU t g- g- 

 
0.71% 0.98% 0.30% 0.32% 0.48% 0.34% 0.17% 

GLU g- g+ g+ 
 

1.22% 1.06% 1.05% 1.82% 0.85% 1.96% 0.90% 
GLU g- g+ t 

 
0.48% 0.51% 0.45% 0.03% 0.28% 0.71% 0.19% 

GLU g- g+ g- 
 

1.12% 1.12% 0.61% 0.66% 0.61% 1.96% 0.30% 
GLU g- t g+ 

 
25.45% 22.78% 30.66% 35.60% 26.51% 28.18% 29.13% 

GLU g- t t 
 

12.73% 14.07% 10.60% 12.16% 11.47% 10.04% 11.02% 
GLU g- t g- 

 
29.69% 26.24% 35.19% 39.41% 31.70% 33.47% 34.64% 

GLU g- g- g+ 
 

1.48% 1.96% 0.86% 0.76% 0.78% 1.23% 0.78% 
GLU g- g- t 

 
1.28% 1.45% 0.95% 0.20% 1.27% 1.43% 0.80% 

GLU g- g- g- 
 

6.97% 9.51% 4.03% 2.18% 3.22% 5.16% 2.18% 
HID g+ Ng+ 

  
2.31% 0.57% 2.20% 0.12% 4.74% 3.30% 1.79% 

HID g+ Cg- 
  

1.46% 0.34% 1.82% 0.04% 3.52% 1.85% 0.37% 
HID g+ Nt 

  
0.04% <0.01% <0.01% <0.01% 0.03% 0.18% 0.01% 

HID g+ Cg+ 
  

2.59% 0.80% 3.08% 0.43% 5.61% 3.43% 0.74% 
HID g+ Ng- 

  
1.78% 0.49% 2.96% 0.32% 3.87% 2.23% 0.75% 

HID g+ Ct 
  

0.17% <0.01% <0.01% 0.01% 0.23% 0.72% 0.02% 
HID t Ng+ 

  
14.91% 20.48% 11.88% 11.56% 12.07% 12.35% 11.66% 

HID t Cg- 
  

3.48% 4.79% 3.13% 2.48% 3.22% 2.28% 3.62% 
HID t Nt 

  
0.90% 1.11% 0.61% 0.85% 0.89% 0.45% 1.70% 

HID t Cg+ 
  

9.56% 12.60% 9.20% 6.60% 7.83% 9.32% 4.80% 
HID t Ng- 

  
3.50% 4.00% 3.93% 4.53% 3.63% 2.53% 3.50% 

HID t Ct 
  

2.88% 3.66% 2.83% 2.84% 2.86% 1.17% 4.25% 
HID g- Ng+ 

  
7.93% 8.75% 8.04% 5.62% 7.84% 7.03% 9.46% 

HID g- Cg- 
  

16.32% 14.86% 19.19% 21.20% 12.69% 16.47% 18.85% 
HID g- Nt 

  
2.00% 2.99% 1.19% 1.15% 1.10% 1.90% 0.74% 
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Residue χ1 χ2 χ3 χ4 BBIND RSS 
αR 

RSS 
Near αR 

RSS 
αL 

RSS 
β 

RSS 
PIIL 

RSS  
PIR 

HID g- Cg+ 
  

4.51% 3.31% 4.24% 5.00% 5.95% 5.87% 5.71% 
HID g- Ng- 

  
20.04% 14.89% 19.85% 31.65% 19.26% 23.93% 26.37% 

HID g- Ct 
  

5.62% 6.35% 5.84% 5.59% 4.66% 4.98% 5.67% 
HIE g+ Ng+ 

  
2.62% 1.76% 6.11% 0.01% 3.85% 1.79% 2.01% 

HIE g+ Cg- 
  

0.81% 0.21% 2.19% 0.02% 2.35% 0.38% 0.51% 
HIE g+ Nt 

  
0.01% <0.01% - <0.01% 0.04% 0.01% 0.04% 

HIE g+ Cg+ 
  

2.58% 1.10% 2.38% 0.02% 4.19% 5.21% 3.65% 
HIE g+ Ng- 

  
4.68% 5.15% 6.54% 0.01% 3.50% 4.85% 4.32% 

HIE g+ Ct 
  

0.31% 0.25% 0.35% - 0.35% 0.16% 0.13% 
HIE t Ng+ 

  
13.17% 16.08% 8.79% 11.18% 13.62% 9.54% 11.11% 

HIE t Cg- 
  

3.04% 4.39% 2.18% 1.65% 2.71% 1.48% 2.20% 
HIE t Nt 

  
0.78% 1.06% 0.94% 0.44% 0.75% 0.11% 1.67% 

HIE t Cg+ 
  

12.90% 15.17% 12.68% 4.10% 10.70% 15.45% 5.34% 
HIE t Ng- 

  
6.73% 5.73% 4.09% 3.69% 9.45% 10.19% 5.57% 

HIE t Ct 
  

4.20% 2.85% 2.40% 5.88% 7.09% 4.52% 1<0.01% 
HIE g- Ng+ 

  
5.66% 6.31% 5.33% 5.58% 3.97% 6.41% 2.00% 

HIE g- Cg- 
  

16.20% 14.33% 24.23% 21.30% 13.42% 17.77% 18.41% 
HIE g- Nt 

  
1.98% 2.82% 2.19% 1.35% 1.01% 1.26% 1.20% 

HIE g- Cg+ 
  

4.02% 2.94% 4.66% 6.66% 5.92% 3.21% 8.56% 
HIE g- Ng- 

  
16.03% 13.90% 13.16% 34.39% 15.18% 13.64% 22.04% 

HIE g- Ct 
  

4.29% 5.96% 1.77% 3.72% 1.90% 4.01% 1.26% 
ILE g+ g+ 

  
0.75% 0.55% 0.71% 0.01% 0.55% 1.51% 0.08% 

ILE g+ t 
  

43.32% 22.67% 64.45% 14.42% 44.48% 71.16% 51.90% 
ILE g+ g- 

  
0.10% 0.02% 0.10% 0.02% 0.14% 0.22% 0.11% 

ILE t g+ 
  

0.98% 0.88% 1.56% 0.84% 1.25% 0.84% 1.09% 
ILE t t 

  
2.77% 1.20% 2.99% 0.19% 5.54% 2.81% 3.59% 

ILE t g- 
  

0.05% 0.05% 0.07% 0.01% 0.07% 0.04% 0.03% 
ILE g- g+ 

  
0.36% 0.15% 0.29% 1.09% 0.78% 0.28% 0.84% 

ILE g- t 
  

28.55% 39.47% 10.93% 50.03% 3<0.01% 11.80% 29.70% 
ILE g- g- 

  
23.12% 35.01% 18.90% 33.39% 17.20% 11.34% 12.67% 

LEU g+ g+ 
  

0.26% 0.02% 0.19% 0.01% 0.87% 0.45% 0.06% 
LEU g+ t 

  
0.19% 0.01% 0.17% <0.01% 0.69% 0.23% 0.22% 

LEU g+ g- 
  

<0.01% <0.01% <0.01% <0.01% 0.01% 0.01% <0.01% 
LEU t g+ 

  
22.92% 24.48% 21.31% 15.88% 29.35% 14.13% 25.99% 

LEU t t 
  

3.26% 3.12% 3.25% 3.10% 5.29% 1.96% 4.36% 
LEU t g- 

  
1.19% 1.49% 1.64% 0.58% 1.12% 0.44% 0.82% 

LEU g- g+ 
  

4.18% 2.71% 4.14% 4.50% 7.46% 5.70% 6.65% 
LEU g- t 

  
66.49% 66.45% 67.31% 75.00% 54.11% 75.59% 61.27% 

LEU g- g- 
  

1.51% 1.71% 1.99% 0.92% 1.11% 1.49% 0.63% 
LYS g+ g+ g+ g+ 0.01% <0.01% <0.01% - 0.03% 0.01% <0.01% 
LYS g+ g+ g+ t <0.01% <0.01% <0.01% - <0.01% <0.01% <0.01% 
LYS g+ g+ g+ g- <0.01% <0.01% <0.01% - <0.01% <0.01% <0.01% 
LYS g+ g+ t g+ 0.06% 0.03% 0.13% <0.01% 0.06% 0.14% 0.01% 
LYS g+ g+ t t 0.01% 0.01% 0.01% - 0.01% 0.04% <0.01% 
LYS g+ g+ t g- 0.08% 0.06% 0.06% <0.01% 0.10% 0.13% <0.01% 
LYS g+ g+ g- g+ <0.01% - - - <0.01% <0.01% - 
LYS g+ g+ g- t <0.01% <0.01% <0.01% - <0.01% <0.01% - 
LYS g+ g+ g- g- <0.01% <0.01% <0.01% - <0.01% <0.01% <0.01% 
LYS g+ t g+ g+ 0.22% 0.03% 0.22% 0.01% 0.62% 0.39% 0.24% 
LYS g+ t g+ t 0.14% 0.02% 0.05% <0.01% 0.42% 0.31% 0.18% 
LYS g+ t g+ g- 0.01% <0.01% <0.01% <0.01% 0.01% <0.01% <0.01% 
LYS g+ t t g+ 2.25% 1.03% 2.63% 0.18% 3.47% 4.10% 3.01% 
LYS g+ t t t 0.43% 0.07% 0.12% <0.01% 1.50% 0.91% 0.27% 
LYS g+ t t g- 1.21% 0.38% 1.80% 0.11% 2.68% 2.13% 1.32% 
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Residue χ1 χ2 χ3 χ4 BBIND RSS 
αR 

RSS 
Near αR 

RSS 
αL 

RSS 
β 

RSS 
PIIL 

RSS  
PIR 

LYS g+ t g- g+ 0.01% <0.01% 0.03% <0.01% 0.01% 0.01% 0.01% 
LYS g+ t g- t 0.13% 0.02% 0.05% <0.01% 0.34% 0.33% 0.14% 
LYS g+ t g- g- 0.52% 0.15% 0.63% 0.02% 1.05% 1.16% 0.56% 
LYS g+ g- g+ g+ <0.01% <0.01% <0.01% - <0.01% <0.01% <0.01% 
LYS g+ g- g+ t <0.01% - <0.01% - <0.01% <0.01% - 
LYS g+ g- g+ g- - - - - - - - 
LYS g+ g- t g+ 0.02% <0.01% 0.01% <0.01% 0.09% 0.02% 0.05% 
LYS g+ g- t t <0.01% <0.01% <0.01% <0.01% 0.01% <0.01% <0.01% 
LYS g+ g- t g- 0.02% 0.01% 0.08% <0.01% 0.04% 0.02% 0.02% 
LYS g+ g- g- g+ <0.01% - <0.01% - <0.01% <0.01% <0.01% 
LYS g+ g- g- t <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
LYS g+ g- g- g- <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
LYS t g+ g+ g+ 0.22% 0.29% 0.27% 0.09% 0.14% 0.18% 0.09% 
LYS t g+ g+ t 0.19% 0.31% 0.07% 0.07% 0.10% 0.04% 0.11% 
LYS t g+ g+ g- <0.01% 0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
LYS t g+ t g+ 2.02% 2.54% 1.93% 1.15% 1.84% 0.90% 2.72% 
LYS t g+ t t 0.29% 0.42% 0.17% 0.09% 0.22% 0.12% 0.29% 
LYS t g+ t g- 1.42% 1.78% 1.12% 0.64% 1.37% 0.89% 1.26% 
LYS t g+ g- g+ <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
LYS t g+ g- t 0.03% 0.06% 0.01% 0.01% 0.01% <0.01% 0.01% 
LYS t g+ g- g- 0.04% 0.06% 0.02% 0.05% 0.02% 0.01% 0.07% 
LYS t t g+ g+ 2.32% 3.04% 1.67% 1.05% 2.11% 1.21% 1.85% 
LYS t t g+ t 0.87% 1.17% 0.26% 0.12% 1.01% 0.47% 1.07% 
LYS t t g+ g- 0.03% 0.03% 0.02% 0.02% 0.02% 0.02% 0.01% 
LYS t t t g+ 3.52% 3.72% 3.12% 1.69% 4.85% 2.31% 6.09% 
LYS t t t t 0.77% 0.75% 0.37% 0.28% 1.39% 0.73% 0.87% 
LYS t t t g- 4.81% 5.95% 3.14% 3.82% 4.90% 2.55% 5.87% 
LYS t t g- g+ 0.02% <0.01% <0.01% 0.01% 0.06% 0.04% 0.01% 
LYS t t g- t 0.36% 0.39% 0.27% 0.13% 0.47% 0.36% 0.27% 
LYS t t g- g- 0.53% 0.54% 0.54% 0.31% 0.79% 0.35% 0.81% 
LYS t g- g+ g+ 0.01% 0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
LYS t g- g+ t <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
LYS t g- g+ g- <0.01% <0.01% <0.01% <0.01% <0.01% - <0.01% 
LYS t g- t g+ 0.30% 0.40% 0.21% 0.16% 0.32% 0.12% 0.38% 
LYS t g- t t 0.07% 0.08% 0.05% 0.04% 0.07% 0.03% 0.06% 
LYS t g- t g- 0.52% 0.70% 0.40% 0.23% 0.48% 0.13% 0.78% 
LYS t g- g- g+ <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
LYS t g- g- t 0.06% 0.08% 0.05% <0.01% 0.05% 0.02% 0.04% 
LYS t g- g- g- 0.15% 0.20% 0.08% 0.05% 0.18% 0.05% 0.15% 
LYS g- g+ g+ g+ 0.11% 0.07% 0.11% 0.29% 0.12% 0.16% 0.08% 
LYS g- g+ g+ t 0.03% 0.04% 0.04% 0.05% 0.03% 0.02% 0.03% 
LYS g- g+ g+ g- <0.01% <0.01% <0.01% 0.02% 0.01% 0.01% 0.01% 
LYS g- g+ t g+ 0.61% 0.58% 1.07% 0.46% 0.66% 0.54% 0.59% 
LYS g- g+ t t 0.06% 0.05% 0.06% 0.07% 0.06% 0.05% 0.06% 
LYS g- g+ t g- 0.39% 0.37% 0.48% 0.36% 0.44% 0.43% 0.45% 
LYS g- g+ g- g+ <0.01% <0.01% <0.01% - <0.01% <0.01% <0.01% 
LYS g- g+ g- t <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% <0.01% 
LYS g- g+ g- g- 0.01% 0.02% 0.01% <0.01% <0.01% 0.01% <0.01% 
LYS g- t g+ g+ 4.79% 4.56% 4.27% 4.89% 4.94% 5.49% 5.01% 
LYS g- t g+ t 2.01% 2.35% 0.91% 1.42% 1.83% 2.15% 1.44% 
LYS g- t g+ g- 0.09% 0.08% 0.04% 0.12% 0.08% 0.10% 0.21% 
LYS g- t t g+ 14.99% 13.34% 16.48% 24.88% 14.52% 16.08% 15.10% 
LYS g- t t t 4.96% 6.42% 2.50% 3.23% 3.49% 4.39% 2.88% 
LYS g- t t g- 22.34% 23.16% 22.72% 25.24% 19.66% 21.00% 21.22% 
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Residue χ1 χ2 χ3 χ4 BBIND RSS 
αR 

RSS 
Near αR 

RSS 
αL 

RSS 
β 

RSS 
PIIL 

RSS  
PIR 

LYS g- t g- g+ 0.19% 0.21% 0.20% 0.23% 0.09% 0.23% 0.09% 
LYS g- t g- t 3.67% 4.51% 1.58% 2.64% 2.90% 3.72% 2.39% 
LYS g- t g- g- 5.13% 3.62% 5.88% 12.35% 5.32% 6.37% 5.76% 
LYS g- g- g+ g+ 0.26% 0.41% 0.18% 0.03% 0.09% 0.11% 0.07% 
LYS g- g- g+ t 0.09% 0.15% 0.05% 0.02% 0.03% 0.04% 0.02% 
LYS g- g- g+ g- <0.01% <0.01% <0.01% 0.03% <0.01% <0.01% <0.01% 
LYS g- g- t g+ 6.06% 6.26% 6.70% 4.86% 4.97% 6.88% 4.88% 
LYS g- g- t t 1.04% 1.03% 1.24% 0.73% 0.96% 1.24% 0.68% 
LYS g- g- t g- 7.64% 6.31% 13.94% 6.52% 7.44% 8.85% 9.19% 
LYS g- g- g- g+ 0.02% 0.02% 0.01% 0.01% 0.01% 0.02% 0.01% 
LYS g- g- g- t 0.66% 0.82% 0.56% 0.21% 0.54% 0.65% 0.33% 
LYS g- g- g- g- 1.19% 1.25% 1.30% 1.02% 0.99% 1.20% 0.85% 
MET g+ g+ g+ 

 
0.07% 0.01% 0.08% <0.01% 0.20% 0.15% <0.01% 

MET g+ g+ t 
 

0.07% 0.01% 0.06% <0.01% 0.22% 0.12% 0.01% 
MET g+ g+ g- 

 
<0.01% <0.01% <0.01% - <0.01% <0.01% <0.01% 

MET g+ t g+ 
 

0.73% 0.06% 0.58% 0.06% 2.28% 1.37% 0.79% 
MET g+ t t 

 
0.76% 0.06% 0.72% 0.07% 2.40% 1.41% 0.53% 

MET g+ t g- 
 

0.79% 0.08% 1.09% 0.04% 2.13% 1.93% 0.47% 
MET g+ g- g+ 

 
<0.01% <0.01% <0.01% - <0.01% 0.01% - 

MET g+ g- t 
 

0.08% <0.01% 0.04% <0.01% 0.25% 0.23% 0.02% 
MET g+ g- g- 

 
0.07% <0.01% 0.03% <0.01% 0.32% 0.09% 0.02% 

MET t g+ g+ 
 

1.92% 2.44% 2.27% 0.98% 1.55% 1.11% 1.30% 
MET t g+ t 

 
2.17% 2.94% 2.33% 0.74% 1.60% 0.93% 1.33% 

MET t g+ g- 
 

0.09% 0.12% 0.07% 0.05% 0.06% 0.02% 0.09% 
MET t t g+ 

 
4.50% 5.14% 3.35% 2.06% 5.26% 3.07% 5.00% 

MET t t t 
 

2.53% 2.39% 2.98% 1.56% 3.71% 1.90% 3.90% 
MET t t g- 

 
2.55% 2.45% 2.55% 1.91% 3.79% 1.86% 3.67% 

MET t g- g+ 
 

0.01% 0.01% 0.01% 0.01% 0.01% <0.01% 0.02% 
MET t g- t 

 
0.52% 0.72% 0.65% 0.21% 0.31% 0.16% 0.46% 

MET t g- g- 
 

1.16% 1.80% 0.99% 0.15% 0.54% 0.29% 0.62% 
MET g- g+ g+ 

 
0.72% 0.33% 1.14% 1.47% 1.04% 1.27% 1.25% 

MET g- g+ t 
 

0.83% 0.65% 1.11% 1.09% 0.94% 1.08% 1.30% 
MET g- g+ g- 

 
0.03% 0.04% 0.02% 0.01% 0.01% 0.03% 0.01% 

MET g- t g+ 
 

16.40% 15.74% 14.54% 18.44% 17.15% 17.31% 18.70% 
MET g- t t 

 
15.82% 14.04% 13.67% 18.81% 17.96% 18.65% 19.40% 

MET g- t g- 
 

20.74% 18.91% 18.42% 31.16% 22.10% 22.81% 24.69% 
MET g- g- g+ 

 
0.94% 1.36% 0.57% 0.30% 0.29% 0.65% 0.16% 

MET g- g- t 
 

11.48% 12.98% 13.23% 9.51% 7.09% 10.57% 7.49% 
MET g- g- g- 

 
15.06% 17.72% 19.49% 11.37% 8.77% 13.00% 8.76% 

PHE g+ g 
  

6.47% 0.82% 7.04% 0.23% 15.79% 9.44% 3.27% 
PHE g+ t 

  
0.02% <0.01% 0.04% <0.01% 0.03% 0.03% 0.01% 

PHE t g 
  

39.54% 59.47% 39.89% 22.88% 25.89% 20.18% 30.21% 
PHE t t 

  
2.79% 3.67% 2.14% 3.15% 2.40% 0.89% 5.15% 

PHE g- g 
  

45.99% 29.79% 47.36% 69.48% 52.54% 63.16% 58.75% 
PHE g- t 

  
5.19% 6.25% 3.53% 4.26% 3.35% 6.30% 2.61% 

PRO g+ 
   

62.93% 58.04% 97.66% - 81.32% 65.62% 100.00% 
PRO g- 

   
37.07% 41.96% 2.34% 100.00% 18.68% 34.38% - 

SER g+ 
   

22.69% 14.33% 19.70% 1.91% 31.69% 34.91% 26.59% 
SER t 

   
2.05% 1.30% 1.98% 2.39% 3.91% 1.95% 4.36% 

SER g- 
   

75.25% 84.37% 78.31% 95.70% 64.40% 63.14% 69.04% 
THR g+ 

   
45.14% 26.50% 55.71% 13.97% 52.54% 61.66% 57.70% 

THR t 
   

1.71% 0.12% 0.93% 0.36% 4.84% 1.46% 4.78% 
THR g- 

   
53.15% 73.38% 43.36% 85.67% 42.63% 36.88% 37.52% 

TRP g+ g+ 
  

6.57% 4.05% 14.85% 0.05% 11.08% 5.98% 1.85% 
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Residue χ1 χ2 χ3 χ4 BBIND RSS 
αR 

RSS 
Near αR 

RSS 
αL 

RSS 
β 

RSS 
PIIL 

RSS  
PIR 

TRP g+ t 
  

0.51% 0.06% 0.16% <0.01% 0.86% 1.38% 0.37% 
TRP g+ g- 

  
3.94% 0.95% 5.75% 0.05% 8.22% 5.83% 3.66% 

TRP t g+ 
  

16.59% 22.66% 15.48% 10.69% 10.90% 12.05% 11.85% 
TRP t t 

  
10.53% 12.39% 8.80% 7.45% 11.17% 4.74% 22.51% 

TRP t g- 
  

13.28% 21.20% 10.92% 2.88% 8.47% 5.17% 6.12% 
TRP g- g+ 

  
7.19% 3.20% 8.98% 22.40% 9.20% 9.08% 16.93% 

TRP g- t 
  

14.98% 14.92% 12.51% 17.46% 11.15% 20.57% 11.69% 
TRP g- g- 

  
26.40% 20.56% 22.55% 39.01% 28.94% 35.20% 25.03% 

TYR g+ g 
  

8.27% 1.44% 8.56% 0.70% 18.84% 11.34% 4.28% 
TYR g+ t 

  
0.02% <0.01% <0.01% <0.01% 0.04% 0.04% 0.08% 

TYR t g 
  

37.99% 57.87% 35.08% 26.01% 24.75% 21.51% 25.61% 
TYR t t 

  
2.85% 3.88% 1.67% 2.40% 2.38% 0.98% 5.63% 

TYR g- g 
  

45.57% 30.22% 51.02% 68.31% 50.71% 59.62% 61.07% 
TYR g- t 

  
5.29% 6.60% 3.66% 2.58% 3.29% 6.52% 3.33% 

VAL g+ 
   

1.36% 0.71% 1.19% 0.18% 2.32% 1.41% 1.33% 
VAL t 

   
55.53% 81.10% 43.65% 89.09% 50.17% 26.78% 48.76% 

VAL g- 
   

43.11% 18.19% 55.16% 10.73% 47.51% 71.81% 49.91% 
 
 
Table S2: (Related to Figure 7) Rotamer definitions for rotameric and non-rotameric χ-angles. 
 

Residue # χ 
angles 

Rotamer 
Structure 

# 
Rotameric 
rotamers 

Non-
rotameric 

angles 

# Non-
rotameric 
χ bins 

Total # 
rotamers 

ARG 4 χ1,χ2,χ3,χ4 81 - - 81 
ASN 2 χ1,χ2 3 χ2 6 18 
ASP 2 χ1,χ2 3 χ2 6 18 
CYS 2 χ1 3  - 3 
GLN 3 χ1,χ2,χ3 9 χ3 6 54 
GLU 3 χ1,χ2,χ3 9 χ3 6 54 
HIS 2 χ1,χ2 3 χ2 6 18 
ILE 2 χ1,χ2 9 - - 9 
LEU 2 χ1,χ2 9 - - 9 
LYS 3 χ1,χ2,χ3,χ4 81 - - 81 
MET 4 χ1,χ2,χ3 27 - - 27 
PHE 2 χ1,χ2 3 χ2 4 12 
PRO 1 χ1 - χ1 2 2 
SER 1 χ1 3 - - 3 
THR 1 χ1 3 - - 3 
TRP 2 χ1,χ2 9 - - 9 
TYR 2 χ1,χ2 3 χ2 4 12 
VAL 1 χ1 3 - - 3 
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