Some methods for blindfolded record linkage
Tim Churches'*, Peter Christen?

! Centre for Epidemiology and Research, Population Health Division, New South Wales
Department of Health, Locked Mail Bag 961, North Sydney NSW 2059, Australia

2Department of Computer Science, Australian National University, Canberra ACT 0200,
Australia

Appendix 1 — Proof-of-concept implementation of Protocol 2

A proof-of-concept implementation of Protocol 2 is available in the form of a series of Python
computer programs and two associated source data files, representing Alice's and Bob's
original data. Some aspects of the protocol have been simplified for the purposes of
illustration. In particular, public key encryption is not used — instead, a symmetrical encryption
protocol is used. It should be noted that the symmetrical encryption protocol chosen is known
to be insecure and was selected merely for illustrative purposes and to avoid problems with
export controls. In practice, a known secure protocol should be used. In addition, message
transfer protocols are not used — rather, each party has their own subdirectory, and the
transfer of data between parties is simulated by simply writing files in the directories of other
parties. However, data is only ever read from the each party's own directory. The only
exception to this is an additional party which plays the réle of an omniscient deity. This allows
the bigram scores obtained by the minimum-knowledge protocol to be compared in an
additional step with bigram scores calculated in the normal manner (that is, with full
knowledge of the original character strings).

Interested readers may download the programmes in Additional Files 3 and 4, for Posix
(Unix, Linux or Apple Mac OS X) and Microsoft Windows platforms respectively. The archive
files should be unpacked in a temporary directory. This will create the required subdirectories
for each entity. Each programme should be run in turn from the command line. The sequence
of commands (in bold) and the resulting output (with some elision in the interests of space)
are shown below. Version 2.3 or later of the Python language is also required. This may be
downloaded at no cost from http://www.python.org.

Readers should note that the provided programmes are for illustrative purposes only and
should not be used to process confidential data. No warranty that the programme code is fit
for any particular purpose is implied or given. At the time of writing, work is under way on
production-quality implementations of the protocols, to appear as part of the free, open
source Febrl package, available at http://datamining.anu.edu.au/linkage.html.

The Python programme code and the output it produces are shown below. Comments in the
Python programmes, which appear on lines starting with a hash (#) symbol, explain the
programme flow.

Step 1 (Alice): Programme

make required programme libraries available

import sha, random, sys, os

#

Create the shared secret random key

K_AB = sha.new(str(random.randint(0,sys.maxint-1))).hexdigest()
print

print "Shared secret random hash key K AB: " + K AB

print

#

Save the key in Alice's directory

K AB file alice = open("./alice/protocol 2 K AB.txt", "w")
K AB file alice.write(K_AB)

K AB file alice.close()

#

Save the key in Bob's directory

K AB file bob = open("./bob/protocol 2 K AB.txt", "w")

K AB file bob.write(K_AB)

K AB file bob.close()

#

Create a secret key shared with David (but not Carol) in lieu of
public key cryptography to hide values from Carol

K_AD = sha.new(str(random.randint(0,sys.maxint-1))).hexdigest()
print

print "Shared secret key K_AD: " + K_AD

print

#

Save the key in Alice's directory

K AD file alice = open("./alice/protocol 2 K AD.txt", "w")
K AD file alice.write(K_AD)

K AD file alice.close()

#

Save the key in David's directory

K AD file david = open("./david/protocol 2 K AD.txt", "w")
K AD file david.write(K_AD)

K AD file david.close()

#

Create a non-shared secret key

K A = sha.new(str(random.randint(0,sys.maxint-1))).hexdigest()
print

print "Non-shared secret key K A: " + K A

print

#

Save the key in Alice's directory

K A file alice = open("./alice/protocol_2 K A.txt", "w")

K A file alice.write(K_A)

K A file alice.close()

Step 1 (Alice): Output

$ python p2_s1_alice. py

Shared secret random hash key K _AB: 07a7a77e53dlad8a92dbd0457b3c2636a242aeaa
Shared secret key K AD: 27bde97lac3f5017dabdd8ab5f85badclOcd6bd5a

Non-shared secret key K A: 77529eelbab5cl12859a95412a9cecl148f05e50cd3

Steps 2-6 (Alice): Programme

Turn off warning about insecurity of rotor encryption
import warnings

warnings.filterwarnings ("ignore","",DeprecationWarning)
make required programme libraries available

import sha, hmac, os, rotor, random, pickle, sys

Note: For illustrative purposes only, this program uses the Python
rotor symmetrical encryption module (which is known to be insecure)
and a shared secret key instead of public key encryption as specified
prescribed in Protocol 2

def enigmatise(objects, key):

plaintext = pickle.dumps (objects)

rt = rotor.newrotor (key)

ciphertext = rt.encrypt(plaintext)

return ciphertext

HH= H= H

Recursive function to calculate sub-list permutations
def sublist comb(in_list, length):
"""Routine to recursively compute all combinations of sub-lists
of the given 'in list' of length 'len’'.
Based on Gagan Saksena's routines from Activestate Python
cookbook, see:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66465
and modified by Ole Nielsen, MSI ANU, November 2002
sub_lists = []
in_list _len = len(in_list) # Number of elements in in_list
if (length == 0):
return [[]]
else:
for i in range(in_list len):
sub = sublist comb(in_list[i+1:], length-1)
for 1 in sub:
l.insert (0, in_list[i])
sub_lists += sub
return sub_lists

Read the non-shared secret key K A written by Alice in step 1
K A file = open("./alice/protocol 2 K A.txt", "r")

KA =KA file.readline()

K A file.close()

Read the shared secret key K AB written by Alice in step 1
K AB file = open("./alice/protocol 2 K AB.txt", "r")

K AB = K AB file.readline()

K AB file.close()

Read the shared secret key K AD written by Alice in step 1
K AD file = open("./alice/protocol 2 K AD.txt", "r")

K AD = K AD_file.readline()

K AD file.close()

Load and then print original database A.a
A a file = open("./alice/A _database.txt", "r")
A original records = A _a_file.readlines()

A a file.close()

print
print "Database A original records:"
for r in A original records:
print " ", r.strip()
print

Empty lists which will hold the transformed and encoded data

A hash bigram comb = []
A hash bigram comb_len = []
A _encrypt _rec_key = []
A len = [1

List to hold original data and record keys for use by deity
A_source_database = []

rec_id = 0 # Counter for the record identifiers

Iterate through Alice's original records
for r in A original_records:

str val = r.strip().lower()

str_val len = len(str_val)

Number of bigrams in string
str bigram num = str val len - 1

Create the bigram list from the original record value
bigram list = []

enumerate all the bigrams in the string
for i in range(l, str_val_len):
bigram = str_val[i-1:i+1]
if bigram not in bigram list:
bigram list.append(bigram)
sort the resulting list of bigrams
bigram list.sort()

Count of bigrams in the list
num_bigrams = len(bigram list)

Form all combinations of bigrams with sub-lists of various lengths
i.e. the powerset(sans the null set)
for sub_list len in range(l,num bigrams+1l):
bigram comb_list = sublist comb(bigram list, sub_list_len)
Now process each combination in the powerset
for bigram comb in bigram comb list:
concatenate the sorted bigrams into a string
bigram comb_str = ''.join(bigram_comb)
calculate the keyed hash for the bigram combination string
encoded _value = hmac.new(K_AB,bigram comb_str,sha).hexdigest()
Append information about the combination to lists for output
A hash bigram comb.append(encoded_value)
A _hash bigram comb_len.append(sub_list len)
A len.append(str_bigram num)
A _encrypt_rec_key.append(hmac.new(K_A,str(rec_id),sha).hexdigest())

Print original and encrypted record keys

print "Record key: %i, encrypted: %s" % \
(rec_id, A _encrypt_rec key[-1])

Append these data items to A database

A source_database.append((rec_id, A_encrypt_rec_key[-1],str_val))
increment record counter

rec_id +=1

Save the tuples in serialised form in Carol's directory
tuples_ A = []
for i in range(0, len(A_hash bigram comb)):
R = sha.new(str(random.randint (0,sys.maxint-1))).hexdigest() # Random payload
tuple A = (A _hash bigram comb[i],enigmatise((A_encrypt rec key[i],\
A hash bigram comb len[i],\
A len[i],R),K_AD))
tuples A.append(tuple A)
Use Python "pickles" to serialise the data for "sending" to Carol
tuples A file carol = open("./carol/protocol 2 tuples A.pickle", "w")
pickle.dump(tuples A,tuples A file carol)
tuples_A file carol.close()

print output
print
print "Database A processed, bigram hashes and encrypted data for David:"
print " Hashed bigram combinations"
for tuple A in tuples_A:
print " ", tuple A[O]
print

print "Created %i encrypted records from %i original records" % \
(len(A_hash_bigram comb), rec_id)

Save the original records and encrypted key in deity's

directory for later comparison - this is only for illustrative
purposes, of course.

A original records_file deity = open
("./deity/protocol 2 A original records.pickle", "w")
pickle.dump(A_source_database,A original records_file deity)

A original_records_file deity.close()

Step 2-6 (Alice): Output
$ python p2_s2-6_alice. py
Database A original records:
Shackleford
Dunningham
Nichleson
Jones
Massey
Abroms
Hardin
Ttman
Jeraldine
Marhta
Michelle
Julies

Tanya
Dwayne
Sean

Jon
Brookhaven
Brook Hallow
Decatur
Higbee
Lacura
Towa

1st

Record key: 0, encrypted: 2£4628821led2cc4c02f£3a0£8b03357bb029ab64
Record key: 1, encrypted: aa32dcladc9e30469d0196eadf9ede502c97e2e7
Record key: 2, encrypted: 3762d8af035bc225¢c7b19782d81c352acc5d4f9e

Record key: 21, encrypted: ddab44b583df7694abf645db4771ecl301lae3ff
Record key: 22, encrypted: 1053¢c1109005781c06c5b7cal2954bc0bl499e2b
Record key: 23, encrypted: cc40989298f£d625e2134e8d98f54e776e21379d3

Database A processed, bigram hashes and encrypted data for David:

Hashed bigram combinations
7dada3572¢c820d5£1004b3£f5f34a7£878aa53618
6a93337481ab2f2£5341d8d171af3dc739396e84
a8eal363c03752a4658cacedc9clbb9e2b8682cc3

bc94b23786077ba3061ed46963dad7bb6cebd69abd
6dcad0163£f504504898aad4alflccefl82b6db297
5d2f9ea669da70601£f43¢c3d13b07£5d4465fc238

Created 6128 encrypted records from 23 original records
Step 7 (Bob): Programme

This is essentially the same as Steps 2-6 above, except from Bob's perspective, and
has been ommitted in the interests of brevity. The programme code is available in
Additional Files 1 and 2.

Step 7 (Bob): Output

$ python p2_s7_bob. py

Non-shared secret key K B: dla40lle6ce8d5f034d6e6d638c2el0c7e3dca728
Shared secret key K _BD: ecb4fcfb426551374c51ed91756890ced911918b

Database B original records:
Shackelford
Cunnigham
Nichulson
Johnson
Massie
Abrams
Martinez
Smith
Geraldine
Martha
Michael
Julius
Tonya
Duane

Susan

John

Jan
Brrokhaven
Brook Hllw
Decatir
Highee
Higvee
Locura
Tona

Ist

Record key: 0, encrypted: 252eeecl606490f5c6ec5cad8ed8d25d9clcfdd4
Record key: 1, encrypted: 0Oebac3d3d9a3b504e9e8a28082f682e21829%9ea52
Record key: 2, encrypted: f7bb5a26cedelb70cc06af866cfl67£749952£57

Record key: 23, encrypted: el1l34487b085f29bb20a7bc65fd6c7£347£926483
Record key: 24, encrypted: babe5569e996d55d6de0451ablc753343ea79799
Record key: 25, encrypted: b03deb419dbeb9070ac271c863dclccf50467383

Database B processed, bigram hashes and encrypted data for David:

Hashed bigram combinations
7dada3572c820d45£f1004b3f5f34a7£878aa53618
6a93337481ab2f2£f5341d8d171af3dc739396e84
b9a332e20bcde3f6db9949dbf55a20021768a6a7

ec53fcd4a29cal3b5cb20b03588c5ded0feedchfc
6dcad0163£f504504898aad4alflccefl82b6db297
9cbee84£883d4bf2638b282278bcd0b5224a0964

Created 4446 encrypted records from 25 original records

Step 8 (Carol): Programme

import pickle

Read the hashed tuples received from Alice

tuples A file carol = open("./carol/protocol 2 tuples A.pickle", "r")

tuples A = pickle.load(tuples A file carol)

tuples A file carol.close()

And print them out for reference

print

print "Alice's hashed bigrams and other data (encrypted with David's key) loaded"
print

Read the hashed tuples received from Bob

tuples B file carol = open("./carol/protocol 2 tuples B.pickle", "r")

tuples B = pickle.load(tuples B file carol)

tuples_B file_ carol.close()

And print them out for reference

print

print "Bob's hashed bigrams and other data (encrypted with David's key) loaded"
print

Create two dictionaries with hashed bigrams as keys
database A = {}
for tup in tuples_A:

hash _bigr_comb = tup[O0]

encrypted_data for David = tup[1l]

if database_ A.has_key(hash_bigr comb):

database_A[hash _bigr comb].append(encrypted_data_ for_ David)
else:
database A[hash bigr comb] = [encrypted data_for David]
database B = {}
for tup in tuples_ B:
hash_bigr _comb = tup[O0]
encrypted data_for David = tup[l]
if database_ B.has_key(hash_bigr comb):
database_B[hash _bigr comb].append(encrypted_data_for_ David)
else:
database_B[hash _bigr comb] = [encrypted data_for David]

Find intersection of records in database_A and database B
print "Finding intersecting bigram hash digests"
print
tuples_for_ David = []
for bigram hash in database A.keys():

A _encrypted data = database_A[bigram hash]

B _encrypted_data = database B.get(bigram hash,[])

for B_data in B_encrypted_data:

for A data in A_encrypted_data:
tuples_for David.append((A_data,B_data))

print "Number of intersecting bigram hash digests:", len(tuples_for David)
print

Use Python "pickles" to serialise the data for "sending" to David
tuples file david = open("./david/protocol 2 tuples C.pickle", "w")
pickle.dump(tuples for David,tuples_file david)

tuples_file david.close()

print "Tuples for David written to his directory"

print

Step 8 (Carol): Output

$ python p2_s8 carol. py

Alice's hashed bigrams and other data (encrypted with David's key) loaded
Bob's hashed bigrams and other data (encrypted with David's key) loaded
Finding intersecting bigram hash digests...

Number of intersecting bigram hash digests: 1091

Tuples for David written to his directory

Step 9 (David): Programme

Turn off warning about rotor encryption

import warnings

warnings.filterwarnings ("ignore","",DeprecationWarning)
make required libraries available

import pickle, rotor

Note: For illustrative purposes only, this program uses the Python
rotor symmetrical encryption module (which is known to be insecure)
and a shared secret key instead of public key encryption as specified
prescribed in Protocol 2

def de_enigmatise(ciphertext, key):

rt = rotor.newrotor (key)

plaintext = rt.decrypt(ciphertext)

HH= H= H

objects = pickle.loads(plaintext)
return objects

Read the shared secret key from Alice

print "reading shared secret keys from Alice and Bob..."
print

K AD file david = open("./david/protocol 2 K AD.txt", "r")
K AD = K AD_file david.readline()

K AD file david.close()

Read the shared secret key from Bob

K BD file david = open("./david/protocol 2 K BD.txt", "r")
K BD = K BD file david.readline()

K BD file david.close()

Read the tuples received from Carol

print "Reading tuples received from Carol..."

print

tuples_file david open("./david/protocol 2 tuples C.pickle", "r")
tuples_from Carol = pickle.load(tuples_file david)

tuples_file david.close()

Process each tuple and calculate the bigram score, storing the
results in a diction with (A.record key has, B.record key hash)
as the key
print "Decrypting and calculating bigram score for each tuple..."
print
bigram scores_dict = {}
for tup in tuples_from Carol:
A tuple = de_enigmatise(tup[0],K_AD)
B tuple = de_enigmatise(tup[l],K BD)
Check that bigram lengths are the same
if A tuple[l] != B_tuple[l]:
print "Error: bigram lengths not equal!"
bigram score = A tuple[l] / (0.5 * (A_tuple[2] + B_tuple[2]))
if bigram scores_dict.has_key((A_tuple[0],B_tuple[0])):
bigram scores_dict[(A_tuple[0],B_tuple[0])].append(bigram score)
else:
bigram scores_dict[(A_tuple[0],B tuple[0])] = [bigram_score]

Now create a dictionary of maximum bigram score for each pair of records
where the score is 0.5 or more
D max_scores = {}
for k in bigram scores_dict.keys():
max_score = max(bigram_scores_dict[k])
if max_score >= 0.5:
D max_scores[k] = max_score

Send these results to the deity for checking
print "Writing bigram score results to deity's directory..."
print

results file deity = open("./deity/protocol 2 results D.pickle", "w")
pickle.dump(D_max_scores,results file deity)
results_file deity.close()

Step 9 (David): Output

$ python p2_s9 david. py

Reading shared secret keys from Alice and Bob...

Reading tuples received from Carol...

Decrypting and calculating bigram score for each tuple...
Writing bigram score results to deity's directory...

Step 10 (deity): Programme

make libraries avail able

import pprint, pickle, sys

unserialise the A database

A original_records_file deity = open
("./deity/protocol 2 A original records.pickle", "r")

A source_database = pickle.load(A_original records_file_deity)
A original records_file deity.close()

unserialise the B database

B _original_records_file deity = open
("./deity/protocol 2 B original records.pickle", "r")

B _source_database = pickle.load(B_original_records_file deity)
B original records_file deity.close()

unserialise the blindfolded scores from David

B original records file deity = open
("./deity/protocol 2 B original records.pickle", "r")
B_source_database = pickle.load(B_original_records_file deity)
B original records_file deity.close()

unserialise the results from David

results file deity = open("./deity/protocol 2 results D.pickle",
D max_scores = pickle.load(results_file deity)

results_file deity.close()

Now calculate the scores from the plaintext original values
scores = {}
for A source_record in A _source_database:
for B_source_record in B _source_database:

A string = A source_record[2]

B _string = B_source_record[2]

A reckey hash = A source_record[1]

B _reckey hash = B_source_record[1]

A reckey = A source_record[0]

B reckey = B_source_record[0]

bigrl = []
bigr2 = []
strl = A_string

str2 = B_string
Make a list of bigrams for both strings
for i in range(l,len(strl)):
bg = stril[i-1:i+1]
if bg not in bigrl:
bigrl.append(bg)
for i in range(l,len(str2)):
bg = str2[i-1:i+1]
if bg not in bigr2:
bigr2.append(bg)
Compute average number of bigrams
average = (len(bigrl)+len(bigr2)) / 2.0
if (average == 0.0):

||r||)

w= 0.0
else:
Determine which bigrams are in common
common = 0.0
if (len(bigrl) < len(bigr2)): # Count using the shorter bigram list
short_bigr = bigrl

long bigr = bigr2
else:
short_bigr = bigr2

long bigr = bigrl
for b in short_bigr:
if (b in long bigr):
common += 1.0
w = common / average
nonsecret_bg score = w
if nonsecret_bg score >= 0.5:
scores[(A_reckey hash, B_reckey hash)] = \
(nonsecret_bg score, A reckey, B reckey, A _string, B_string)

print "%15s %15s $15s $15s" % ("A_string", "B_string", \
"Deity_bigram_score", "Blind_bigram score")

for s in scores.keys():
nonsecret_bg score, A reckey, B_reckey, A string, B _string = scores[s]
blindfolded_bg score = D_max_scores[s]
print "%15s %15s $3f $3f" % (A_string, B string, \
nonsecret_bg score, blindfolded bg_ score)

Step 10 (deity): Output
$ python p2_s10 deity. py

A string B_string Deity_bigram_score Blind bigram score
jeraldine geraldine 0.875000 0.875000
tanya tonya 0.500000 0.500000
higbee highee 0.600000 0.600000
massey massie 0.600000 0.600000
dunningham cunnigham 0.705882 0.705882
higbee higvee 0.600000 0.600000
abroms abrams 0.600000 0.600000
lacura locura 0.600000 0.600000
nichleson nichulson 0.625000 0.625000
lst ist 0.500000 0.500000
michelle michael 0.615385 0.615385
jon johnson 0.500000 0.500000
brookhaven brrokhaven 0.888889 0.888889
brook hallow brook hllw 0.700000 0.700000
shackleford shackelford 0.700000 0.700000
decatur decatir 0.666667 0.666667
julies julius 0.600000 0.600000

